The Euclidean Group

1. \(f_{R,u}(f_{R,u}(x)) = f_{R,u}((R'x + u') = R(R'x + u') + u = (RR')x + (Ru' + u) = f_{RR,Ru'+u}(x) \), so \((R',u') = (RR',Ru' + u)\) will work and is uniquely determined by the composed function.

2. If \(x' = f_{R,u}(x) = Rx + u \), then \(x = R^{-1}(x' - u) = R^{-1}x' + (-R^{-1}u) = f_{R^{-1},-R^{-1}u}(x) \), so \((R',u') = (R^{-1},-R^{-1}u)\) will work and is uniquely determined by the composed function.

3. There is of course a group of all invertible functions on \(\mathbb{R}^n \), the permutation group \(\mathbb{R}^n! \). The previous problems prove that \(E(n) \) is a subset of \(\mathbb{R}^n! \) that is closed under the operations of composition and inversion. Furthermore, \(f_{1,0}(x) = 1x + 0 = x \), so \(E(n) \) also owns the identity function. Therefore, \(E(n) \) is a subgroup of \(\mathbb{R}^n! \), in particular a group.

4. \(G \) is constructed as the range of a function from \(\mathbb{R}^n \) to \(E(n) \), which is invertible by the fundamental property of ordered pairs. First, \((1,u)(1,u') = (11,1u' + u) = (1,u + u') \), so \(G \) is closed under multiplication and the correspondence between \(G \) and \(\mathbb{R}^n \) preserves that operation. Next, \((1,u)^{-1} = (1^{-1},-1^{-1}u) = (1,-u) \), so \(G \) is closed under inverses and the correspondence between \(G \) and \(\mathbb{R}^n \) preserves that operation. Finally, the identity element of \(E(n) \) is \((1,0)\), so \(G \) owns the identity element and it corresponds to the identity element \(0 \) of \(\mathbb{R}^n \). Therefore, \(G \) is a subgroup of \(E(n) \) that is isomorphic to \(\mathbb{R}^n \). Also, \((R,u) \times (1,u)(R,u)^{-1} = (R1,Ru + u')(R^{-1},-R^{-1}u) = (RR^{-1},-RR^{-1}u' + Ru + u') = (1,Ru)\), which belongs to \(G \), so the subgroup \(G \) is normal.

\(H \) is constructed as the range of a function from \(O(n) \) to \(E(n) \), which is invertible by the fundamental property of ordered pairs. First, \((R,0)(R',0) = (RR',R0 + 0) = (RR',0) \), so \(H \) is closed under multiplication and the correspondence between \(H \) and \(O(n) \) preserves that operation. Next, \((R,0)^{-1} = (R^{-1},-R^{-1}0) = (R^{-1},0) \), so \(H \) is closed under inverses and the correspondence between \(H \) and \(O(n) \) preserves that operation. Finally, the identity element of \(E(n) \) is \((1,0)\), so \(H \) owns the identity element and it corresponds to the identity element \(1 \) of \(O(n) \). Therefore, \(H \) is a subgroup of \(E(n) \) that is isomorphic to \(O(n) \).

\((1,u)(R,0) = (1R,10 + u) = (R,u)\), so by the fundamental property of ordered pairs, every element of \(E(n) \) is a unique product of an element of \(G \) and an element of \(H \).

5. Let \(u = f(0) \), and let \(Rx \) be \(f(x) - u \) for \(x \in \mathbb{R}^n \). Note that \(R0 = u - u = 0 \) and

\[|Rx - Ry| = |(f(x) - u) - (f(y) - u)| = |f(x) - f(y)| = |x - y|, \]

so \(R \) preserves the origin and lengths. Therefore, \(R \) must be an element of \(O(n) \). Since \(f(x) = Rx + u \), the desired result follows.

The Galilei Group

6. Set \(f = f_{R,u} \) and \(f' = f_{R',u'} \). Then

\[F_{f,v,s}(F_{f',v',s'}(x,t)) = F_{f,v,s}(R'R'x + u' + v't, t + s') = (R(R'x + u' + v't) + u + v(t + s'), t + s' + s) = ((RR')x + (Ru' + u + vs') + (Rs' + v)t, t + (s' + s)) = F_{RR',Rus'+vs'+Rs'+v,s'+s}, \]

so \((f'',u'',s'') = (f_{RR',Rus'+vs'+Rs'+v},Rus'+v,s'+s)\) will work and is uniquely determined by the composed function.

