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1 The position of the mass at the end of the rod is (r sin q,−r cos q) in the x, z plane, so the speed is

‖(rq̇ cos q, rq̇ sin q)‖ = r|q̇|.

Thus, the kinetic energy is mr2q̇2/2, as desired.

2 If the force is −mGẑ, then I can take the potential energy to be mGz = −mGr cos q, not the claimed
−mG cos q (which has the wrong units anyway).

3 The kinetic energy de�nes a quadratic form on Tq(t)S
1 ∼= R given by the single coordinate mr2/2. Thus

the corresponding quadratic form on T ∗
q(t)S

1 ∼= R is given by the single coordinate 1/2mr2. Thus, the

Hamiltonian is p2/2mr2 −mGr cos q. (Note again the missing r, needed to have an energy).

4 According to Hamilton s equations, q̇ = ∂H/∂p = p/mr2, and ṗ = −∂H/∂q = −mGr sin q. Thus, q̈ =
ṗ/mr2 = −G sin q/r. (Again, factors of r require adjustment.)

5 On a given trajectory, H(q, p) takes some constant value E. Since cos q ≤ 1, I have

p2 = 2mr2(E + mGr cos q) ≤ 2mr2(E + mGr),

or

−r
È

2m(E + mGr) ≤ p ≤ r
È

2m(E + mGr).

Note that in order for this to make sense, I must have E ≥ −mGr, so energies strtictly less than −mGr
are inaccessible. (This makes sense physically, since −mGr is the potential energy when the mass is at
its lowest position.) Similarly, since cos q ≥ −1, I have p2 ≥ 2mr2(E −mGr). Thus, p = 0 will never oc-
cur when E > mGr. Remembering that E < −mGr is impossible, then, there are 2 broad types of mo-
tion and 2 degenerate energies. When |E| < mGr, the motion will pass through p = 0 but will never reach
cos q = −1. Physically, this corresponds to an oscillation about the bottom position. When E > mGr, in
contrast, the motion will pass through cos q = −1 but will never reach p = 0. Physically, this corresponds
to traversing the entire con�guration space. One degenerate energy is E = −mGr, where the motion re-
mains at cos q = 1 and p = 0, a stable equilibrium. Physically, this corresponds to remaining in the bot-
tom position. The other degenerate energy is E = mGr. In this case, we could have p = 0 and cos q = −1,
another equilibrium. However, this is not required; we could have p > 0 and cos q > −1, or alternatively
p < 0 and cos q > −1. This trajectory would approach the above equilibrium but never reach it. There-
fore, this equilibrium is unstable. Physically, the unstable equilibrium corresponds to balancing at the top
position, as indicated in digression 2, and the degenerate trajectory approaching this equilibrium corre-
sponds to ever more slowly climbing to the top. A graph illustrating this is on the next page.

6 As already noted, p2 = 2mr2(E + mGr cos q). Since q̇ = p/mr2, it follows that q̇2 = 2(E + mGr cos q)/mr2,

so q̇ = ±
È

2(E + mGr cos q)/mr2, which is equation (1) with the correct factors of r.

7 Of course, we really want mGr = 1, not so much mG = 1. (Note that the product m2r2G of these units
gives a scale for p2, as can be seen on the graph for problem 5, while the quotient G/r gives a scale for
t2.) Then the previous problem gives q̇2 = 2(E + cos q). Since dt = dq/̇q, equation (2) follows if I use the
principal square root. Note that this will break down when p changes sign, which can happen when |E| <
1 in the new units (the oscillating case).
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8 The minimum value for the energy is −1 in these new units, so the formula o�ered for the modulus k must
make sense. Since x = sin (q/2)/k, I have ẋ = q̇ cos (q/2)/2k, so

ẋ2 = q̇2 cos2 (q/2)/4k2 = (E + cos q)(1 + cos q)/4k2 = (2k2 − 1 + cos q)(1 + cos q)/4k2.

Meanwhile, x2 = (1− cos q)/2k2, so 2k2 − 1 + cos q = 2k2(1− x2), and 1 + cos q = 2(1− k2x2). Thus,
ẋ2 = (1− x2)(1− k2x2). Now, in the oscillating case, our analysis will already break down at cos q = −E,
or 1− x2 = 0; in the case of perpetual rotation, on the other hand, 1− x2 is always strictly positive. In
that case, furthermore, ẋ will remain nonnegative so long as cos (q/2) does, a simpli�cation that breaks
down at cos q = −1, or 1− k2x2 = 0; but in the oscillating case, that is never reached. Thus in either case,

the formula ẋ =
È

(1− x2)(1− k2x2) will be valid on any interval containing x = 0 where it makes sense.
(The degenerate nonequilibrium will �nd this formula valid and true always, while the equilibria will �nd
the formula never de�ned.) Formula (3) then follows, so long as it is applied on an interval containing 0.

9 Here I indeed integrate on an interval containing 0. The correct form may vary from that given by a con-
stant, but since it gives the correct value t = 0 for x = 0, it must be exactly right. We can now de�ne the
elliptic function sn for all values of x by making recourse to the physical problem of the pendulum, since
that de�nition agrees with the integral whenever the latter makes sense.
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