The Kepler Problem

1. Show that the energy of a particle is given by \(E = \frac{1}{2} m (r^2 \dot{\theta}^2 + \dot{r}^2) + V(r) \) and the angular momentum \(J \) has \(z \) coordinate \(j = mr^2 \dot{\theta} \) and vanishing \(x \) and \(y \) coordinates.

 Solution: We know \(E = T + V \) where \(T \) is the kinetic energy and \(V \) is the potential energy. Kinetic energy is \(T = \frac{1}{2} m (\dot{q}(t) \cdot \dot{q}(t)) \) where \(q(t) = (r(t) \cos \theta(t), r(t) \sin \theta(t), 0) \). Since \(\dot{q}(t) = (\dot{r} \cos \theta - r \dot{\theta} \sin \theta, \dot{r} \sin \theta + r \dot{\theta} \cos \theta, 0) \), \(\dot{q} \cdot \dot{q} = \dot{r}^2 + r^2 \dot{\theta}^2 \) and \(T = \frac{1}{2} m (r^2 \dot{\theta}^2 + \dot{r}^2) \). By assumption, \(V \) depends on \(r \), since the force depends only on \(r \).

 The angular momentum is given \(j = q(t) \times m \dot{q}(t) \). Since \(q \) and \(\dot{q} \) lie in the \(xy \) plane, \(q(t) \times \dot{q}(t) = (0, 0, r^2 \dot{\theta}) \) and so the \(z \) coordinate of the angular momentum is \(mr^2 \dot{\theta} \).

2. Use the angular momentum to solve for \(\dot{\theta} \) and write \(E \) as \(E = \frac{1}{2} mr^2 + V_{\text{eff}}(r) \) where \(V_{\text{eff}}(r) = V(r) + \frac{j^2}{2mr^2} \).

 Solution: Since \(j = mr^2 \dot{\theta} \), we have \(\dot{\theta} = \frac{j}{mr^2} \). The equation for \(T \) gives \(T = \frac{1}{2} m \left(\dot{r}^2 \left(\frac{j}{mr^2} \right)^2 + \dot{r}^2 \right) \) and \(E = \frac{1}{2} mr^2 + \frac{j^2}{2mr^2} + V(r) = \frac{1}{2} mr^2 + V_{\text{eff}}(r) \), where \(V_{\text{eff}}(r) = \frac{j^2}{2mr^2} + V(r) \).

3. Show that \(\dot{r} = \sqrt{\frac{2}{m}(E - V_{\text{eff}}(r))} \).

 Solution: Solving \(E = \frac{1}{2} mr^2 + V_{\text{eff}}(r) \) for \(\dot{r} \) gives \(\dot{r} = \frac{2}{m} (E - V_{\text{eff}}(r)) \). Taking the square root gives \(\dot{r} = \frac{\sqrt{2}}{m} (E - V_{\text{eff}}(r)) \).

4. Show that \(\frac{d\theta}{dr} = \frac{j/mr^2}{\sqrt{\frac{2}{m}(E - V_{\text{eff}}(r))}} \).

 Solution: By the chain rule \(\frac{d\theta}{dr} = \frac{d\theta}{dt} \frac{dt}{dr} \). Implicit differentiation (like in 9A) gives \(\frac{dt}{dr} = \frac{1}{\sqrt{\frac{2}{m}(E - V_{\text{eff}}(r))}} \), provided \(\dot{r} > 0 \). Since \(\frac{d\theta}{dt} = \frac{j}{mr^2} \), we have \(\frac{d\theta}{dr} = \frac{j/mr^2}{\sqrt{\frac{2}{m}(E - V_{\text{eff}}(r))}} \).

 Integrating this gives \(\theta = \theta_0 + \int \frac{(j/mr^2)dr}{\sqrt{\frac{2}{m}(E - V_{\text{eff}}(r))}} \).
5. Sketch the graph of \(V_{\text{eff}}(r) \) when \(V = -\frac{k}{r} \) and describe what a particle in this potential would do, depending on its energy \(E \).

