The Euclidean Group

$1 f_{R, u}\left(f_{R^{\prime}, u^{\prime}}(x)\right)=f_{R, u}\left(R^{\prime} x+u^{\prime}\right)=R\left(R^{\prime} x+u^{\prime}\right)+u=\left(R R^{\prime}\right) x+\left(R u^{\prime}+u\right)=f_{R R^{\prime}, R u^{\prime}+u}(x)$, so $\left(R^{\prime \prime}, u^{\prime \prime}\right)=$ $\left(R R^{\prime}, R u^{\prime}+u\right)$ will work and is uniquely determined by the composed function.

2 If $x^{\prime}=f_{R, u}(x)=R x+u$, then $x=R^{-1}\left(x^{\prime}-u\right)=R^{-1} x^{\prime}+\left(-R^{-1} u\right)=f_{R^{-1},-R^{-1} u}(x)$, so $\left(R^{\prime}, u^{\prime}\right)=$ ($R^{-1},-R^{-1} u$) will work and is uniquely determined by the composed function.
3 There is of course a group of all invertible functions on \mathbb{R}^{n}, the permutation group \mathbb{R}^{n} !. The previous problems prove that $\mathrm{E}(n)$ is a subset of \mathbb{R}^{n} ! that is closed under the operations of composition and inversion. Furthermore, $f_{1,0}(x)=1 x+0=x$, so $\mathrm{E}(n)$ also owns the identity function. Therefore, $\mathrm{E}(n)$ is a subgroup of \mathbb{R}^{n} !, in particular a group.
$4 G$ is constructed as the range of a function from \mathbb{R}^{n} to $\mathrm{E}(n)$, which is invertible by the fundamental property of ordered pairs. First, $(1, u)\left(1, u^{\prime}\right)=\left(11,1 u^{\prime}+u\right)=\left(1, u+u^{\prime}\right)$, so G is closed under multiplication and the correspondence between G and \mathbb{R}^{n} preserves that operation. Next, $(1, u)^{-1}=\left(1^{-1},-1^{-1} u\right)=$ $(1,-u)$, so G is closed under inverses and the correspondence between G and \mathbb{R}^{n} preserves that operation. Finally, the identity element of $\mathrm{E}(n)$ is $(1,0)$, so G owns the identity element and it corresponds to the identity element 0 of \mathbb{R}^{n}. Therefore, G is a subgroup of $\mathrm{E}(n)$ that is isomorphic to \mathbb{R}^{n}. Also, $\left(R, u^{\prime}\right) \times$ $(1, u)\left(R, u^{\prime}\right)^{-1}=\left(R 1, R u+u^{\prime}\right)\left(R^{-1},-R^{-1} u^{\prime}\right)=\left(R R^{-1},-R R^{-1} u^{\prime}+R u+u^{\prime}\right)=(1, R u)$, which belongs to G, so the subgroup G is normal.
H is constructed as the range of a function from $\mathrm{O}(n)$ to $\mathrm{E}(n)$, which is invertible by the fundamental property of ordered pairs. First, $(R, 0)\left(R^{\prime}, 0\right)=\left(R R^{\prime}, R 0+0\right)=\left(R R^{\prime}, 0\right)$, so H is closed under multiplication and the correspondence between H and $\mathrm{O}(n)$ preserves that operation. Next, $(R, 0)^{-1}=\left(R^{-1},-R^{-1} 0\right)=$ $\left(R^{-1}, 0\right)$, so H is closed under inverses and the correspondence between H and $\mathrm{O}(n)$ preserves that operation. Finally, the identity element of $\mathrm{E}(n)$ is $(1,0)$, so H owns the identity element and it corresponds to the identity element 1 of $\mathrm{O}(n)$. Therefore, H is a subgroup of $\mathrm{E}(n)$ that is isomorphic to $\mathrm{O}(n)$.
$(1, u)(R, 0)=(1 R, 10+u)=(R, u)$, so by the fundamental property of ordered pairs, every element of $\mathrm{E}(n)$ is a unique product of an element of G and an element of H.

5 Let u be $f(0)$, and let $R x$ be $f(x)-u$ for $x \in \mathbb{R}^{n}$. Note that $R 0=u-u=0$ and

$$
|R x-R y|=|(f(x)-u)-(f(y)-u)|=|f(x)-f(y)|=|x-y|
$$

so R preserves the origin and lengths. Therefore, R must be an element of $\mathrm{O}(n)$. Since $f(x)=R x+u$, the desired result follows.

