1 The derivative of the equation $R(t) R(t)^{*}=1$ is $R(t) R^{\prime}(t)^{*}+R^{\prime}(t) R(t)^{*}=0$. Evaluating this at $t=0$ gives $1 X^{*}+X 1=0$, or $X^{*}=-X$.

2

$$
\left(e^{t X}\right)^{*}=\sum_{n=0} \frac{\left(t X^{*}\right)^{n}}{n!}=\sum_{n=0} \frac{(-t X)^{n}}{n!}=e^{-t X}
$$

Since $t X$ and $-t X$ commute, I get $e^{t X}\left(e^{t X}\right)^{*}=e^{t X} e^{-t X}=e^{t X-t X}=e^{0}=1$. Thus, $e^{t X} \in \mathrm{O}(n)$. Of course, $e^{0 X}=1$. Differentiating termwise, as is allowed for entire functions on Banach algebras,

$$
\frac{d}{d t} e^{t X}=\sum_{n=0} \frac{n t^{n-1} X^{n}}{n!}=\sum_{n=1} \frac{(t X)^{n-1} X}{(n-1)!}=X \sum_{n=0} \frac{(t X)^{n}}{n!}=X e^{t X},
$$

which at $t=0$ is $X 1=X$.

3 If $X \in \mathfrak{o}(n)$, then $X_{i, j}=-X_{j, i}$ for indices i, j. If $i=j$, it follows that $X_{i, j}=0$. If $i>j$, then $X_{i, j}$ is determined by $X_{j, i}$, where $j<i$. Thus, X is determined by $X_{i, j}$ for $i<j$. Conversely, given any values for $X_{i, j}$ for $i<j$, let $X_{i, j}$ be $-X_{j, i}$ when $i>j$ and let $X_{i, j}$ be 0 when $i=j$. Then $X \in \mathfrak{o}(n)$. Thus, a basis of $\mathfrak{o}(n)$ is $\left\{E_{i, j} \vdots i<j\right\}$, where $\left(E_{i, j}\right)_{i, j}=1,\left(E_{i, j}\right)_{j, i}=-1$, and every other component of $E_{i, j}$ is 0 . (That is, $\left(E_{i, j}\right)_{k, l}:=\delta_{k, l}^{i, j}$. When $n=3$, we have $\left\{E_{1,2}, E_{1,3}, E_{2,3}\right\}$. Since $X_{1}=-E_{2,3}, X_{2}=E_{1,3}$, and $X_{3}=-E_{1,2}$, another basis is $\left\{X_{1}, X_{2}, X_{3}\right\}$.

4 If $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$, then

$$
(\mathbf{a} \cdot \mathbf{X}) \mathbf{v}=\left(\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{2} v_{3}-a_{3} v_{2} \\
a_{3} v_{1}-a_{1} v_{3} \\
a_{1} v_{2}-a_{2} v_{1}
\end{array}\right)=\mathbf{a} \times \mathbf{v} .
$$

Thus, the t derivative of $e^{t \mathbf{a} \cdot \mathbf{X}} \mathbf{v}$ is $(\mathbf{a} \cdot \mathbf{X}) e^{t \mathbf{a} \cdot \mathbf{X}} \mathbf{v}=\mathbf{a} \times e^{t \mathbf{a} \cdot \mathbf{X}} \mathbf{v}$.

5 Let G be any smooth function on the manifold X. Then

$$
\begin{aligned}
v_{F}[G]= & \{F, G\}=\frac{\partial F}{\partial p_{1}} \frac{\partial G}{\partial q_{1}}-\frac{\partial F}{\partial q_{1}} \frac{\partial G}{\partial p_{1}}+\frac{\partial F}{\partial p_{2}} \frac{\partial G}{\partial q_{2}}-\frac{\partial F}{\partial q_{2}} \frac{\partial G}{\partial p_{2}}+\frac{\partial F}{\partial p_{3}} \frac{\partial G}{\partial q_{3}}-\frac{\partial F}{\partial q_{3}} \frac{\partial G}{\partial p_{3}} \\
= & \left(a_{2} q_{3}-a_{3} q_{2}\right) \frac{\partial G}{\partial q_{1}}-\left(a_{3} p_{2}-a_{2} p_{3}\right) \frac{\partial G}{\partial p_{1}}+\left(a_{3} q_{1}-a_{1} q_{3}\right) \frac{\partial G}{\partial q_{2}} \\
& -\left(a_{1} p_{3}-a_{3} p_{1}\right) \frac{\partial G}{\partial p_{2}}+\left(a_{1} q_{2}-a_{2} q_{1}\right) \frac{\partial G}{\partial q_{3}}-\left(a_{2} p_{1}-a_{1} p_{2}\right) \frac{\partial G}{\partial p_{3}} \\
= & (\mathbf{a} \times \mathbf{q}) \cdot \nabla_{\mathbf{q}} G+(\mathbf{a} \times \mathbf{p}) \cdot \nabla_{\mathbf{p}} G .
\end{aligned}
$$

Thus, $v_{F}=(\mathbf{a} \times \mathbf{q}) \cdot \nabla_{\mathbf{q}}+(\mathbf{a} \times \mathbf{p}) \cdot \nabla_{\mathbf{p}}$. Identifying the tangent spaces to $\mathbb{R}^{3} \times \mathbb{R}^{3}$ with $\mathbb{R}^{3} \times \mathbb{R}^{3}$ itself, this becomes $v_{F}=(\mathbf{a} \times \mathbf{q}, \mathbf{a} \times \mathbf{p})=(\mathbf{a}, \mathbf{a})(\times, \times)(\mathbf{q}, \mathbf{p})$.

