
Classical Mechanics Homework
February 5, 2∞8

John Baez homework by C.Pro

The Euclidean Group

Recall that the orthogonal group O(n) is the group of linear transformations R: Rn → Rn that
preserve distances: ||Rx|| = ||x|| for all x ∈ Rn. In other words, O(n) is the group of n× n matrices
with RR∗ = 1.

Define an element of the Euclidean group E(n) to be a pair (R, u), where R ∈ O(n) and
u ∈ Rn. Any element (R, u) gives a transformation of n-dimensional Euclidean space built from an
orthogonal transformation and a translation:

f(R,u): Rn → Rn

defined by
f(R,u))(x) = Rx + u.

The map f(R,u) uniquely determines R and u, so we can also think of E(n) as a set of maps.
1. Given two elements (R, u), (R′, u′) ∈ E(n), viewed as maps, we have

f(R,u) ◦ f(R′,u′)(x) = f(R,u)(R′x + u′)
= RR′x + Ru′ + u

= f(RR′,Ru′+u)(x)

and since RR′ ∈ O(n) and Ru′ + u ∈ Rn, E(n) as maps, is closed under composition.
2. Note that (1, 0) ∈ E(n) where 1 is the n×n identity matrix and 0 is the origin in Rn. By the

binary operation on E(n) defined above, it’s clear that (1, 0) acts as an identity element in this set.
Given an element (R, u) ∈ E(n), note that

f(R,u) ◦ f(R∗,−R∗u) = f(RR∗,R(−R∗u)+u) = f(1,0)

and
f(R∗,−R∗u) ◦ f(R,u) = f(R∗R,R∗u−R∗u) = f(1,0)

so that (R∗,−R∗u) ∈ E(n) is the inverse to (R, u).
3. Let (R, u), (R′, u′), (R′′, u′′) ∈ E(n). Since O(n) is associative under composition of linear

transformations,

((RR′)R′′, (RR′)u′′ + (Ru′ + u)) = (R(R′R′′), R(R′u′′ + u′) + u),

or equivalently,
(f(R,u) ◦ f(R′,u′)) ◦ f(R′′,u′′) = f(R,u) ◦ (f(R′,u′) ◦ f(R′′,u′′)),

we have (E(n), ◦) is associative as well and thus is a group.

Note that as a set we have E(n) = O(n)× Rn. However, as a group E(n) is not the direct product
of the groups O(n) and Rn, becuase the formulas for multiplication and inverse are not just

(R, u)(R′, u′) = (RR′, u + u′), (R, u)−1 = (R−1,−u).

Instead, the formulas involve the action of O(n) or Rn, so we say E(n) is a ’semidirect’ product of
O(n) and Rn.
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4. We can more elegantly define the Euclidean group to be the group of all distance-preserving
transformations of Euclidean space. Indeed, if f : Rn → Rn is a map that preserves distances, that
is,

||f(x)− f(y)|| = ||x− y||
for all x, y ∈ Rn, then

f(x) = Rx + u

for some (R, u) ∈ E(n).

Proof: We begin with the assumption that f(0) = 0 and thus for any x ∈ Rn, ||f(x)|| = ||x||.
Therefore, by showing f is linear, we’ll have shown that f ∈ O(n). Take any x ∈ Rn different from
zero and any α ∈ R. We have

||αx|| = ||f(αx)||
= ||f(αx)− f(x) + f(x)||
≤ ||f(αx)− f(x)||+ ||f(x)||
= ||αx− x||+ ||x||
= ||αx||,

and thus equality must occur throughout. However, the triangle inequality says that equality holds
if and only if the vectors f(αx)− f(x) and f(x) are linearly dependent. Therefore, f(αx) = βf(x)
and thus |α| = |β|. In addition,

|α− 1|||x|| = ||αx− x||
= ||f(αx)− f(x)||
= ||βf(x)− f(x)||
= |β − 1|||f(x)||
= |β − 1|||x||,

from which we can conclude |α− 1| = |β − 1| and these together can only happen if α = β. Thus,

f(αx) = αf(x).

Now take any x, y ∈ Rn such that x 6= y. Let

z =
1
2
f(x + y)− f(x) and w = f(y)− 1

2
f(x + y)

and note that

||z|| =
∣∣∣∣∣∣f (x

2
+

y

2

)
− f(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣y
2
− x

2

∣∣∣∣∣∣
=

∣∣∣∣∣∣f(y)− f
(x

2
+

y

2

)∣∣∣∣∣∣
= ||w||.

