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Whenever we have two particles interacting by a central force in 3d Euclidean space, we have
conservation of energy, momentum, and angular momentum. However, when the force is gravity —
or more precisely, whenever the force goes like 1/r2 — there is an extra conserved quantity. This is
often called the Runge–Lenz vector, but it was originally discovered by Laplace. Its existence can
be seeen in the fact that in the gravitational 2-body problem, each particle orbits the center of mass
in an ellipse (or parabola, or hyperbola) whose perihelion does not change with time. The Runge–
Lenz vector points in the direction of the perihelion! If the force went like 1/r2.1, or something like
that, the orbit could still be roughly elliptical, but the perihelion would ‘precess’.

Indeed, the first piece of experimental evidence that Newtonian gravity was not quite correct
was the precession of the perihelion of Mercury. Most of this precession is due to the pull of other
planets and other effects, but about 43 arcseconds per century remained unexplained until Einstein
invented general relativity.

In fact, we can use the Runge–Lenz vector to simplify the proof that gravitational 2-body problem
gives motion in ellipses, hyperbolas or parabolas. Here’s how it goes. As before, let’s work with the
relative position vector

q(t) = q1(t) − q2(t)

where q1,q2: R → R
3 are the positions of the two bodies as a function of time. In what follows we

will use q to stand for the magnitude of the vector q, and q̂ to stand for a normalized vector that
points in the direction of q:

q = |q|, q̂ =
q

q
.

In a previous homework we saw that q(t) satisfies

mq̈ = f(q)q̂

where f is the force as a function of distance, and m is the so-called ‘reduced mass’. Since the force
of gravity goes like 1/r2, we have

f(q) = −k/q2

where k is the same constant as in the previous homework. We thus have

mq̈ = −kq̂/q2 (1)

and this will be our starting-point for all that follows.

1. As a warmup, define the angular momentum vector J in the usual way:

J = mq × q̇

Just for fun, use equation (1) to check that angular momentum is conserved, even though we already
know it must be:

J̇ = 0.

2. Take the cross product of both sides of equation (1) with the vector J. Simplify the right-hand
side and show that

q̈ × J = k ˙̂q (2)
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Hint: you will probably need to use the vector identity

a × (b× c) = (a · c)b − (a · b)c

(which I won’t force you to prove, since you’re supposed to already know it). You will also probably
need to prove that

˙̂q =
(q · q)q̇ − (q · q̇) · q

q3
.

3. Use parts 1 and 2 to show that

d

dt
(q̇ × J) = k

d

dt
q̂.

4. Use part 3 to show that
q̇ × J = kq̂ + x

for some vector x ∈ R
3 which is independent of time. It will be handy to divide this vector by k,

obtaining the Runge–Lenz vector:

A =
x

k

which clearly is also independent of time. In other words, the Runge-Lenz vector

A =
q̇ × J

k
− q̂ (3)

is a conserved quantity for the Kepler problem:

Ȧ = 0.

5. Using equation (3) show that

A · q =
J · J

km
− q. (4)

Hint: you will probably need to use another vector identity — but anyway, you’re supposed to know
these identities.
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6. Now write
A · q = Aq cos θ

where A = |A| is the magnitude of the Runge–Lenz vector and θ is the angle between q and the
Runge–Lenz vector. Using equation (4), show that

q =
J · J

km

1

1 + A cos θ
.

And now your work is done. Let me explain what you have achieved!

The above equation looks almost like equation (6) in our previous homework about the Kepler
problem:

r =
p

1 + e cos(θ − θ0)
.

And indeed, they are really just different ways of writing the same equation, except that now we
have rotated our polar coordinate system so that θ0 = 0. Another way of saying this is that in these
coordinates, θ is zero at the perihelion of the orbit.

So, you’ve just given a new proof that the orbit in the Kepler problem must be an ellipse, parabola
or hyperbola! Moreover, comparing the two equations above we see that

e = A,

so the magnitude of the Runge–Lenz vector is the eccentricity of the orbit. We also see that the

Runge–Lenz vector points in the direction of the orbit’s perihelion. Thus the conservation of the
Runge–Lenz vector is just a way of saying the eccentricity and perihelion don’t change with time!
Finally, we see that

p =
J · J

km

which we already saw last time.
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