Solution: We have \(V_{\text{eff}}(r) = \frac{j^2}{2mr^2} - \frac{k}{r} = k \left(\frac{j^2}{2mk} - \frac{1}{r^2} \right) \). This is minimized when \(r = \frac{j^2}{mk} \) and then \(V_{\text{eff}} = -\frac{k^2m}{2j^2} \). Since \(\frac{1}{2}mr^2 \) must be nonnegative, we know that a particle’s total energy can never be less than \(-\frac{k^2m}{2j^2}\). If a particle’s total energy is positive, then \(r \) can go to infinity. If \(E < 0 \), then the particle will stay in between two values of \(r \), determined by when the energy equals \(V_{\text{eff}} \).

6. Show \(\theta = \theta_0 + \arccos \frac{\frac{j}{m} - \frac{k}{j}}{\sqrt{\frac{2E}{m} + \frac{k^2}{j^2}}} \).

Solution: \(\int \frac{(j/mr^2)dr}{\sqrt{\frac{2}{m}(E - V_{\text{eff}}(r))}} = \int \frac{(j/mr^2)dr}{\sqrt{\frac{2}{m}(E + \frac{k}{r} - \frac{j^2}{2mr^2})}} = -\int \frac{dw}{\sqrt{-\frac{2Em}{j^2} + \frac{2km}{j}w - w^2}} \), where \(w = \frac{1}{r} \). Using the fact \(\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \frac{1}{\sqrt{-a}} \arccos \left(\frac{-2ax - b}{\sqrt{b^2 - 4ac}} \right) \) when \(a < 0 \), we have

\[
-\int \frac{dw}{\sqrt{\frac{2Em}{j^2} + \frac{2km}{j}w - w^2}} = \arccos \left(\frac{2w - \frac{2km}{j^2}}{\sqrt{\frac{4k^2m^2}{j} + 42Em}} \right) = \arccos \left(\frac{\frac{j}{m} - \frac{k}{j}}{\sqrt{\frac{2Em}{j^2} + \frac{k^2}{j^2}}} \right). \]

So \(\theta = \theta_0 + \arccos \frac{\frac{j}{m} - \frac{k}{j}}{\sqrt{\frac{2Em}{j^2} + \frac{k^2}{j^2}}} \).
7. Letting $p = \frac{j^2}{km}$ and $e = \sqrt{1 + \frac{2E_j^2}{mk^2}}$, show $\theta = \theta_0 + \arccos\left(\frac{p}{r} - 1\right)$.

Solution: $\theta = \theta_0 + \arccos\frac{j}{\sqrt{\frac{2E_j^2}{mk^2} + 1}} = \theta_0 + \arccos\frac{j}{\sqrt{\frac{2E_j^2}{mk^2} + 1}} = \theta_0 + \arccos\left(\frac{p}{r} - 1\right)$. Solving for r gives $r = \frac{p}{1 + e \cos(\theta - \theta_0)}$.

8. The equation $r = \frac{p}{1 + e \cos(\theta - \theta_0)}$ describes an ellipse, parabola or hyperbola based on the value of e.

Solution: By a rotation, we can assume $\theta_0 = 0$. So we have $p = r + er \cos \theta$ or $p = \sqrt{x^2 + y^2 + ex}$. So $x^2 + y^2 = p^2 - 2epx + x^2$, or $(1 - e^2)x^2 + 2epx + y^2 = p^2$.

If $e = 0$, we have $p^2 = x^2 + y^2$, the equation of a circle.

If $0 < e < 1$, let $k = \frac{ep}{1 - e^2}$. Then we have $x^2 + 2kx + \frac{y^2}{1 - e^2} = \frac{p^2}{1 - e^2} = (x - k)^2 + \frac{y^2}{1 - e^2} = \frac{p^2}{1 - e^2} + k^2$, and ellipse.

If $e = 1$, we have $2px = -y^2 + p^2$, a parabola.

If $e > 1$, let $k = \frac{ep}{1 - e^2}$. Then we have $x^2 + 2kx + \frac{y^2}{1 - e^2} = \frac{p^2}{1 - e^2} = (x - k)^2 - \frac{y^2}{e^2 - 1} = \frac{p^2}{1 - e^2} + k^2$, a hyperbola.

9. How are the 3 kinds of orbits related to energy?

Solution: The hyperbola corresponds to $e > 1$, which requires the energy to be positive. The parabola correspond to $e = 1$, which requires energy to be 0. The ellipse corresponds to $0 < e < 1$ which corresponds which requires energy to be negative.