The Galilei Group

6 Set $f=f_{R, u}$ and $f^{\prime}=f_{R^{\prime}, u^{\prime}}$. Then

$$
\begin{aligned}
F_{f, v, s}\left(F_{f^{\prime}, v^{\prime}, s^{\prime}}(x, t)\right) & =F_{f, v, s}\left(R^{\prime} x+u^{\prime}+v^{\prime} t, t+s^{\prime}\right)=\left(R\left(R^{\prime} x+u^{\prime}+v^{\prime} t\right)+u+v\left(t+s^{\prime}\right), t+s^{\prime}+s\right) \\
& =\left(\left(R R^{\prime}\right) x+\left(R u^{\prime}+u+v s^{\prime}\right)+\left(R v^{\prime}+v\right) t, t+\left(s^{\prime}+s\right)\right)=F_{f_{R R^{\prime}, R u^{\prime}+u+v s^{\prime}}, R v^{\prime}+v, s^{\prime}+s}
\end{aligned}
$$

so $\left(f^{\prime \prime}, v^{\prime \prime}, s^{\prime \prime}\right)=\left(f_{R R^{\prime}, R u^{\prime}+u+v s^{\prime}}, R v^{\prime}+v, s^{\prime}+s\right)$ will work and is uniquely determined by the composed function.

7 Set $f=f_{R, u}$. Then if $\left(x^{\prime}, t^{\prime}\right)=F_{f, v, s}(x, t)=(f(x)+v t, t+s)=(R x+u+v t, t+s)$, then $t=t^{\prime}-s=$ $t^{\prime}+(-s)$ and $x=R^{-1}\left(x^{\prime}-u-v t\right)=R^{-1}\left(x^{\prime}-u-v\left(t^{\prime}-s\right)\right)=R^{-1} x^{\prime}+\left(s R^{-1} v-R^{-1} u\right)+\left(-R^{-1} v\right) t^{\prime}$, so $(x, t)=F_{f_{R^{-1}, s R^{-1} v-R^{-1} u},-R^{-1} v,-s}$, so $\left(f^{\prime}, v^{\prime}, s^{\prime}\right)=\left(f_{R^{-1}, s R^{-1} v-R^{-1} u},-R^{-1} v,-s\right)$ will work and is uniquely determined by the composed function.
8 There is of course a group of all invertible functions on \mathbb{R}^{n+1}, the permutation group \mathbb{R}^{n+1} !. The previous problems prove that $G(n+1)$ is a subset of \mathbb{R}^{n+1} ! that is closed under the operations of composition and inversion. Furthermore, $F_{1,0,0}(x, t)=(x+0 t, t+0)=(x, t)$, so $\mathrm{G}(n+1)$ also owns the identity function. Therefore, $\mathrm{G}(n+1)$ is a subgroup of \mathbb{R}^{n+1} !, in particular a group.

9 Given points $p, q, r \in \mathbb{R}^{n+1}$, define vectors $v=q-p$ and $w=r-p$ tangent to \mathbb{R}^{n+1} at p. Write $v=\left(v_{x}, v_{t}\right)$ and $w=\left(w_{x}, w_{t}\right)$. I claim that Galilean transformations preserve the time difference $w_{t}-v_{t}$ and the relative speed $\left|w_{x} / w_{t}-v_{x} / v_{t}\right|$. Now, the latter is not defined if v_{t} or w_{t} is 0 , but since these denominators are also time differences, $\left|v_{t} w_{x}-w_{t} v_{x}\right|$ should be preserved as well. Furthermore, I claim that any transformation that preserves these is Galilean. Thus in terms of the original points $p=\left(p_{x}, p_{t}\right), q=\left(q_{x}, q_{t}\right)$, and $r=$ $\left(r_{x}, r_{t}\right)$, the claimed complete invariant is the ordered pair $\left(\left|q_{t} r_{x}-p_{t} r_{x}-r_{t} q_{x}+p_{t} q_{x}+r_{t} p_{x}-q_{t} p_{x}\right|, r_{t}-q_{t}\right)$.

