
Rotations and Angular Momentum

Math 241 Homework

John Baez

The goal of this homework is to understand how angular momentum generates rotations.

This is true for any system of particles interacting by central forces in R
n, and even more generally

— but we’ll just consider the case of a particle in R
3. Those of you who are feeling ambitious can

skip all the problems except problem 7, which treats a more general case. The rest of you should do

problems 1-6.

First, recall that the orthogonal group O(n) consists of n × n real matrices R with RR∗ = 1.
(Since we’re dealing with real matrices, the adjoint R∗ is just the transpose.) These matrices describe
operations composed of rotations and reflections. The Lie algebra of O(n) is denoted o(n). We can
think of this as a certain vector space of matrices. Let’s figure out what this Lie algebra is like,
especially for n = 3.

The trick is to remember that the Lie algebra is the tangent space at the identity of the Lie
group. Thus an n× n real matrix X lies in o(n) iff we can find a curve R: R → O(n) going through
the identity at t = 0:

R(0) = 1

whose tangent vector at t = 0 is X :
Ṙ(0) = X.

1. By differentiating the equation R(t)R(t)∗ = 1, show that the above conditions imply X is
skew-adjoint:

X∗ = −X.

2. Conversely, given any skew-adjoint n × n real matrix X , show that

etX =
∑

n=0

(tX)n

n!

is a curve in O(n) going through the identity at t = 0 whose tangent vector at t = 0 is X .

It follows that o(n) consists of the n × n real skew-adjoint matrices!

(By the way, this Lie algebra is precisely the same as so(n), the Lie algebra of the rotation group.
Including reflections makes O(n) have two connected components, while the rotation group SO(n)
has one, but their Lie algebras are the same.)

Now let’s look at n = 3.

3. Show that o(3) has a basis given by the matrices

X1 =





0 0 0
0 0 −1
0 1 0



 , X2 =





0 0 1
0 0 0
−1 0 0



 , X3 =





0 −1 0
1 0 0
0 0 0



 .
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This implies that any matrix in o(3) is of the form

a ·X := a1X1 + a2X2 + a3X3

for a unique vector a ∈ R
3.

4. Suppose a ∈ R
3 is any unit vector. Show that for any vector v ∈ R

3

(a · X)v = a × v.

Using this, show that
d

dt
eta·Xv = a × (eta·Xv).

This means that as t increases, the vector eta·xv keeps moving in a direction perpendicular to itself
and also a. You can also work out the speed at which it moves. Use these ideas to show the matrix
eta·X describes a counterclockwise rotation by the angle t around the axis pointing in the direction
a.

Now let’s consider a particle in R
3. Its phase space is X = R

3 × R
3, a Poisson manifold with

{F, G} =

3
∑

i=1

∂F

∂pi

∂G

∂qi

−
∂F

∂qi

∂G

∂pi

.

In the previous homework we saw how rotations/reflections act on this phase space: for any R ∈ O(3)
and any point (q,p) ∈ X , we have

R(q,p) = (Rq, Rp).

Earlier in class we saw that the angular momentum of a particle is given by

J = q × p.

Now we will finally see how these ideas are related!

For any unit vector a ∈ R
3, let F = a ·J. This defines a function F ∈ C∞(X) called the angular

momentum around the a axis, or more sloppily the ‘angular momentum in the a direction’.

5. Calculate the vector field vF ∈ Vect(X).

6. Show that
exp(tvF )(q, p) = eta·X(q, p) (1)

for all (q, p) ∈ X .

In other words, angular momentum around the a axis generates a 1-parameter group

whose action on phase space is precisely rotation about the a axis. So, in the great dictio-
nary relating symmetries and conserved quantities, rotation symmetry goes along with conservation
of angular momentum.

7. State and prove a version of equation (1) for a free particle in R
n. Hint: in n dimensions, we

can no longer speak of rotations about an axis, nor angular momentum around an axis.
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