Toby Bartels MATH 241 2002 December 6
The position of the mass at the end of the rod is (rsing, —r cosq) in the x, z plane, so the speed is

|[(rq cos q, rgsinq)|| = r|q|.

Thus, the kinetic energy is mr2¢%/2, as desired.

If the force is —mGz, then I can take the potential energy to be mGz = —mGr cos ¢, not the claimed
—mG cos ¢ (which has the wrong units anyway).

The kinetic energy defines a quadratic form on Tq(t)Sl =~ R given by the single coordinate mr?/2. Thus

%

the corresponding quadratic form on Tq(t)S1 =~ R is given by the single coordinate 1/2mr?2. Thus, the
Hamiltonian is p?/2mr? — mGr cosq. (Note again the missing 7, needed to have an energy).

According to Hamilton's equations, ¢ = OH /0p = p/mr?, and p = —0H /0q = —mGrsing. Thus, § =
p/mr? = —Gsing/r. (Again, factors of r require adjustment.)

On a given trajectory, H(q,p) takes some constant value E. Since cosq < 1, I have
p? = 2mr?(E + mGrcosq) < 2mr?(E + mGr),

or
—ry/2m(E + mGr) < p <ry/2m(E + mGr).

Note that in order for this to make sense, I must have £ > —mGr, so energies strtictly less than —mGr
are inaccessible. (This makes sense physically, since —mGr is the potential energy when the mass is at

its lowest position.) Similarly, since cosq > —1, I have p* > 2mr?(E — mGr). Thus, p = 0 will never oc-
cur when F > mGr. Remembering that F < —mGr is impossible, then, there are 2 broad types of mo-
tion and 2 degenerate energies. When |E| < mGr, the motion will pass through p = 0 but will never reach
cos ¢ = —1. Physically, this corresponds to an oscillation about the bottom position. When E > mGr, in
contrast, the motion will pass through cos ¢ = —1 but will never reach p = 0. Physically, this corresponds
to traversing the entire configuration space. One degenerate energy is £ = —mGr, where the motion re-
mains at cosq = 1 and p = 0, a stable equilibrium. Physically, this corresponds to remaining in the bot-
tom position. The other degenerate energy is £ = mGr. In this case, we could have p =0 and cosq = —1,
another equilibrium. However, this is not required; we could have p > 0 and cosq > —1, or alternatively

p < 0 and cosq > —1. This trajectory would approach the above equilibrium but never reach it. There-
fore, this equilibrium is unstable. Physically, the unstable equilibrium corresponds to balancing at the top
position, as indicated in digression 2, and the degenerate trajectory approaching this equilibrium corre-
sponds to ever more slowly climbing to the top. A graph illustrating this is on the next page.

As already noted, p? = 2mr?(E + mGr cos q). Since ¢ = p/mr?, it follows that ¢*> = 2(E + mGr cos q)/mr?,
S0 ¢ = :t\/2(E + mGr cos q)/mr?, which is equation (1) with the correct factors of r.

Of course, we really want mGr = 1, not so much mG = 1. (Note that the product m?r2G of these units
gives a scale for p?, as can be seen on the graph for problem 5, while the quotient G /r gives a scale for
t2.) Then the previous problem gives ¢* = 2(E + cos q). Since dt = dq/q, equation (2) follows if I use the
principal square root. Note that this will break down when p changes sign, which can happen when |E| <
1 in the new units (the oscillating case).
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8 The minimum value for the energy is —1 in these new units, so the formula offered for the modulus £ must
make sense. Since x = sin (¢/2)/k, I have & = ¢ cos(q/2)/2k, so

i? = ¢%cos? (¢/2)/4k* = (E + cos q)(1 + cos q) /4k* = (2k* — 1 4 cosq)(1 + cos q) /4k>.

Meanwhile, 2% = (1 — cos q)/2k?, so 2k? — 1 + cos ¢ = 2k*(1 — 22), and 1 + cos ¢ = 2(1 — k?2?). Thus,

2 = (1 — 22)(1 — k%22). Now, in the oscillating case, our analysis will already break down at cosq = —F,
or 1 — x2 = 0; in the case of perpetual rotation, on the other hand, 1 — x2 is always strictly positive. In
that case, furthermore, & will remain nonnegative so long as cos (¢/2) does, a simplification that breaks
down at cosq = —1, or 1 — k?z? = 0; but in the oscillating case, that is never reached. Thus in either case,

the formula & = \/(1 —2%)(1 — k?2?) will be valid on any interval containing = = 0 where it makes sense.
(The degenerate nonequilibrium will find this formula valid and true always, while the equilibria will find
the formula never defined.) Formula (3) then follows, so long as it is applied on an interval containing 0.

9 Here I indeed integrate on an interval containing 0. The correct form may vary from that given by a con-
stant, but since it gives the correct value ¢ = 0 for = 0, it must be exactly right. We can now define the
elliptic function sn for all values of by making recourse to the physical problem of the pendulum, since
that definition agrees with the integral whenever the latter makes sense.
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