Note further that

||y − x|| = ||f(y)− f(x)||
= ||z + w||
≤ ||z||+ ||w||

=
1
2
||y − x||+ 1

2
||y − x||

= ||y − x||
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and thus equality occurs throughout. As before, we must have z = λw for some λ ∈ R and since
||z|| = ||w||, λ = ±1. If z = −w we have f(x) = f(y) which implies ||x− y|| = ||f(x)− f(y)|| = 0 or
that x = y contrary to the choice of x and y. Therefore z = w and this says

f(x + y) = f(x) + f(y),

so f is indeed linear and hence f ∈ O(n).
For the general case, set f(0) = u and define R(x) = f(x) − u. Then R is also a map that

preserves distances and R(0) = 0. From the above, R ∈ O(n) and thus f(x) = Rx + u as desired.

The Galilei Group

Define an element of the Galilei group G(n+1) to be a triple (f, v, s) where f ∈ E(n), v ∈ Rn and
s ∈ R. We call f a Euclidean transformation, v a Galilei boost and s a time translation.

Any element (f, v, s) ∈ G(n + 1) gives a transformation of (n + 1)-dimensional spacetime

F(f,v,s): Rn+1 → Rn+1

defined by
F(f,v,s)(x, t) = (f(x) + vt, t + s)

for all (x, t) ∈ Rn+1. The map F(f,v,s) uniquely determines f, v and s, so we can also think of G(n+1)
as a set of maps.

5. Given any (f(R,u), v, s), (fR′,u′), v
′, s′) ∈ G(n + 1), viewed as maps, we have

F(f(R,u),v,s) ◦ F(f(R′,u′),v
′,s′)(x, t) = F(f(R,u),v,s)(R′x + u′ + v′t, t + s′)

= (R(R′x + u′ + v′t) + u + v(t + s′), (t + s′) + s)
= (RR′x + (Ru′ + u + vs′) + (Rv′ + v)t, t + (s′ + s))
= F(f(RR′,Ru′+u+vs′),Rv′+v,s′+s)(x, t)

and since (RR′, Ru′+u+vs′) ∈ E(n), Rv′+v ∈ Rn and s′+s ∈ R, G(n+1) as maps, is closed under
composition. For convenience of notation, we’ll henceforth view elements of G(n + 1) as 4-tuples
(R, u, v, s) where R ∈ O(n), u, v ∈ Rn and s ∈ R and take a binary operation on G(n + 1) defined
above, that is

(R, u, v, s)(R′, u′, v′, s′) = (RR′, Ru′ + u + vs′, Rv′ + v, s′ + s).

6. Note that (1E(n), 0, 0) = (1O(n), 0, 0, 0) ∈ G(n + 1). With this binary operation on G(n + 1),
it’s clear that (1E(n), 0, 0) acts as an identity element. Now take any (R, u, v, s) ∈ G(n+1) and note
(R∗, R∗(sv − u),−R∗v,−s) is also a member of this set. We have

(R, u, v, s)(R∗, R∗(sv − u),−R∗v,−s) = (RR∗, R(R∗(sv − u)) + u− sv, R(−R∗v) + v, s− s)
= (1O(n), 0, 0, 0)

and

(R∗, R∗(sv − u),−R∗v,−s)(R, u, v, s) = (R∗R,R∗u + R∗(sv − u) +−sR∗v,R∗v −R∗v,−s + s)
= (1O(n), 0, 0, 0).

Thus, (R∗, R∗(sv − u),−R∗v,−s) acts as the inverse to (R, u, v, s).
7. Associativity is routine to check, but the details will be omitted. Therefore, G(n+!) is indeed

a group.
As a set we have G(n + 1) = E(n)×Rn×R. However, it is again not the direct product of these

groups, but only a semidirect product
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8. Consider the trivial vector bundle T : Rn × R → R with total space viewed as the real vector
space Rn+1, base space the time axis R and fibers as n-dimensional Euclidean space Rn. Denote the
fibers over t as Rn

t . Let S: Rn × R → Rn be the projection onto the space axis. Note both S and T
are linear maps. If two elements a, b ∈ Rn+1 belong to the same fiber over t, that is T (b − a) = 0,
we have the concept of distance || · ||t between them defined by

||b− a||t = ||S(b− a)||,

where the subscript t is used to emphasize that a, b ∈ Rn
t . However, if a and b are elements of

different fibers, we do not have any geometric tools to study them. We turn to the fact spacetime is
a real vector space and make the following observation: For every a, b ∈ Rn+1 such that S(b−a) = 0,
we have a = (x, t0) and b = (x, t1) and so

b− a = (0, t1 − t0) = T (b− a)c.

where c = (0, 1) ∈ Rn×R. In words, the vector between the same point at different times is uniquely
determined by the amount of time passed.

