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1 The derivative of the equation R(t)R(t)∗ = 1 is R(t)R′(t)∗ + R′(t)R(t)∗ = 0. Evaluating this at t = 0 gives
1X∗ + X1 = 0, or X∗ = −X.

2 �
etX�∗ =

X
n=0

(tX∗)n

n!
=
X
n=0

(−tX)n

n!
= e−tX .

Since tX and −tX commute, I get etX(etX)∗ = etXe−tX = etX−tX = e0 = 1. Thus, etX ∈ O(n). Of course,
e0X = 1. Di�erentiating termwise, as is allowed for entire functions on Banach algebras,

d

dt
etX =

X
n=0

ntn−1Xn

n!
=
X
n=1

(tX)n−1
X

(n− 1)!
= X

X
n=0

(tX)n

n!
= XetX ,

which at t = 0 is X1 = X.

3 If X ∈ o(n), then Xi,j = −Xj,i for indices i, j. If i = j, it follows that Xi,j = 0. If i > j, then Xi,j is de-
termined by Xj,i, where j < i. Thus, X is determined by Xi,j for i < j. Conversely, given any values for
Xi,j for i < j, let Xi,j be −Xj,i when i > j and let Xi,j be 0 when i = j. Then X ∈ o(n). Thus, a basis of
o(n) is {Ei,j

... i < j}, where (Ei,j)i,j = 1, (Ei,j)j,i = −1, and every other component of Ei,j is 0. (That is,
(Ei,j)k,l := δi,j

k,l.) When n = 3, we have {E1,2, E1,3, E2,3}. Since X1 = −E2,3, X2 = E1,3, and X3 = −E1,2,

another basis is {X1, X2, X3}.

4 If v = (v1, v2, v3), then

(a ·X)v =

�
0 −a3 a2

a3 0 −a1

−a2 a1 0

��
v1

v2

v3

�
=

�
a2v3 − a3v2

a3v1 − a1v3

a1v2 − a2v1

�
= a× v.

Thus, the t derivative of eta·Xv is (a ·X)eta·Xv = a× eta·Xv.

5 Let G be any smooth function on the manifold X. Then

vF [G] = {F,G} =
∂F

∂p1

∂G

∂q1
− ∂F

∂q1

∂G

∂p1
+

∂F

∂p2

∂G

∂q2
− ∂F

∂q2

∂G

∂p2
+

∂F

∂p3

∂G

∂q3
− ∂F

∂q3

∂G

∂p3

= (a2q3 − a3q2)
∂G

∂q1
− (a3p2 − a2p3)

∂G

∂p1
+ (a3q1 − a1q3)

∂G

∂q2

− (a1p3 − a3p1)
∂G

∂p2
+ (a1q2 − a2q1)

∂G

∂q3
− (a2p1 − a1p2)

∂G

∂p3

= (a× q) · ∇qG + (a× p) · ∇pG.

Thus, vF = (a× q) · ∇q + (a× p) · ∇p. Identifying the tangent spaces to R3 × R3 with R3 × R3 itself, this
becomes vF = (a× q,a× p) = (a,a) (×,×) (q,p).

6 At t = 0, both sides of equation (1) reduce to (q,p). The t derivative of the left side is vF |exp (tvF )(q,p) =
(a,a) (×,×) exp (tvF )(q,p); the t derivative of the right side is (a× eta·Xq,a× eta·Xp) = (a,a) (×,×)
eta·X(q,p). Thus, both sides satisfy the same initial value problem, so they are equal.
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7 Recall that we have the basis {Ei,j
... i < j} for o(n). Then an element X of o(n) is given uniquely by a

2vector a in Λ2Rn, under X =
P

i<j ai,jEi,j . Symbolically, I ll indicate this as Xa. Then Xav = a · v,
where a is treated as an antisymmetric dyadic for purposes of the dot product. The t derivative of etXav
is Xae

tXav = a · etXav.
If (q,p) ∈ Rn × Rn, then let J be the 2vector q ∧ p. Then let F be the normalised dot product a · J.

That is, F =
P

i<j ai,j(qipj − qjpi).
Given G ∈ C∞(Rn × Rn),

vF [G] = {F,G} =
X

k

�
∂F

∂pk

∂G

∂qk
− ∂F

∂qk
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�
=
X

k

X
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�
ai,j(qiδj,k − qjδi,k)

∂G

∂qk
− ai,j(δi,kpj − δj,kpi)

∂G

∂pk

�

=
X
i<j

ai,j

�
qi

∂G

∂qj
− qj

∂G

∂qi
+ pi

∂G

∂pj
− pj

∂G

∂pi

�
=
X
i,j

ai,j

�
qi

∂G

∂qj
+ pi

∂G

∂pj

�
= (a · q) · ∇qG + (a · p) · ∇pG.

Thus, vF = (a · q) · ∇q + (a · p) · ∇p = (a · q,a · p) = (a,a) (·, ·) (q,p).
In this context, equation (1) becomes

exp (tvF )(q,p) = etXa(q,p).

Again, at t = 0, both sides become (q,p). The t derivative of the left side is (a,a) (·, ·) exp (tvF )(q,p),
and that of the right side is (a,a) (·, ·) etXa(q,p). Therefore, the two sides are still equal.
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