First, let me verify that this is an invariant. Applying $F_{f, v, s}$, where $f=f_{R, u}$, the first component of the claimed invariant becomes

$$
\begin{aligned}
& \mid\left(q_{t}+s\right)\left(R r_{x}+u+v r_{t}\right)-\left(p_{t}+s\right)\left(R r_{x}+u+v r_{t}\right)-\left(r_{t}+s\right)\left(R q_{x}+u+v q_{t}\right) \\
& \quad+\left(p_{t}+s\right)\left(R q_{x}+u+v q_{t}\right)+\left(r_{t}+s\right)\left(R p_{x}+u+v p_{t}\right)-\left(q_{t}+s\right)\left(R p_{x}+u+v p_{t}\right) \mid \\
&=\left|q_{t} R r_{x}-p_{t} R r_{x}-r_{t} R q_{x}+p_{t} R q_{x}+r_{t} R p_{x}-q_{t} R p_{x}\right| \\
&=\left|R\left(q_{t} r_{x}-p_{t} r_{x}-r_{t} q_{x}+p_{t} q_{x}+r_{t} p_{x}-q_{t} p_{x}\right)\right| \\
&=\left|q_{t} r_{x}-p_{t} r_{x}-r_{t} q_{x}+p_{t} q_{x}+r_{t} p_{x}-q_{t} p_{x}\right|,
\end{aligned}
$$

since $R \in \mathrm{O}(n)$ is linear and preserves lengths. Meanwhile, the second component becomes $\left(r_{t}+s\right)-\left(q_{t}+s\right)=$ $r_{t}-q_{t}$. Thus, this is indeed an invariant.

Now suppose that $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ preserves this invariant. Let s be the second component of $F(0,0)$. Setting $q=(0,0)$ and $r=(x, t)$, I see from the second component of the invariant that $t+s$ is the second component of $F(x, t)$. Thus let $F_{x}(x, t)$ be the first component of $F(x, t)$, so that $F(x, t)=\left(F_{x}(x, t), t+s\right)$. Now let u be $F_{x}(0,0)$, let v be $F_{x}(0,1)-u$, and let $R x$ be $F_{x}(x, 1)-u-v$ for $x \in \mathbb{R}^{n}$. Note that $R 0=$ $(v+u)-u-v=0$. Setting $p=(0,0), q=(y, 1)$, and $r=(x, 1)$,

$$
\begin{aligned}
|R x-R y| & =\left|\left(F_{x}(x, 1)-u-v\right)-\left(F_{x}(y, 1)-u-v\right)\right|=\left|F_{x}(x, 1)-F_{x}(y, 1)\right| \\
& =\left|(1+s) F_{x}(x, 1)-s F_{x}(x, 1)-(1+s) F_{x}(y, 1)+s F_{x}(y, 1)+(1+s) u-(1+s) u\right| .
\end{aligned}
$$

Applying the first component of the invariant, this equals $|1 x-0 x-1 y+0 y+1 \cdot 0-1 \cdot 0|=|x-y|$. Thus, R preserves the origin and lengths, so it must be an element of $\mathrm{O}(n)$. Now setting $p=(0,0), q=(x / t, 1)$, and $r=(x, t)$, the first component of the invariant says that

$$
\begin{aligned}
& |1 x-0 x-t(x / t)+0(x / t)+t 0-1 \cdot 0| \\
& \quad=\left|(1+s) F_{x}(x, t)-s F_{x}(x, t)-(t+s)(R(x / t)+v+u)+s(R(x / t)+v+u)+(t+s) u-(1+s) u\right|,
\end{aligned}
$$

or $0=\left|F_{x}(x, t)-t R(x / t)-t v-u\right|$. Since every element of $\mathrm{O}(n)$ is linear, it follows that $F_{x}(x, t)$ must be $(R x+u+v t, t+s)$. Thus $F=F_{f_{R, u}, v, s} \in \mathrm{G}(n+1)$.