7. Set \(f = f_{R,u} \). Then if \((x',t') = F_{f',v',s}(x,t) = (f(x) + vt, t + s) = (Rx + u + vt, t + s),\) then \(t = t' - s = t' - (-s) \) and \(x = R^{-1}(x' - u - vt) = R^{-1}(x' - u - v(t' - s)) = R^{-1}x' + (sR^{-1}v - R^{-1}u) + (-R^{-1}v)t'\), so \((x,t) = F_{f_{R^{-1},sR^{-1}v-R^{-1}u,-R^{-1}v,-s}}(f',v',s') = (f'_{R^{-1},sR^{-1}v-R^{-1}u,-R^{-1}v,-s})\) will work and is uniquely determined by the composed function.

8. There is of course a group of all invertible functions on \(\mathbb{R}^{n+1} \), the permutation group \(\mathbb{R}^{n+1!} \). The previous problems prove that \(G(n+1) \) is a subset of \(\mathbb{R}^{n+1!} \) that is closed under the operations of composition and inversion. Furthermore, \(f_{1,0,0}(x,t) = (x + 0t, t + 0) = (x,t) \), so \(G(n+1) \) also owns the identity function. Therefore, \(G(n+1) \) is a subgroup of \(\mathbb{R}^{n+1!} \), in particular a group.
Given points \(p, q, r \in \mathbb{R}^{n+1} \), define vectors \(v = q - p \) and \(w = r - p \) tangent to \(\mathbb{R}^{n+1} \) at \(p \). Write \(v = (v_x, v_t) \)
and \(w = (w_x, w_t) \). I claim that Galilean transformations preserve the time difference \(w_t - v_t \)
and the relative speed \(|w_x/w_t - v_x/v_t| \). Now, the latter is not defined if \(v_t \) or \(w_t \) is 0, but since these denominators are also time differences, \(|v_xw_x - w_xv_x| \) should be preserved as well. Furthermore, I claim that any transformation that preserves these is Galilean. Thus in terms of the original points \(p = (p_x, p_t), q = (q_x, q_t), \) and \(r = (r_x, r_t) \), the claimed complete invariant is the ordered pair \((q_rq_x - p_rq_x - r_tq_x + p_tq_x + r_tp_x - q_tp_x, r_t - q_t)\).

First, let me verify that this is an invariant. Applying \(F_{f,v,s} \), where \(f = f(x,t) \), the first component of the claimed invariant becomes
\[
[q_t + s)(Rr_x + u + vr_t) – (p_t + s)(Rr_x + u + vr_t) - (r_t + s)(Rr_x + u + vr_t)
+ (p_t + s)(Rr_x + u + vr_t) + (r_t + s)(Rr_x + u + vr_t) - (q_t + s)(Rr_x + u + vr_t)]
= [qtRr_x - prRr_x - rtRr_x + prRr_x + rtRr_x - qrRr_x]
= [q_t r_x - p_t r_x - r_t q_x + p_t q_x + r_t p_x - q_t p_x],
\]
since \(R \in O(n) \) is linear and preserves lengths. Meanwhile, the second component becomes \((r_t + s) - (q_t + s) = r_t - q_t \). Thus, this is indeed an invariant.

