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I immediately have m1q̈1 = f(|q|)q/|q| and m2q̈2 = −f(|q|)q/|q|. Multiply-
ing these equations by m2 and m1 (respectively) and then subtracting, I get
m1m2(q̈1 − q̈2) = (m2 + m1)f(|q|)q/|q|. The desired equation follows after
dividing by m1 + m2, which is licit since I assume m1, m2 > 0.

2

The kinetic energies of the particles are T1 = 1
2m1|q̇1|2 and T2 = 1

2m2|q̇2|2.
Since m1q1+m2q2 = 0, I have 0 = |m1q̇1 + m2q̇2|2 = m1

2|q̇1|2+2m1m2q̇1 ·q̇2+
m2

2|q̇2|2. Adding this to m1m2|q̇|2 = m1m2|q̇1|2 − 2m1m2q̇1 · q̇2 + m1m2|q̇2|2
yields m1m2|q̇|2 = (m1 + m2)(m1|q̇1|2 + m2|q̇2|2). Thus the total kinetic en-
ergy is T1 +T2 = 1

2
m1m2

m1+m2

|q̇|2, the first term of the desired formula. Meanwhile,

the particles’ potential energies are V1 = 1
2V (|q1 − q2|) and V2 = 1

2V (|q2 − q1|).
Each of these is simply 1

2V (|q|), so the total potential energy is the other term
of the desired formula.

3

The angular momenta of the particles are J1 = m1q1 × q̇1 and J2 = m2q2 × q̇2.
Since m1q1+m2q2 = 0, I have 0 = (m1q1 + m2q2)×(m1q̇1 + m2q̇2) = m1

2q1×
q̇1 + m1m2(q1 × q̇2 + q2 × q̇1) + m2

2q2 × q̇2. Adding this to m1m2q × q̇ =
m1m2q1 × q̇1 −m1m2(q1 × q̇2 + q2 × q̇1) + m1m2q2 × q̇2 yields m1m2q× q̇ =
(m1 + m2)(m1q1 × q̇1 + m2q2 × q̇2). Thus the total angular momentum is J1+
J2 = m1m2

m1+m2

q × q̇, which is the desired formula. Since the z components of q1

and q2 are zero, so the z components of q and q̇ are also zero. Thus, the x and
y components of q × q̇ are zero.

4

I have r2 = |q|2 and r cos θ = q·x̂, where x̂ is the unit vector along the positive x
axis. Differentiating these formulas, I get 2rṙ = 2q·q̇ and ṙ cos θ−rθ̇ sin θ = q̇·x̂.
Multiplying the first of these formulæ by 1

2 x̂ and subtracting the other formula

multiplied by q, I get q̇ × (x̂ × q) = rṙx̂ − ṙq cos θ + rθ̇q sin θ, where I’ve used
the vector identity that q̇× (x̂× q) = (q̇ · q)x̂− (q̇ · x̂)q. Now, x̂×q = rẑ sin θ,
where ẑ is the unit vector along the positive z axis, and |q̇ × ẑ| = |q̇| since q̇

has zero z component. Thus I have

r2|q̇|2 sin2 θ = |rṙx̂ − ṙq cos θ + rθ̇q sin θ|2
= r2ṙ2 + ṙ2|q|2 cos2 θ + r2θ̇2|q|2 sin2 θ

−2rṙ2x̂ · q cos θ + 2r2ṙθ̇x̂ · q sin θ − 2rṙθ̇|q|2 cos θ sin θ, (1)
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where I’ve used that |x̂| = 1. Substituting r2 for |q|2 and r cos θ for x̂ · q, this
becomes

r2|q̇|2 sin2 θ = r2ṙ2 + r2ṙ2 cos2 θ + r4θ̇2 sin2 θ
−2r2ṙ2 cos2 θ + 2r3ṙθ̇ cos θ sin θ − 2r3ṙθ̇ cos θ sin θ

= r2ṙ2 sin2 θ + r4θ̇2 sin2 θ. (2)

Thus, |q̇|2 = ṙ2 + r2θ̇2, and the formula for the total energy is proved. (The
conclusion is valid even when sin θ = 0, by continuity, since sin θ can’t be con-
stantly 0 in the physically relevant situation where an orbit exists. Similarly,
I’ve been assuming r > 0 all along.) As for the angular momentum,

|q × q̇|2 = |x̂ × (q × q̇)|2 = |(x̂ · q̇)q − (x̂ · q)q̇|2
= |ṙq cos θ − rθ̇q sin θ − rq̇ cos θ|2
= ṙ2|q|2 cos2 θ + r2θ̇2|q|2 sin2 θ + r2|q̇|2 cos2 θ