6 At $t=0$, both sides of equation (1) reduce to (\mathbf{q}, \mathbf{p}). The t derivative of the left side is $\left.v_{F}\right|_{\exp \left(t v_{F}\right)(\mathbf{q}, \mathbf{p})}=$ $(\mathbf{a}, \mathbf{a})(\times, \times) \exp \left(t v_{F}\right)(\mathbf{q}, \mathbf{p})$; the t derivative of the right side is $\left(\mathbf{a} \times e^{t \mathbf{a} \cdot \mathbf{X}} \mathbf{q}, \mathbf{a} \times e^{t \mathbf{a} \cdot \mathbf{X}} \mathbf{p}\right)=(\mathbf{a}, \mathbf{a})(\times, \times)$ $e^{t \mathbf{a} \cdot \mathbf{X}}(\mathbf{q}, \mathbf{p})$. Thus, both sides satisfy the same initial value problem, so they are equal.

7 Recall that we have the basis $\left\{E_{i, j} \vdots i<j\right\}$ for $\mathfrak{o}(n)$. Then an element X of $\mathfrak{o}(n)$ is given uniquely by a 2 vector \mathbf{a} in $\Lambda^{2} \mathbb{R}^{n}$, under $X=\sum_{i<j} a_{i, j} E_{i, j}$. Symbolically, I'll indicate this as $X_{\mathbf{a}}$. Then $X_{\mathbf{a}} \mathbf{v}=\mathbf{a} \cdot \mathbf{v}$, where \mathbf{a} is treated as an antisymmetric dyadic for purposes of the dot product. The t derivative of $e^{t X_{\mathbf{a}}} \mathbf{v}$ is $X_{\mathbf{a}} e^{t X_{\mathbf{a}}} \mathbf{v}=\mathbf{a} \cdot e^{t X_{\mathbf{a}}} v$.

If $(\mathbf{q}, \mathbf{p}) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$, then let \mathbf{J} be the 2 vector $\mathbf{q} \wedge \mathbf{p}$. Then let F be the normalised dot product $\mathbf{a} \cdot \mathbf{J}$. That is, $F=\sum_{i<j} a_{i, j}\left(q_{i} p_{j}-q_{j} p_{i}\right)$.

Given $G \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$,

$$
\begin{aligned}
v_{F}[G] & =\{F, G\}=\sum_{k}\left(\frac{\partial F}{\partial p_{k}} \frac{\partial G}{\partial q_{k}}-\frac{\partial F}{\partial q_{k}} \frac{\partial G}{\partial p_{k}}\right)=\sum_{k} \sum_{i<j}\left(a_{i, j}\left(q_{i} \delta_{j, k}-q_{j} \delta_{i, k}\right) \frac{\partial G}{\partial q_{k}}-a_{i, j}\left(\delta_{i, k} p_{j}-\delta_{j, k} p_{i}\right) \frac{\partial G}{\partial p_{k}}\right) \\
& =\sum_{i<j} a_{i, j}\left(q_{i} \frac{\partial G}{\partial q_{j}}-q_{j} \frac{\partial G}{\partial q_{i}}+p_{i} \frac{\partial G}{\partial p_{j}}-p_{j} \frac{\partial G}{\partial p_{i}}\right)=\sum_{i, j} a_{i, j}\left(q_{i} \frac{\partial G}{\partial q_{j}}+p_{i} \frac{\partial G}{\partial p_{j}}\right) \\
& =(\mathbf{a} \cdot \mathbf{q}) \cdot \nabla_{\mathbf{q}} G+(\mathbf{a} \cdot \mathbf{p}) \cdot \nabla_{\mathbf{p}} G .
\end{aligned}
$$

Thus, $v_{F}=(\mathbf{a} \cdot \mathbf{q}) \cdot \nabla_{\mathbf{q}}+(\mathbf{a} \cdot \mathbf{p}) \cdot \nabla_{\mathbf{p}}=(\mathbf{a} \cdot \mathbf{q}, \mathbf{a} \cdot \mathbf{p})=(\mathbf{a}, \mathbf{a})(\cdot, \cdot)(\mathbf{q}, \mathbf{p})$.
In this context, equation (1) becomes

$$
\exp \left(t v_{F}\right)(\mathbf{q}, \mathbf{p})=e^{t X_{\mathbf{a}}}(\mathbf{q}, \mathbf{p}) .
$$

Again, at $t=0$, both sides become (\mathbf{q}, \mathbf{p}). The t derivative of the left side is $(\mathbf{a}, \mathbf{a})(\cdot, \cdot) \exp \left(t v_{F}\right)(\mathbf{q}, \mathbf{p})$, and that of the right side is $(\mathbf{a}, \mathbf{a})(\cdot, \cdot) e^{t X_{\mathbf{a}}}(\mathbf{q}, \mathbf{p})$. Therefore, the two sides are still equal.

