A Spring in Imaginary Time
Erin P. J. Pearse

1. Suppose you have a spring in \mathbb{R}^{n} with fixed endpoints, tracing out a curve

$$
q:\left[s_{0}, s_{1}\right] \rightarrow \mathbb{R}^{n}, \quad q\left(s_{0}\right)=a, q\left(s_{1}\right)=b
$$

If the spring is in a potential $V \mathbb{R}^{n} \rightarrow \mathbb{R}$, what curve will the spring trace out when it's in equilibrium?

Since the total spring energy is

$$
E=\int_{s_{0}}^{s_{1}}\left[\frac{k}{2} \dot{q}(s) \cdot \dot{q}(s)+V(q(s))\right] d s
$$

we set $\delta E=0$ and investigate the implications.

$$
\begin{array}{rlrl}
\delta E & =\delta\left(\int_{s_{0}}^{s_{1}}\left[\frac{k}{2} \dot{q}(s) \cdot \dot{q}(s)+V(q(s))\right] d s\right) & \\
& =\left.\frac{\partial}{\partial \varepsilon}\left(\int_{s_{0}}^{s_{1}}\left[\frac{k}{2} \dot{q}(s) \cdot \dot{q}(s)+V(q(s))\right] d s\right)\right|_{\varepsilon=0} & & \text { def of } \delta \\
& =\int_{s_{0}}^{s_{1}} \frac{k}{2} \frac{\partial}{\partial \varepsilon}[\dot{q}(s) \cdot \dot{q}(s)]+\left.\frac{\partial}{\partial \varepsilon}[V(q(s))] d s\right|_{\varepsilon=0} & & \text { linearity } \\
& =\int_{s_{0}}^{s_{1}} k \dot{q}_{\varepsilon}(s) \frac{\partial}{\partial \varepsilon}\left[\dot{q}_{\varepsilon}(s)\right]+\left.\nabla V\left(q_{\varepsilon}(s)\right) \frac{\partial}{\partial \varepsilon}\left[q_{\varepsilon}(s)\right] d s\right|_{\varepsilon=0} & & \text { chain rule } \\
& =\int_{s_{0}}^{s_{1}} k \dot{q}_{\varepsilon}(s) \frac{\partial}{\partial t} \frac{\partial}{\partial \varepsilon}\left[q_{\varepsilon}(s)\right]+\left.\nabla V\left(q_{\varepsilon}(s)\right) \frac{\partial}{\partial \varepsilon}\left[q_{\varepsilon}(s)\right] d s\right|_{\varepsilon=0} & & \text { mixed partials } \\
& =\int_{s_{0}}^{s_{1}}-k\left(\frac{\partial}{\partial t} \dot{q}_{\varepsilon}(s)\right) \frac{\partial}{\partial \varepsilon}\left[q_{\varepsilon}(s)\right]+\left.\nabla V\left(q_{\varepsilon}(s)\right) \frac{\partial}{\partial \varepsilon}\left[q_{\varepsilon}(s)\right] d s\right|_{\varepsilon=0} & & \text { IBP } \\
& =\left.\int_{s_{0}}^{s_{1}}\left(-k \ddot{q}_{\varepsilon}(s)+\nabla V\left(q_{\varepsilon}(s)\right)\right) \frac{\partial}{\partial \varepsilon}\left[q_{\varepsilon}(s)\right] d s\right|_{\varepsilon=0} & & \text { factoring } \\
& =\int_{s_{0}}^{s_{1}}(-k \ddot{q}(s)+\nabla V(q(s))) \frac{\partial}{\partial \varepsilon}\left[q_{\varepsilon}(s)\right]_{\varepsilon=0} d s & & \text { letting } \varepsilon=0 .
\end{array}
$$

So if this is 0 for all allowable variations δq, we must have an integrand of 0 , i.e.,

$$
k \ddot{q}(s)=\nabla V(q(s))
$$

2. Suppose the spring is in a constant downwards gravitational field in \mathbb{R}^{3}, so that

$$
V(x, y, z)=m g z
$$

where m is the mass density of the spring and g is the acceleration of gravity (9.8 $\mathrm{m} / \mathrm{s}^{2}$). What sort of curve does the spring trace out, in equilibrium?

