
The Pendulum, Elliptic Functions and Imaginary Time

Math 241 Homework

John Baez

The sine and cosine functions are analytic on the entire complex plane, and also periodic in one
direction. It’s interesting to look for nice functions that are periodic in two directions on the complex
plane. Such a function can’t be analytic everywhere — it must have poles — since otherwise it would
be bounded. Apart from that it can be very nice: it can be analytic except at poles that form a
lattice in the complex plane, like this:

A function like this is called an elliptic function. Since the plane modulo a lattice is a torus,
you can also think of an elliptic function as a function from the torus to the Riemann sphere. The
complex plane modulo a lattice is also called an elliptic curve; these are important examples of
Riemann surfaces.

Jacobi, Weierstrass and other mathematicians did a lot of work on elliptic functions in the 1800s.
Elliptic functions and elliptic curves have many applications to number theory, ultimately leading
to very deep results such as Wiles’ proof of Fermat’s theorem. They also have lots of applications
to physics — and here you will learn about one of the simplest! If you’re feeling less ambitious, do
problems 1-11. If you’re feeling more ambitious, do problem 12.

Start with a pendulum where a particle of mass m is constrained by a rod to lie on a circle of
radius r in the xz plane:

r

q(t)

x

z

To keep things simple we’ll neglect the mass of the rod. The position of the pendulum is a function

q: R → S1,

that is, a function of time taking values in the circle. Concretely we will think of q(t) as the angle
counterclockwise from the downwards z axis. However, we are allowed to treat this angle as a real
number only if we remember that two angles describe the same position of the pendulum when they
differ by an integral multiple of 2π. Thus q(t) is really a member, not of R, but of the quotient
group R/2πZ, which is a way of thinking of the circle S1.

Since the position of the pendulum at time t is really a point q(t) ∈ S1, it follows that q̇(t) is
really an element of the tangent space Tq(t)S

1. Similarly, the corresponding momentum p(t) lies in
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the cotangent space T ∗

q(t)S
1, and the state of the pendulum is described by a point (q(t), p(t)) in

T ∗S1. However, we can treat the time derivative of an angle as a real number using the isomorphism
S1 ∼= R/2πZ, so we get an isomorphism Tq(t)S

1 ∼= R, and thus an isomorphism T ∗

q(t)S
1 ∼= R. We

thus have
T ∗S1 ∼= S1

× R

and using this we can think of (q(t), p(t)) as a point in S1
×R. Of course, most physicists do all this

without making such a fuss about it!

Now here’s where you come in....

1. Using what you already know about the mechanics of point particles, show that the kinetic energy
of the pendulum is

K(q̇) =
1

2
mr2q̇2

2. Assuming the force of gravity is a vector pointing down with magnitude mG, show that we can
assume the potential energy of the pendulum to be

V (q) = −mG cos q.

3. Using what you know about classical mechanics on a Riemannian manifold, show that the
Hamiltonian of the pendulum,

H : T ∗S1
→ R,

is given by

H(q, p) =
p2

2mr2
− mG cos q.

4. Work out Hamilton’s equations for the pendulum and show that

q̇ =
p

mr2
,

ṗ = −mG sin q,

and thus

q̈ = −
G

r2
sin q.

Digression 1: Note that q̇ is really the angular velocity of the pendulum, while p = mr2q̇ is really

its angular momentum.

Digression 2: If the angle q stays small, we can use the approximation sin q ' q to approximate the

pendulum by a harmonic oscillator with

q̈ = −
G

r2
q.

However, when the angle becomes large the pendulum becomes very different from the harmonic

oscillator. For example, if the pendulum starts out at q = π, p = 0 at time zero, it will stay there for

all times, balanced upside down! This is an unstable equilibrium.

5. Plot the level curves of H as a function of (q, p) ∈ (R/2πZ) × R. Since energy is conserved, the
state (q(t), p(t)) must stay on one of these level curves as it evolves in time. Use this to qualitatively
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describe the behavior of the pendulum for various different values of the energy. In particular, find
stable and unstable equilibria.

