Toby Bartels

MATH 241

2002 November 21

- 1 The derivative of the equation $R(t)R(t)^* = 1$ is $R(t)R'(t)^* + R'(t)R(t)^* = 0$. Evaluating this at t = 0 gives $1X^* + X1 = 0$, or $X^* = -X$.
- $\mathbf{2}$

$$(e^{tX})^* = \sum_{n=0}^{\infty} \frac{(tX^*)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-tX)^n}{n!} = e^{-tX}$$

Since tX and -tX commute, I get $e^{tX}(e^{tX})^* = e^{tX}e^{-tX} = e^{tX-tX} = e^0 = 1$. Thus, $e^{tX} \in O(n)$. Of course, $e^{0X} = 1$. Differentiating termwise, as is allowed for entire functions on Banach algebras,

$$\frac{d}{dt}e^{tX} = \sum_{n=0} \frac{nt^{n-1}X^n}{n!} = \sum_{n=1} \frac{(tX)^{n-1}X}{(n-1)!} = X \sum_{n=0} \frac{(tX)^n}{n!} = Xe^{tX},$$

which at t = 0 is X1 = X.

- **3** If $X \in \mathfrak{o}(n)$, then $X_{i,j} = -X_{j,i}$ for indices i, j. If i = j, it follows that $X_{i,j} = 0$. If i > j, then $X_{i,j}$ is determined by $X_{j,i}$, where j < i. Thus, X is determined by $X_{i,j}$ for i < j. Conversely, given any values for $X_{i,j}$ for i < j, let $X_{i,j}$ be $-X_{j,i}$ when i > j and let $X_{i,j}$ be 0 when i = j. Then $X \in \mathfrak{o}(n)$. Thus, a basis of $\mathfrak{o}(n)$ is $\{E_{i,j} \colon i < j\}$, where $(E_{i,j})_{i,j} = 1$, $(E_{i,j})_{j,i} = -1$, and every other component of $E_{i,j}$ is 0. (That is, $(E_{i,j})_{k,l} := \delta_{k,l}^{i,j}$.) When n = 3, we have $\{E_{1,2}, E_{1,3}, E_{2,3}\}$. Since $X_1 = -E_{2,3}, X_2 = E_{1,3}$, and $X_3 = -E_{1,2}$, another basis is $\{X_1, X_2, X_3\}$.
- **4** If $\mathbf{v} = (v_1, v_2, v_3)$, then

$$(\mathbf{a} \cdot \mathbf{X})\mathbf{v} = \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} a_2v_3 - a_3v_2 \\ a_3v_1 - a_1v_3 \\ a_1v_2 - a_2v_1 \end{pmatrix} = \mathbf{a} \times \mathbf{v}.$$

Thus, the *t* derivative of $e^{t\mathbf{a}\cdot\mathbf{X}}\mathbf{v}$ is $(\mathbf{a}\cdot\mathbf{X})e^{t\mathbf{a}\cdot\mathbf{X}}\mathbf{v} = \mathbf{a} \times e^{t\mathbf{a}\cdot\mathbf{X}}\mathbf{v}$.

5 Let G be any smooth function on the manifold X. Then

$$v_F[G] = \{F, G\} = \frac{\partial F}{\partial p_1} \frac{\partial G}{\partial q_1} - \frac{\partial F}{\partial q_1} \frac{\partial G}{\partial p_1} + \frac{\partial F}{\partial p_2} \frac{\partial G}{\partial q_2} - \frac{\partial F}{\partial q_2} \frac{\partial G}{\partial p_2} + \frac{\partial F}{\partial p_3} \frac{\partial G}{\partial q_3} - \frac{\partial F}{\partial q_3} \frac{\partial G}{\partial p_3}$$
$$= (a_2q_3 - a_3q_2) \frac{\partial G}{\partial q_1} - (a_3p_2 - a_2p_3) \frac{\partial G}{\partial p_1} + (a_3q_1 - a_1q_3) \frac{\partial G}{\partial q_2}$$
$$- (a_1p_3 - a_3p_1) \frac{\partial G}{\partial p_2} + (a_1q_2 - a_2q_1) \frac{\partial G}{\partial q_3} - (a_2p_1 - a_1p_2) \frac{\partial G}{\partial p_3}$$
$$= (\mathbf{a} \times \mathbf{q}) \cdot \nabla_{\mathbf{q}} G + (\mathbf{a} \times \mathbf{p}) \cdot \nabla_{\mathbf{p}} G.$$

Thus, $v_F = (\mathbf{a} \times \mathbf{q}) \cdot \nabla_{\mathbf{q}} + (\mathbf{a} \times \mathbf{p}) \cdot \nabla_{\mathbf{p}}$. Identifying the tangent spaces to $\mathbb{R}^3 \times \mathbb{R}^3$ with $\mathbb{R}^3 \times \mathbb{R}^3$ itself, this becomes $v_F = (\mathbf{a} \times \mathbf{q}, \mathbf{a} \times \mathbf{p}) = (\mathbf{a}, \mathbf{a}) (\times, \times) (\mathbf{q}, \mathbf{p})$.