Now suppose that \(F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1} \) preserves this invariant. Let \(s \) be the second component of \(F(0,0) \).
Setting \(q = (0,0) \) and \(r = (x,t) \), I see from the second component of the invariant that \(t + s \) is the second component of \(F(x,t) \). Thus let \(F(x,t) \) be the first component of \(F(x,t) \), so that \(F(x,t) = (F_x(x,t),t+s) \).
Now let \(u \) be \(F_x(0,0) \), let \(v = F_x(1,0) - u \), and let \(R \) be \(F_x(x,1) - u - v \) for \(x \in \mathbb{R}^n \). Note that \(R0 = (v + u) - u - v = 0 \). Setting \(p = (0,0), q = (y,1), \) and \(r = (x,1) \),
\[
|R_x - R_y| = |F_x(x,1) - u - v| - |F_x(y,1) - u - v| = |F_x(x,1) - F_x(y,1)|
= |(1 + s)F_x(x,1) - sF_x(x,1) - (1 + s)F_x(y,1) + sF_x(y,1)|
= (1 + s)|F_x(x,1) - F_x(y,1)| = |F_x(x,1) - F_x(y,1)|
= |F_x(x,t) - tR(x/t - t u - u)|. Since every element of \(O(n) \) is linear, it follows that \(F_x(x,t) \) must be \((Rx + u + vt, t + s) \). Thus \(F = F_{j,r,u,v,s} \in G(n + 1) \).

The Free Particle
Since our Galilean transformations have been passive, not active, translation acts as \(s(x,p) = (q - sp/m, p) \)
on \((q + sp/m, p) \).

10 In \(G(n + 1), (f,v,s) = (1, v, s)(f, 0, 0) = (1, 0, s)(1, v, 0)(f, 0, 0) \), while I already know that \((R, u, v, s) = (1, u, v, s) \) for \((0, 0) \) in \(E(n) \). That is, \((R, u, v, s) = (1, 0, s)(1, 0, 0)(1, u, v, 0)(1, u, v, 0)(R, 0, 0, 0) \). Then
\[
(R, u, v, s)(p, q, p) = (1, 0, s)(1, 0, 0)(1, u, 0, 0)(R, 0, 0, 0)(q, p) = (1, 0, s)(1, 0, 0)(1, u, 0, 0)(Rq, Rp)
= (1, 0, s)(1, 0, 0)(Rq + u, Rp) = (1, 0, s)(Rq + u, Rp) + mv
= (Rq + u - s(Rp + mv)/m, Rp + mv) = (Rq + u - sRp/m - sv, Rp + mv).
\]

11
\[
(R, u, v, s)(R, u', v', s')(q, p) = (R, u, v, s)(R'q + u' - s'R'p/m - s'v', R'p + mv')
= (R'R'q + u' - s'R'p/m - s'v') + u - sR(Rp + mv')/m - sv, R(R'p + mv') + mv
= (RR'Rq + Ru' - sRR'p/m - sRv' + u - sRR'p/m - sRv' - sv, RR'Rp + mRv' + mv)
= (RR'Rq + Ru' + u + s v - sRR'p/m - sRv' - sRv' - sv, RR'Rp + mRv' + mv)
= (RR'Rq + (Ru' + u + s v - (s + s)(RR'Rp/m - (s + s)(Rv' + v), (RR'Rp + mRv' + v))
= (RR'R, Ru' + u + s v, Rv' + v, s' + s)(q, p) = ((R, u, v, s)(R', u', v', s'))(q, p).
\]

Page 2 of 3
Also, if \((q', p') = (R, u, v, s)(q, p) = (Rq + u - sRp/m - sv, Rp + mv)\), then \(p = R^{-1}(p' - mv) = R^{-1}p' - mR^{-1}v = R^{-1}p' + m(-R^{-1}v)\) and

\[
q = R^{-1}(q' - u + sRp/m + sv) = R^{-1}(q' - u + sR(R^{-1}p' - mR^{-1}v)/m + sv)
\]

\[
= R^{-1}q' - R^{-1}u + sR^{-1}p'/m - sv + sv = R^{-1}q' + sR^{-1}v - R^{-1}u + sR^{-1}p'/m - sR^{-1}v
\]

\[
= R^{-1}q' + (sR^{-1}v - R^{-1}u) - (-s)R^{-1}p'/m - (-s)(-R^{-1}v),
\]

so \((q, p) = (R^{-1}, R^{-1}sv - R^{-1}u, -R^{-1}v, -s)(q', p') = (R, u, v, s)^{-1}(q', p')\). Finally,

\[(1, 0, 0, 0)(q, p) = (1q + 0 - 0 \cdot 1p/m - 0 \cdot 0, 1p + m0) = (q, p).
\]

Therefore, this is an action of \(G(n + 1)\) on \(\mathbb{R}^{2n}\).