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The Euclidean Group

4. Suppose that f : Rn → Rn is a map that preserves distances:

|f(x)− f(y)| = |x− y|
for all x, y ∈ Rn. Show that

f(x) = R(x) + u

for some (R, u) ∈ E(n).

First, let us define

L(x) = f(x)− f(0)

so that L is an isometry with L(0) = 0. Suppose that x, y and z are distinct, colinear, and further
that

y = x+ s(z − x) and y = z + (1− s)(x − z)

for some s ∈ (0, 1). (That is to say that y is somewhere between x and z.) Now, we note that the
above representations of y give

|x− y| = s|z − x| and |z − y| = (1− s)|z − x|
from which it directly follows that

|L(x)− L(y)| = s|L(z)− L(x)| and |L(z)− L(y)| = (1− s)|L(z)− L(x)|,
and consequently

|L(x)− L(y)|+ |L(z)− L(y)| = |L(z)− L(x)|.
The above equality says a number of things. The first thing it gives us is that L(x), L(y) and L(z)
are distinct (L is clearly an injection) colinear points: noncolinear points could not generate equality
due to the triangle inequality. The second thing it tells us is that L(y) lies between L(x) and L(z).
If L(y) was not between these two points then either

|L(x)− L(y)| or |L(z)− L(y)|
would be strictly larger than |L(x)−L(z)| contradicting the equality. Finally, we can conclude from
the facts that L(y) lies on the line between L(x) and L(z) and that L(y) is s (parameter) units away
from L(x) gives

L(y) = L(x) + s(L(z)− L(x)), (1)

and we have cleared the main obstacle to the remainder of the argument.
The remainder of the argument will center around unraveling (1). Take a nonzero x ∈ Rn. Then

x, 0 and −x are distinct colinear points. From (1) we see that
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L(0) = L(−x) + (1/2)(L(x)− L(−x)),

or more succinctly (since L(0) = 0):

L(−x) = −L(x). (2)

Further, if r ∈ (0, 1) and x is again some nonzero vector, then 0, rx and x are distinct colinear points
with

L(rx) = L(0) + r(L(x) − L(0)) = rL(x).

If r > 1, then using the above we have

L(x) = L(r−1(rx)) = r−1L(rx).

The above in conjunction with (2) show that for any r ∈ R and x ∈ Rn we get

L(rx) = rL(x). (3)

Finally, take x and y distinct. Then (1) gives

L((x+ y)/2) = L(x) + (1/2)(L(y)− L(x)),

which, when combined with (3) yields

L(x+ y) = L(x) + L(y). (4)

Equations (4) and (3) show that L is linear.
The function L is linear, so there is a matrix R ∈ Mn(R) such that L(x) = Rx. Recall the

polarization identity for the inner product on Rn:

(u, v) = (1/4)(|u+ v|2 − |u− v|2).

The fact that L is an isometry gives:

(Rx,Ry) = (x, y)

for all x, y ∈ Rn. But then:

(x, (RTR− I)y) = 0

for all x and y, and so RTR = I and we see that R ∈ O(n).
We wrap all this up by noting that

f(x) = L(x) + f(0) = Rx+ f(0)

and we wipe our hands and call it a day.
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The Galilei Group

We define a map

i : G(n+ 1)→M
where M denotes the collection of functions from Rn+1 to itself, by

X = (R, u, v, s) 7→ FX with FX(x, t) = (Rx+ u+ tv, s+ t).

Let’s show that this map is an injection. Given X = (R, u, v, s) and Y = (R′, u′, v′, s′) with
i(X) = i(Y ) we see that

FX(0, 0) = (u, s) = (u′, s′) = FY (0, 0)

so u = u′ and s = s′. Computing

FX (x, 0) = (Rx+ u, s) = (R′x+ u′, s′) = FY (x, 0)

we see that Rx = R′x for all x ∈ Rn and we have R = R′. Finally, noting the previously obtained
equalities together with the fact that FX (0, 1) = FY (0, 1) yields v = v′. Thus X = Y and our map
is an injection. We will henceforth identify G(n+ 1) with its image in M.

5. Given two elements X = (R, u, v, s), Y = (R′, u′, v′, s′) ∈ G(n+ 1), compute

FX ◦ FY
and show that the composition is again in G(n+ 1).

Back to computation:

FX ◦ FY (x, t) = FX(R′x+ u′ + tv′, s′ + t)

= (R(R′x+ u′ + tv′) + u+ (s′ + t)v, s+ s′ + t)

= (RR′x+ (Ru′ + u+ s′v) + t(Rv′ + v), (s+ s′) + t)

= FZ(x, t)

where
Z = (RR′, Ru′ + u+ s′v,Rv′ + v, s+ s′).

Thus FX ◦FY is in the image of G(n+1) inM. Because of remarks made above, Z must be unique.