The Free Particle

Since our Galilean transformations have been passive, not active, time translation acts as $s(x, p)=(q-s p / m, p)$, not $(q+s p / m, p)$.
10 In $\mathrm{G}(n+1),(f, v, s)=(1, v, s)(f, 0,0)=(1,0, s)(1, v, 0)(f, 0,0)$, while I already know that $(R, u)=(1, u) \times$
$(0, R)$ in $\mathrm{E}(n)$. That is, $(R, u, v, s)=(1,0,0, s)(1,0, v, 0)(1, u, 0,0)(R, 0,0,0)$. Then

$$
\begin{aligned}
(R, u, v, s)(q, p) & =(1,0,0, s)(1,0, v, 0)(1, u, 0,0)(R, 0,0,0)(q, p)=(1,0,0, s)(1,0, v, 0)(1, u, 0,0)(R q, R p) \\
& =(1,0,0, s)(1,0, v, 0)(R q+u, R p)=(1,0,0, s)(R q+u, R p+m v) \\
& =(R q+u-s(R p+m v) / m, R p+m v)=(R q+u-s R p / m-s v, R p+m v) .
\end{aligned}
$$

11

$$
\begin{aligned}
& (R, u, v, s)\left(\left(R^{\prime}, u^{\prime}, v^{\prime}, s^{\prime}\right)(q, p)\right)=(R, u, v, s)\left(R^{\prime} q+u^{\prime}-s^{\prime} R^{\prime} p / m-s^{\prime} v^{\prime}, R^{\prime} p+m v^{\prime}\right) \\
& \quad=\left(R\left(R^{\prime} q+u^{\prime}-s^{\prime} R^{\prime} p / m-s^{\prime} v^{\prime}\right)+u-s R\left(R^{\prime} p+m v^{\prime}\right) / m-s v, R\left(R^{\prime} p+m v^{\prime}\right)+m v\right) \\
& \quad=\left(R R^{\prime} q+R u^{\prime}-s^{\prime} R R^{\prime} p / m-s^{\prime} R v^{\prime}+u-s R R^{\prime} p / m-s R v^{\prime}-s v, R R^{\prime} p+m R v^{\prime}+m v\right) \\
& \quad=\left(R R^{\prime} q+R u^{\prime}+u+s^{\prime} v-s^{\prime} R R^{\prime} p / m-s R R^{\prime} p / m-s^{\prime} R v^{\prime}-s^{\prime} v-s R v^{\prime}-s v, R R^{\prime} p+m R v^{\prime}+m v\right) \\
& \quad=\left(\left(R R^{\prime}\right) q+\left(R u^{\prime}+u+s^{\prime} v\right)-\left(s^{\prime}+s\right)\left(R R^{\prime}\right) p / m-\left(s^{\prime}+s\right)\left(R v^{\prime}+v\right),\left(R R^{\prime}\right) p+m\left(R v^{\prime}+v\right)\right) \\
& \quad=\left(R R^{\prime}, R u^{\prime}+u+s^{\prime} v, R v^{\prime}+v, s^{\prime}+s\right)(q, p)=\left((R, u, v, s)\left(R^{\prime}, u^{\prime}, v^{\prime}, s^{\prime}\right)\right)(q, p) .
\end{aligned}
$$

Page 2 of 3

Also, if $\left(q^{\prime}, p^{\prime}\right)=(R, u, v, s)(q, p)=(R q+u-s R p / m-s v, R p+m v)$, then $p=R^{-1}\left(p^{\prime}-m v\right)=R^{-1} p^{\prime}-$ $m R^{-1} v=R^{-1} p^{\prime}+m\left(-R^{-1} v\right)$ and

$$
\begin{aligned}
q & =R^{-1}\left(q^{\prime}-u+s R p / m+s v\right)=R^{-1}\left(q^{\prime}-u+s R\left(R^{-1} p^{\prime}-m R^{-1} v\right) / m+s v\right) \\
& =R^{-1} q^{\prime}-R^{-1} u+s R^{-1} p^{\prime} / m-s v+s v=R^{-1} q^{\prime}+s R^{-1} v-R^{-1} u+s R^{-1} p^{\prime} / m-s R^{-1} v \\
& =R^{-1} q^{\prime}+\left(s R^{-1} v-R^{-1} u\right)-(-s) R^{-1} p^{\prime} / m-(-s)\left(-R^{-1} v\right)
\end{aligned}
$$

so $(q, p)=\left(R^{-1}, R^{-1} s v-R^{-1} u,-R^{-1} v,-s\right)\left(q^{\prime}, p^{\prime}\right)=(R, u, v, s)^{-1}\left(q^{\prime}, p^{\prime}\right)$. Finally,

$$
(1,0,0,0)(q, p)=(1 q+0-0 \cdot 1 p / m-0 \cdot 0,1 p+m 0)=(q, p) .
$$

Therefore, this is an action of $\mathrm{G}(n+1)$ on $\mathbb{R}^{2 n}$.