6 At t = 0, both sides of equation (1) reduce to (\mathbf{q}, \mathbf{p}) . The *t* derivative of the left side is $v_F|_{\exp(tv_F)(\mathbf{q},\mathbf{p})} = (\mathbf{a}, \mathbf{a}) (\times, \times) \exp(tv_F)(\mathbf{q}, \mathbf{p})$; the *t* derivative of the right side is $(\mathbf{a} \times e^{t\mathbf{a} \cdot \mathbf{X}} \mathbf{q}, \mathbf{a} \times e^{t\mathbf{a} \cdot \mathbf{X}} \mathbf{p}) = (\mathbf{a}, \mathbf{a}) (\times, \times) e^{t\mathbf{a} \cdot \mathbf{X}}(\mathbf{q}, \mathbf{p})$. Thus, both sides satisfy the same initial value problem, so they are equal.

7 Recall that we have the basis $\{E_{i,j} : i < j\}$ for $\mathfrak{o}(n)$. Then an element X of $\mathfrak{o}(n)$ is given uniquely by a 2vector \mathbf{a} in $\Lambda^2 \mathbb{R}^n$, under $X = \sum_{i < j} a_{i,j} E_{i,j}$. Symbolically, I'll indicate this as $X_{\mathbf{a}}$. Then $X_{\mathbf{a}} \mathbf{v} = \mathbf{a} \cdot \mathbf{v}$, where **a** is treated as an antisymmetric dyadic for purposes of the dot product. The t derivative of $e^{tX_{\mathbf{a}}}\mathbf{v}$ is $X_{\mathbf{a}}e^{tX_{\mathbf{a}}}\mathbf{v} = \mathbf{a} \cdot e^{tX_{\mathbf{a}}}v.$

If $(\mathbf{q}, \mathbf{p}) \in \mathbb{R}^n \times \mathbb{R}^n$, then let **J** be the 2vector $\mathbf{q} \wedge \mathbf{p}$. Then let F be the normalised dot product $\mathbf{a} \cdot \mathbf{J}$. That is, $F = \sum_{i < j} a_{i,j} (q_i p_j - q_j p_i).$ Given $G \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n),$

$$\begin{split} v_F[G] &= \{F,G\} = \sum_k \left(\frac{\partial F}{\partial p_k} \frac{\partial G}{\partial q_k} - \frac{\partial F}{\partial q_k} \frac{\partial G}{\partial p_k}\right) = \sum_k \sum_{i < j} \left(a_{i,j}(q_i\delta_{j,k} - q_j\delta_{i,k}) \frac{\partial G}{\partial q_k} - a_{i,j}(\delta_{i,k}p_j - \delta_{j,k}p_i) \frac{\partial G}{\partial p_k}\right) \\ &= \sum_{i < j} a_{i,j} \left(q_i \frac{\partial G}{\partial q_j} - q_j \frac{\partial G}{\partial q_i} + p_i \frac{\partial G}{\partial p_j} - p_j \frac{\partial G}{\partial p_i}\right) = \sum_{i,j} a_{i,j} \left(q_i \frac{\partial G}{\partial q_j} + p_i \frac{\partial G}{\partial p_j}\right) \\ &= (\mathbf{a} \cdot \mathbf{q}) \cdot \nabla_{\mathbf{q}} G + (\mathbf{a} \cdot \mathbf{p}) \cdot \nabla_{\mathbf{p}} G. \end{split}$$

Thus, $v_F = (\mathbf{a} \cdot \mathbf{q}) \cdot \nabla_{\mathbf{q}} + (\mathbf{a} \cdot \mathbf{p}) \cdot \nabla_{\mathbf{p}} = (\mathbf{a} \cdot \mathbf{q}, \mathbf{a} \cdot \mathbf{p}) = (\mathbf{a}, \mathbf{a}) (\cdot, \cdot) (\mathbf{q}, \mathbf{p}).$ In this context, equation (1) becomes

$$\exp\left(tv_F\right)(\mathbf{q},\mathbf{p}) = e^{tX_{\mathbf{a}}}(\mathbf{q},\mathbf{p}).$$

Again, at t = 0, both sides become (\mathbf{q}, \mathbf{p}) . The *t* derivative of the left side is $(\mathbf{a}, \mathbf{a}) (\cdot, \cdot) \exp(tv_F)(\mathbf{q}, \mathbf{p})$, and that of the right side is $(\mathbf{a}, \mathbf{a}) (\cdot, \cdot) e^{tX_{\mathbf{a}}}(\mathbf{q}, \mathbf{p})$. Therefore, the two sides are still equal.