Apply the answer from (1), $\nabla V=k \ddot{q}(s)$, and compute

$$
\nabla V(x, y, z)=\nabla(m g z)=[0,0, m g]
$$

to obtain the system

$$
\left\{\begin{array}{l}
\ddot{q}_{1}(s)=0 \\
\ddot{q}_{2}(s)=0 \\
\ddot{q}_{3}(s)=\frac{m g}{k} .
\end{array}\right.
$$

All equations may be solved directly by successive integrations; the first two yield linear functions, and the third gives a polynomial in z :

$$
\left\{\begin{array}{l}
q_{1}(s)=\left(b_{1}-a_{1}\right) s+a_{1} \\
q_{2}(s)=\left(b_{2}-a_{2}\right) s+a_{2} \\
q_{3}(s)=\frac{m g}{2 k} s^{2}+\left(b_{3}-a_{3}-\frac{m g}{2 k}\right) s+a_{3},
\end{array}\right.
$$

where the values of the constants are deduced by comparison to the components of $q\left(s_{0}\right)=a, q\left(s_{1}\right)=b$.

Thus the spring traces out a parabola lying in the vertical plane whose intersection with the $x y$-plane is the straight line from $\left(a_{1}, a_{2}\right)$ to $\left(b_{1}, b_{2}\right)$.
3. Using the energy, as given previously, replace the parameter s by it and show that up to a constant, the energy of the static string becomes the action for a particle moving in a potential.

$$
\begin{aligned}
E & =\int_{s_{0}}^{s_{1}}\left[\frac{k}{2} \dot{q}(s) \cdot \dot{q}(s)+V(q(s))\right] d s \\
& =\int_{s_{0}}^{s_{1}}\left[\frac{k}{2} \frac{\partial}{\partial s} q(s) \cdot \frac{\partial}{\partial s} q(s)+V(q(s))\right] d s \\
& =\int_{t_{0}}^{t_{1}}\left[\frac{k}{2} \frac{\partial}{\partial t} q(i t) \cdot \frac{\partial}{\partial t} q(i t)+V(q(i t))\right] d(i t) \\
& =\int_{t_{0}}^{t_{1}}\left[\frac{k}{2} i \dot{q}(i t) \cdot i \dot{q}(i t)+V(q(i t))\right] i d t \\
& =\int_{t_{0}}^{t_{1}}\left[-\frac{k}{2} \dot{q}(i t) \cdot \dot{q}(i t)+V(q(i t))\right] i d t \\
& =-i \int_{t_{0}}^{t_{1}}\left[\frac{k}{2} \dot{q}(i t) \cdot \dot{q}(i t)-V(q(i t))\right] d t \\
& =-i S(q)
\end{aligned}
$$

4. The analogy between statics and dynamics.

Principle of Least Energy	Principle of Least Action
spring	particle
energy	action
"tension" energy	kinetic energy
potential energy	potential energy
spring constant k	mass m

5. What particular dynamics problem (pun intended) is the statics problem in 2 analogous to? How is the solution to the statics problem related to the solution of this dynamics problem?

The problem is: "What curve does a particle trace out when it moves through a (gravitational) potential, minimizing action?"

The answer is again a parabola; the negative sign introduced during the rotation into imaginary time has the effect of flipping the parabola, so it open downwards, as is appropriate for the path of a projectile.
6. What does Newton's law $F=m a$ become if we formally replace t by $s=i t$?

Since

$$
\begin{aligned}
F & =m a \\
-\nabla V & =m \frac{\partial^{2}}{\partial t^{2}} q(i t) \\
-\nabla V & =-m \ddot{q}(i t) \\
\nabla V & =m \ddot{q}(i t) \\
F & =-m \ddot{q}(i t) \\
F & =-m a,
\end{aligned}
$$

we see that in an imaginary world, Newton's law is reversed.