− 2rṙθ̇|q|2 cos θ sin θ − 2rṙ(q · q̇) cos2 θ + 2r2θ̇(q · q̇) sin θ cos θ
= r2ṙ2 cos2 θ + r4θ̇2 sin2 θ + r2(ṙ2 + r2θ̇2) cos2 θ

−2r3ṙθ̇ cos θ sin θ − 2r2ṙ2 cos2 θ + 2r3ṙθ̇ sin θ cos θ
= r4θ̇2, (3)

so |j| = m|q× q̇| = mr2|θ̇|. I in fact have j = mr2θ̇, since both sides are
positive for counterclockwise motion, although ultimately I won’t need the sign.

5

Note that the sign of θ̇ always equals the sign of the constant j in this for-
mula, and the physical application requires that θ̇ not be constantly 0, so I can
conclude that j 6= 0, which will be needed when I divide by j later on. To
continue,

E =
1

2
m(r2θ̇2 + ṙ2)+V (r) =

1

2
m(r2 j2

m2r4
+ ṙ2)+V (r) =

1

2
mṙ2+(V (r) +

j2

2mr2
),

as desired. By the way, note that the centrifugal force is −(d/dr)(j2/2mr2) =
j2/mr3, not j2/mr as stated.

6

Solving for ṙ in the formula for E, I get E−U(r) = 1
2mṙ2, or ṙ2 = 2

m
(E − U(r)),

so ṙ = ±
√

2
m

(E − U(r)). However, ṙ may or may not be nonnegative.

7

If ṙ 6= 0, θ̇/ṙ = ± j

mr2 /
√

2
m

(E − U(r)), or θ̇ = ± j

mr2 ṙ/
√

2
m

(E − U(r)), when

ṙ 6= 0. Integrating this with respect to time, θ = θ(0)±
∫

0(
j

mr2 ṙ dt/
√

2
m

(E − U(r))).
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Since dr = ṙ dt, this the desired formula except for the sign ambiguity, if
θ0 := θ(0). This formula won’t work, however, for an orbit of constant r, where
the analysis can only be saved by arguing by continuity of the dependence of
the solution on the parameters. My analysis, however, will avoid this problem
entirely by not relying on any division by ṙ.

8

U(r) = V (r)+j2/2mr2 = j2/2mr2−k/r. As r nears zero, U(r) nears |j2/2m|∞ =
∞. As r nears infinity, U(r) nears 0. U(r) = 0 when j2/2mr = k, or r = j2/2mk.
U ′(r) = 0 when k/r2 − j2/mr3 = 0, or k = j2/mr, which is r = j2/mk;
U(j2/mk) = −mk2/2j2. Finally, U ′′(r) = 0 when 3j2/mr4 − 2k/r3 = 0, or
3j2/mr = 2k, which is r = 3j2/2mk; U(3j2/2mk) = −4mk2/9j2. Now I have
plenty of information to sketch a graph:

At an energy of E > 0, the effective particle will come in from infinity and
then go back out. At an energy of E = 0, the effective particle will do this
same thing, but extremally. At an energy of −mk2/2j2 < E < 0, the effective
particle will follow a bound path. At an energy of E = −mk2/2j2, the effective
particle will remain motionless at r = j2/mk; of course, this doesn’t mean that
the original system is motionless then, only that the value of r will be constant.
Finally, an energy of E < −mk2/2j2 is impossible; the potential energy alone
is enough to rule that out, since the effective kinetic energy 1

2mṙ2 can never be
negative.
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9

To avoid picking branch cuts for
√

and arccos (or even for θ!), let me revert to

a differential equation and look at θ̇2. Since θ̇ 6= 0 but I can’t be so sure about
ṙ, I’ll use

ṙ2

θ̇2
=

2
m

(E − U(r))

j2/m2r4
=

2mr4(E − V (r) − j2/2mr2)

j2
=

r2(2mEr2 + 2mkr − j2)

j2
.

