The Kepler Problem

(Background) Suppose we have a particle moving in a central force. Its position is a function of time, say \(q : \mathbb{R} \to \mathbb{R}^3 \), satisfying Newton’s law:

\[
m \ddot{q} = f(|q|) \frac{q}{|q|}
\]

Here \(m \) is its masses, and the force is described by some smooth function \(f : (0, \infty) \to \mathbb{R} \). Let’s write the force in terms of a potential as follows:

\[
f(r) = -\frac{dV}{dr}.
\]

Using conservation of angular momentum we can choose coordinates where the particle lies in the \(xy \) plane at all times. Thus we may assume the \(z \) component of \(q(t) \) and \(\dot{q}(t) \) vanish for all \(t \). In short, we have reduced the problem to a 2-dimensional problem!

Now let’s work in polar coordinates: the point \(q \) lies in the \(xy \) plane so write it in polar coordinates as \((r, \theta)\). As usual, let’s write time derivatives with dots:

\[
\dot{r} = \frac{dr}{dt}, \quad \dot{\theta} = \frac{d\theta}{dt}.
\]

1. Show that the energy \(E \) of the particle is given by

\[
E = \frac{1}{2} m (r^2 \dot{\theta}^2 + \dot{r}^2) + V(r)
\]

and the angular momentum \(J \) is a vector with vanishing \(x \) and \(y \) components, and \(z \) component given by

\[
j = mr^2 \dot{\theta}.
\]

Recall that the energy of such a particle is given by

\[
E = \frac{1}{2} m \dot{q}(t)^2 + V(|q(t)|).
\]

Noting that in polar coordinates

\[
\dot{q} = (\dot{r} \cos \theta - r \dot{\theta} \sin \theta, \dot{r} \sin \theta + r \dot{\theta} \cos \theta),
\]

we see that

\[
\dot{q}(t)^2 = \dot{r}^2 \cos^2 \theta - r \dot{r} \dot{\theta} \sin 2\theta + r^2 \dot{\theta}^2 \sin^2 \theta + \dot{r}^2 \sin^2 \theta + r \dot{r} \dot{\theta} \sin 2\theta + r^2 \dot{\theta}^2 \cos^2 \theta
\]

which reduces nicely to \(\dot{q}(t)^2 = \dot{r}^2 + r^2 \dot{\theta}^2 \). Substitution of this last expression for \(\dot{q}(t)^2 \) into (3) and noting that \(r = |q(t)| \) yields (1).

Now we will show that the angular momentum \(J \) is a vector with vanishing \(x \) and \(y \) components with the \(z \) component given by (2). The angular momentum is
\[J = mq \times \dot{q} \]

and if we use the expression for \(\dot{q} \) obtained in (4), we have

\[q \times \dot{q} = (r \cos \theta i + r \sin \theta j) \times [(\dot{r} \cos \theta - r \dot{\theta} \sin \theta)i + (\dot{r} \sin \theta + r \dot{\theta} \cos \theta)j] \]
\[= [r^2 \dot{\theta} \cos^2 \theta + \dot{r} \cos \theta \sin \theta - r \sin \theta (\dot{r} \cos \theta - r \dot{\theta} \sin \theta)]k \]
\[= r^2 \dot{\theta} k, \]

so that \(J = mr^2 \dot{\theta} k \).

2. We use equation (2) to solve for \(\dot{\theta} \) in terms of \(r \):

\[\dot{\theta} = \frac{j}{mr^2} \] \hspace{1cm} (5)

Combining this and equation (1) we express \(E \) in terms of \(r \):

\[E = \frac{1}{2}mr^2 + V_{\text{eff}}(r) \] \hspace{1cm} (6)

where

\[V_{\text{eff}}(r) = V(r) + \frac{j^2}{2mr^2}. \]

The only thing to note here is that \(\dot{\theta}^2 = j^2/m^2r^4 \).