6. Compute Y −1 for Y ∈ G(n+ 1).

We are looking for a X ∈ G(n+1) such that FX satisfies FY ◦FX = (I, 0, 0, 0) = FX ◦FY . Using
the notation above for X and Y this amounts to solving the following system of equations for R, u, v
and s.

RR′ = I
Ru′ + u+ s′v = 0
Rv′ + v = 0
s+ s′ = 0

The solutions are readily obtained to be R = R′T , s = −s′, v = −R′T v′, and u = −R′Tu′+ s′R′T v′.
So we claim that
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(R, u, v, s)−1 = (RT ,−RTu+ sRT v,−RT v,−s).
A quick check (using the formula for Z in the above problem) shows that this is indeed the (double
sided) inverse.

7. Show that G(n+ 1) is a group.

We note that G(n+ 1) is a subset of the groupM (the collection of all mappings from Rn+1 to
itself) which is stable under composition (see problem number 5). Since every element X in G(n+1)
has an inverse mapping (see problem 6) X−1 in G(n + 1), then for X and Y in G(n + 1) we have
XY −1 ∈ G(n+ 1). It follows that G(n+ 1) is a subgroup of M.

The Free Particle

9 & 10. Construct a Galilean group action on X = Rn × Rn.

Unless I’m missing something here, it seems like we have yet to define the Galilei group directly.
In problems 5, 6, and 7 the Galilei group was defined implicitly by first describing how it acted on
Galilean spacetime and from this action reverse engineering a group which accomplished said action.
This technique (which was also employed for the Euclidean group) works through an identification
of a given set of elements, say quadruples (R, u, v, s) of some prescribed form, with an (albeit very
special) subgroup of the semigroup of all mappings on the set on which we wish to act. This last
bit is very clever (not to mention fishy, sinister, and irritating from a pedagogical perspective), since
mapping subgroups come equipped with a free action! Namely, given f and g, two maps from some
space X to itself, we have by the definition of composition:

(f ◦ g)(x) = f(g(x))

which is exactly the associativity portion of the action definition. Further, since we are working
with a subgroup of mappings, the subgroup contains an identity map I and clearly

I(x) = x.

I must cry foul! From my ignorant position it seems that we have not been given the Galilei group,
but rather a certain collection of its actions.

As things stand then, the real problem here seems not to be how to define the action, but rather,
how to define the Galilei group! And since I am far too lazy for such things I will now do exactly
that (sort of, indirectly, not really):

Let Aut(X) denote the group of bijections from X to itself. You have given us four actions:

u = π1 : Rn → Aut(X)

R = π2 : O(n)→ Aut(X)

v = π3 : Rn → Aut(X)

s = π4 : R→ Aut(X).

It should be noted that all four actions are actually imbeddings. Further, the images of the actions
have the property:

Im(πi)
⋂∏

i6=j
Im(πj) = {I}.
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To see this, note that π1 gives maps that shift the first coordinate of (q, p) by a fixed vector, π3 gives
maps that shift the second by a fixed vector and π4 yields maps which mix the two coordinates so that
both q and p appear in the first slot in the output; π2 gives maps which rotate both coordinates. It is
simply impossible for any three types of these of maps to accomplish the operation of the remaining
type of map unless all maps being considered are the identity map! Think this through a bit...

Define the set G = Rn ×O(n) × Rn × R. Let σ be any permutation on the set of four elements
and define Fσ : G→ Aut(X) by

Fσ(x1, . . . , xn) = πσ(1)(xσ(1)) ◦ · · · ◦ πσ(4)(xσ(4)).

Suppose

Fσ(x1, . . . , xn) = Fσ(y1, . . . , yn).

Then it would follow that

πσ(1)

(
xσ(1)y

−1
σ(1)

)
◦ · · · ◦ πσ(4)

(
xσ(4)y

−1
σ(4)

)
= I.

Now, the above requires that the inverse of any given factor lie in the product of the images of the
other three. By the argument about the images of the πi, this is impossible unless all of the factors
are the identity map. But then xi = yi since each πi was an imbedding. Whence Fσ is an injection
from G to Aut(X).

Finally, give G group structure by pullback along Fσ .1 2 With this structure we see that
Fσ : G→ Aut(X) is now an action of G on X and further that G can be identified with its image in
Aut(X) which, by the opening comments of this diatribe, comes with a de facto action on X. Oh,
based on the work I have done, here is the formula:

(R, u, v, s)(q, p) = Fσ(R, u, v, s)(q, p)

which we admit, is not very helpful. So it goes...

1What’s really going on here is that we’re saying it doesn’t matter which particular way we choose to combine the
actions—there will be a group structure on G which will be compatible with this action, and not only that, but will
reduce to the original four actions when we consider, say O(n) as a subgroup of G.

2What’s really going on here (I think) is that we are implicitly defining the Galilei group to be any one of the
isomorphic copies of the semi direct product of Rn, Rn, R and O(n) found in AutX.
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