6. Supposing that the pendulum’s energy equals E ∈ R, show that

q̇ = ±

√

2

mr2
(E + mG cos q). (1)

7. To reduce the clutter and focus on essentials, switch to units where mr2 = mG = 1. Using
equation (1), and taking the positive square root, show that

t =

∫

dq
√

2(E + cos q)
. (2)

8. If we could do the integral in equation (2), we’d know t as a function of q. Then we could
solve for q as a function of t and we’d be done! Unfortunately, this integral cannot be done using
elementary functions — it’s a so-called elliptic integral. To bring it into Jacobi’s favorite form,
let’s work not with q but with

x =

√

2

E + 1
sin(q/2)

Show that
ẋ =

√

(1 − x2)(1 − k2x2)

where k, the so-called modulus, is given by

k =

√

E + 1

2
.

Conclude that

t =

∫

dx
√

(1 − x2)(1 − k2x2)
(3)

This is Jacobi’s elliptic integral of the first kind. When we solve for x as a function of t, we
get an elliptic function.

Digression: To do integrals involving the square root of a quadratic function of x, you need inverse

trig functions. However, for integrals involving the square root of a cubic or quartic function of

x, you need inverse elliptic functions — or in other words, elliptic integrals. Why are they called

‘elliptic’? Well, if you work out the circumference of the ellipse

x2

a2
+

y2

b2
= 1

you get 4a times this:
∫ 1

0

√

1 − k2x2

1 − x2
dx

where k2 = 1 − b2/a2. The stuff under the square root here is not a quartic in x, but the integral

is closely related to the one we’ve been discussing: it’s called Jacobi’s elliptic integral of the

second kind.

9. I’ve been a bit sloppy about the limits of integration in equation (3). Show that if we start our
clock so that t = 0 when our pendulum happens to be pointing straight down, we have

t =

∫ x

0

dy
√

(1 − y2)(1 − k2y2)
.
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If we now solve this for x as a function of t we get, by definition, the elliptic function sn(t, k). In
other words:

x = sn(t, k) means t =

∫ x

0

dy
√

(1 − y2)(1 − k2y2)

To make this more precise we’d need to worry about the branch points in the integrand at y = ±1,
y = ±1/k, but let’s not worry about those just yet.

Digression 3: It’s easy to see that when k = 0, the function sn(t, k) reduces to the good old sine

function. There is also an elliptic function cn(t, k) that reduces to cos t when k = 0, and one called

dn(t, k) that reduces to 1 when k = 0. They satisfy identities like

sn2(t, k) + cn2(t, k) = 1 k2sn2(t, k) + dn2(t, k) = 1

d

dt
sn(t, k) = cn(t, k)dn(t, k)

d

dt
cn(t, k) = −sn(t, k)dn(t, k)

d

dt
dn(t, k) = −k2sn(t, k)cn(t, k),

so before you know it, you’ve got a whole world of generalized trig formulas on your hands! Back in

the 1800s, any decent mathematician would know this stuff. You should too.

But now for the really cool part:

10. Using part 5, show that q(t) and thus sn(t, k) is periodic as a function of t.

11. Show that making the replacement
t 7→ it

in Newton’s law is equivalent to reversing the sign of all forces.

In the present problem, this amounts to reversing the force of gravity, making it pull the pendulum
up. But an upside-down pendulum is just another pendulum. Therefore the function sn(it, k) must
also be periodic as a function of t. This suggests that sn(z, k), as a function of z ∈ C, is periodic in
both the real and imaginary directions. And it’s true!

So, the pendulum gives a physical explanation of the fact that elliptic functions are

periodic in two directions on the complex plane!

12. Prove, as rigorously as you can, that sn(z, k) is periodic in two directions. You can do this either
by fleshing out the above argument, or by studying the integral in equation (3) and worrying about
those branch points. In fact we have

sn(z + 4K, k) = sn(z, k), sn(z + 2iK ′, k) = sn(z, k)

where for 0 < k < 1

K =

∫ 1

0

dy
√

(1 − y2)(1 − k2y2)

and

K ′ =

∫ 1/k

1

dy
√

(y2 − 1)(1 − k2y2)
.
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