3. We solve (6) for \(\dot{r} \) to obtain

\[\dot{r} = \sqrt{\frac{2}{m}(E - V_{\text{eff}}(r))}. \] \hspace{1cm} (7)

It should be noted that in our use of the symbol for the positive square root we are not asserting that \(\dot{r} \) is positive! It is entirely possible that the above root is negative! This, as we will discuss below (in # 5) will not effect the form of our solution for \(r \) in terms of \(\theta \).

4. Using (5) and (7) show that

\[\frac{d\theta}{dr} = \frac{\dot{\theta}}{\sqrt{\frac{2}{m}(E - V_{\text{eff}}(r))}} = \frac{j/mr^2}{\sqrt{\frac{2}{m}(E - V_{\text{eff}}(r))}}. \]

By the chain rule, we have that

\[\dot{\theta} = \frac{d\theta}{dr} \dot{r}, \]

which when combined with (7) (and subsequently (5)) gives:

\[\frac{d\theta}{dr} = \frac{\dot{\theta}}{\sqrt{\frac{2}{m}(E - V_{\text{eff}}(r))}} = \frac{j/mr^2}{\sqrt{\frac{2}{m}(E - V_{\text{eff}}(r))}}. \]

Upon integration we arrive at

\[\theta = \theta_0 + \int \frac{(j/mr^2)dr}{\sqrt{\frac{2}{m}(E - V_{\text{eff}}(r))}}. \] \hspace{1cm} (8)
Now let’s specialize to the case of gravity, where \(f(r) = -\frac{k}{r^2} \) and thus \(V(r) = -\frac{k}{r} \) for some constant \(k \).

5. Sketch a graph of the effective potential \(V_{\text{eff}}(r) \) in this case, and say what a particle moving in this potential would do, depending on its energy \(E \).

![Graphs of effective potential](image)

Figure I shows a sketch of \(V_{\text{eff}} \) in the case that \(|j| > m \) (this is the case where \(V_{\text{eff}}'(r) < 0 \) for \(r < j^2/(2mk) \)) and II shows \(V_{\text{eff}} \) where \(|j| < m \) (where \(V_{\text{eff}}'(r) > 0 \) for \(r < j^2/(2mk) \)). In both sketches, the zero is at \(r = j^2/(2mk) \) and the \(r \)-axis is a horizontal asymptote as \(r \to \infty \).

Let us briefly discuss the behavior of a particle with energy \(E < 0 \) with \(|j| > m \). Such a particle is shown in III. As was discussed in the example in class, the particles radius \(r \) would oscillate within the classically allowed region (the \(r \) values lying between the intersection points of \(E \) and \(V_{\text{eff}}(r) \)). The particle would be moving fastest at the minimum value of \(V_{\text{eff}} \) and would change from moving away from the origin to moving towards it (or vice a versa) at the intersection points.

6. Carry out the integration in (8).

We must compute

\[
\int \frac{(j/mr^2)dr}{\sqrt{\frac{2}{m}(E + k/r - j^2/(2mr^2))}}
\]
Too much has been made of this bugaboo! Let’s put this “beast” to rest by an elementary trigonometric substitution:

\[
\frac{j}{m} \left(\frac{1}{r} - \frac{mk}{j^2} \right) = \sqrt{\frac{2E}{m} + \frac{k^2}{j^2}} \cos u.
\]

(The sign of the radical here is chosen to match the sign of the radical in # 3) This substitution comes from completing the square under the radical—a simple and computationally economical process—and recalling the pythagorean identity for sine and cosine. All showboating aside, we see that

\[
(j/mr^2)dr = \sin u \sqrt{\frac{2E}{m} + \frac{k^2}{j^2}} du,
\]

and upon substitution, the integral becomes

\[
\int u \, du = u
\]

(the constant of integration already being accounted for in \(\theta_0\), and any sign changes from radicals canceling). Reversing the trigonometric substitution we see that \(u\) and hence the sought after antiderivative is

\[
\arccos \left(\frac{j}{mr^2} - \frac{k}{j} \right) \sqrt{\frac{2E}{m} + \frac{k^2}{j^2}}.
\]