Let me simplify the constants by introducing p := j2/mk and e :=
√

1 + 2Ej2/mk2

now, so j2 = mkp and mk2e2 = mk2+2Ej2 = mk2+2Emkp, or 2Ep = ke2−k.
Note that since E ≥ −mk2/2j2, or 2Ej2/mk2 ≥ −1, the square root defining e
is real. Then

ṙ2

θ̇2
=

r2(2mEr2 + 2mkr − mkp)

mkp
=

r2(2Epr2 + 2kpr − kp2)

kp2

=
r2(ke2r2 − kr2 + 2kpr − kp2)

kp2
=

r2(e2r2 − r2 + 2pr − p2)

p2
. (4)

The numerator now contains the subtraction of a square, which suggests the
use of trigonometry. Since the left side of this equation must be nonnegative,
I can conclude that e2r2 ≥ r2 − 2pr + p2 = (p − r)2. Thus, there must always
be an angle α such that p − r = er cosα. In terms of this angle, then, I have
ṙ2/θ̇2 = r2(e2r2 − e2r2 cos2 α)/p2 = e2r4 sin2 α/p2. If ṙ 6= 0, then, I can now
write this as θ̇/ṙ = ±p/er2 sin α, or θ̇ = ±pṙ/er2 sin α. In order to integrate
this, I’ll want to understand α̇, so differentiate the equation p − r = er cosα to
get −ṙ = eṙ cosα− erα̇ sin α; since e cosα = p/r− 1, this becomes −ṙ = pṙ/r−
ṙ − erα̇ sin α, or α̇ = pṙ/er2 sinα. I need analyse this no further, for now I see
that θ̇ = ±α̇, so θ = ±α + θ0 for some constant θ0. In particular, cos(θ − θ0) =
cos(±α) = cosα = ( p

r
− 1)/e, so I may write θ = θ0 + arccos

(

(p

r
− 1)/e

)

for
some branch of θ and arccos. In preparation for writing this in terms of the
original parameters, let me multiply both sides of the fraction in the arccosine
by k/j. Then

θ = θ0 + arccos(

kp

jr
− k

j

ke
j

) = θ0 + arccos(

kj2

kmjr
− k

j

k
j

√

1 + 2Ej2

mk2

)

= θ0 + arccos(

j

mr
− k

j
√

k2

j2 + 2E
m

), (5)

which is the desired formula. Note that this θ0 may not be the θ(0) from above,
but that could be fixed by adjusting the indefinite integral.

10

I already reduced the clutter in the previous problem. However, to make sure
of the formula for r, I should check also the situation when ṙ = 0. I know from
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the qualitative analysis that this occurs only when E = −mk2/2j2 and that
r = j2/mk then. In terms of e and p, these are equations are, irrespectively,
r = p and mk2(e2 − 1)/2j2 = −mk2/2j2, or e = 0. Thus, the equation r =
p/(1 + e cos(θ − θ0)) holds then as well.

11

You used the translation and Galilean symmetries by setting the origin at the
centre of mass for all time, and you used some of the rotational symmetry
by placing the problem within the x, y plane. But there remains a rotational
symmetry within that plane, so I use it to set θ0 to 0. (There is also a symmetry
of reflection through the z axis, which could be set by requiring j > 0, and a
scaling symmetry, which could be set by requiring p = 1. But I will not do
this yet.) Then the equation for the orbit becomes p = r + er cos θ. Now,
r cos θ = x, so I get r = ex − p, or r2 = e2x2 − 2epx + p2. Since r2 = x2 + y2,
this becomes x2−e2x2+2epx+y2 = p2, as desired. If e = 0, then this equation is
x2+y2 = p2, a circle of radius p centred at the origin. If 0 < e < 1, then prepare
to complete the square by writing (1 − e2)2x2 + 2ep(1− e2)x + (1 − e2)y2 =
p2(1 − e2), or (1 − e2)2x2 +2ep(1− e2)x+e2p2 +(1− e2)y2 = p2(1 − e2)+e2p2,

so
(

(1 − e2)x + ep
)2

+ (1 − e2)y2 = p2, which becomes (x + ep

1−e2 )2/ p2

(1−e2)2 +

y2/ p2

1−e2 = 1, which is an ellipse centred at (−ep/(1 − e2), 0) with minor radius

p/(1− e2) along the x axis and major radius p/
√

1 − e2 along the y axis. If
e = 1, then the equation is 2px + y2 = p2, or x = p/2 − y2/2p, which is a
parabola centred along the x axis, opening to the left, and with a vertex at
(p/2, 0). Finally, if e > 1, then I can complete the square as in the elliptic case,

only now the equation should be written (x − ep
e2−1 )2/ p2

(e2−1)2 − y2/ p2

e2−1 = 1,

which is a hyperbola centred at (ep/(e2 − 1), 0) with minimal radius p/(e2 − 1)
along the x axis and asymptotes x = ±(e2 − 1)y.
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