The above has defined a structure on spacetime as a 4-tuple (Rn × R, p, S, || · ||t)

If F : Rn+1 → Rn+1 preserves this structure, that is, for every a, b ∈ Rn+1 we have

T (b− a) = T (F (b)− F (a)) (1)
||b− a||t = ||F (b)− F (a)||t′ (2)

where t′ = T (F (a)) = T (F (b)) and if S(F (b)− F (a)) = 0,

F (b)− F (a) = T (F (b)− F (a))d (3)

for some d ∈ Rn+1, then F ∈ G(n + 1) and conversely.
Proof: Write F = (Fσ, Fτ ) where Fσ: Rn+1 → Rn and Fτ : Rn+1 → R. Condition (1) is then

equivalent to
Fτ (x, t)− Fτ (x′, t′) = t− t′

for all (x, t), (x′, t′) ∈ Rn+1. Therefore all partial derivatives of Fτ exist and vanish in all but the
time component, that is,

∇Fτ = (0, 1).

For each t ∈ R, define gt: Rn → Rn by gt(x) = Fσ(x, t). Then condition (2) says

||gt(x)− gt(y)|| = ||F (x, t)− F (y, t)||t+s = ||x− y||.

By problem 4, we have gt ∈ E(n) and thus we know that gt has a total derivative and in terms of
the Jacobian

Jgt = R ∈ O(n).

For each x ∈ Rn define gx: R → Rn+1 by gx(t) = F (x, t). Condition (3) says for every t, t′

gx(t)− gx(t′) = F (x, t)− F (x, t′) = T (F (x, t)− F (x, t′))d = (t− t′)d

and so gx has a time derivative and
dgx

dt
=

∂F

∂t
= d.

Since,
∂Fτ

∂t
= 1
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we have d = (v, 1) where v ∈ Rn.
Putting this together, we see that the total derivative of F exists and is constant with

JF =
(

R v
0 1

)
.

Therefore,

F (x, t) =
(

R v
0 1

) (
x
t

)
+

(
u
s

)
for some (u, s) ∈ Rn+1 or F (x, t) = (f(R,u)(x) + vt, t + s) ∈ G(n + 1) as desired. The converse is
immediate.

The Free Particle

We have just described how the Euclidean group acts on Euclidean space and how the Galilei group
acts on Galilean spacetime. Now we will figure out how the Galilei group acts on the phase space
of a free particle! Recall that the phase space of a particle in n-dimensional Euclidean space is
X = Rn × Rn, where a point (q, p) ∈ X describes the particle’s position and momentum. The
various subgroups of the Galilei group act on X as follows:

• The translation group Rn is a subgroup of E(n) and thus G(n + 1) in an obvious way, and it
acts on X as follows:

u(q, p) = (q + u, p) u ∈ Rn.

In other words, to translate a particle we translate its position but leave its momentum alone!

• The orthogonal group O(n) is also a subgroup of E(n) and thus G(n + 1) in an obvious way,
and it acts on X as follows:

R(q, p) = (Rq, Rp) R ∈ O(n).

In other words, to rotate a particle we rotate both its position and momentum!

• The group of Galilei boosts Rn is a subgroup of G(n + 1) in an obvious way, and it acts on X
as follows:

v(q, p) = (q, p−mv) v ∈ Rn.

In other words, to boost a particle’s velocity by v we subtract mv from its momentum but leave its
position alone!

• Finally, the time translation group R is a subgroup of G(n + 1) in an obvious way, and it acts
on X as follows:

s(q, p) = (q + sp/m, p) s ∈ R.

This is where we are assuming the particle is free: the force on it is zero, so it moves along at a
constant velocity, namely p/m.

9. Consider the map defined by

(R, u, v, s)(q, p) = (R(q + sp/m) + (u− sv), Rp−mv).

10. The above defines an action of G(n + 1) on X
Proof: First recall that (1, 0, 0, 0) ∈ G(n + 1) is the identity element. We have

(1, 0, 0, 0)(q, p) = (1q, 1p) = (q, p)
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for all (q, p) ∈ X as required. Now take any g1 = (R, u, v, s), g2 = (R′, u′, v′, s′) ∈ G(n + 1) and note

g1(g2(q, p)) = (R, u, v, s)(R′(q + s′p/m) + (u′ − s′v′), R′p−mv′)
= (R[R′(q + s′p/m) + (u′ − s′v′) + s(R′p−mv)/m] + (u− sv), R(R′p−mv′)−mv)
= (RR′(q + (s′ + s)p/m) + ((Ru′ + u + vs′)− (s′ + s)(Rv′ + v)), RR′p−m(Rv′ − v))
= (RR′, Ru′ + u + vs′, Rv′ + v, s′ + s)(q, p)
= ((R, u, v, s)(R′, u′, v′, s′))(q, p)
= (g1g2)(q, p)

for all (q, p) ∈ X which completes the proof.
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