Whence,

\[
\theta = \theta_0 + \arccos \left(\frac{j}{mr^2} - \frac{k}{j} \right) \sqrt{\frac{2E}{m} + \frac{k^2}{j^2}}. \tag{9}
\]

7. Reduce the clutter in (9) by defining

\[
p = j^2/km, \quad e = \sqrt{1 + \frac{2Ej^2}{mk^2}}.
\]

Note that

\[
\sqrt{\frac{2E}{m} + \frac{k^2}{j^2}} = \frac{k}{j} e,
\]

so that

\[
\frac{j}{mr^2} - \frac{k}{j} = \frac{j}{k} \frac{j}{e} - \frac{k}{j} = \frac{p/r - 1}{e},
\]

from whence it follows that

\[
\theta = \theta_0 + \arccos \left(\frac{p/r - 1}{e} \right).
\]

Solving for \(r\) yields:

\[
r = \frac{p}{1 + e \cos(\theta - \theta_0)}. \tag{10}
\]
We should note that if the sign of the radical for \dot{r}

8. Show that equation (10) describes an ellipse, parabola, or hyperbola in polar coordinates, depending on the value of the parameter e, which we call the **eccentricity**.

Begin by making a shift (a rotation) of θ_0 in θ. We will call the new coordinates that result from this shift r' and θ'. We have that

$$r' = \frac{p}{1 + e \cos \theta'}$$

by (10), or equivalently

$$r' + er' \cos \theta' = p.$$

Making the standard change to cartesian coordinates, the above reads

$$\sqrt{x^2 + y^2} + ex = p.$$

Now a little algebra yields

$$x^2 + y^2 = p^2 - 2ex + e^2 x^2,$$

or put a little differently,

$$(1 - e^2)x^2 + 2ex + y^2 = p^2; \quad (11)$$

which we immediately recognize as the equation of a conic.

The particular conic that (11) describes will be determined by the value of e. If $e = 0$, for instance, then (11) reduces to

$$x^2 + y^2 = p^2,$$

a circle centered at the origin with radius p. If $e = 1$, then (11) reduces to

$$2(x - p^2/2) = y^2,$$

a parabola with vertex (in the original polar coordinates) $(p^2/2, \theta_0)$ opening **towards** the origin.

Let’s exhaust all of the cases. If $e \neq 0$ or 1, then we may rewrite (11) as

$$\left(\frac{x + \frac{ep}{1-e^2}}{p^2 \frac{1+e^2}{1-e^2}} \right)^2 + \frac{y^2}{p^2 (1+e^2)} = 1. \quad (12)$$

We see that in this case (12) represents either a hyperbola ($e > 1$) with vertices (in rotated cartesian coordinates)

$$\left(\frac{-ep}{1-e^2}, \pm p(1-e^2)^{1/2} \right)$$

opening in the y direction or an ellipse ($0 < e < 1$) with center (again in rotated cartesian coordinates)

$$\left(\frac{-ep}{1-e^2}, 0 \right).$$

9. **How are the three kinds of orbits related to the energy E?**

 Recall that e is given by
\[e = \sqrt{1 + \frac{2Ej^2}{mk^2}}, \]

so that

\[E = \frac{mk^2}{2j^2}(e^2 - 1). \]

Using this, we compile the following chart:

<table>
<thead>
<tr>
<th>Orbit (type)</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular</td>
<td>(E = -\frac{mk^2}{2j^2})</td>
</tr>
<tr>
<td>Parabolic</td>
<td>(E = 0)</td>
</tr>
<tr>
<td>Hyperbolic</td>
<td>(E > 0)</td>
</tr>
<tr>
<td>Elliptic</td>
<td>(-\frac{mk^2}{2j^2} < E < 0)</td>
</tr>
</tbody>
</table>