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1. If we have a spring with fixed ends tracing a curve q in
�

n whose energy is
E as given, we find that taking the variation of E gives:

δE = δ
∫ s1

s0

(

k
2 q̇(s) · q̇(s) + V (q(s))

)

ds

=
∫ s1

s0

(

k
2 δ(q̇(s) · q̇(s)) + δV (q(s))

)

ds

=
∫ s1

s0

(kq̇(s) · δq̇(s) + ∇V (q(s)) · δq(s)) ds

=
∫ s1

s0

(−kq̈(s) + ∇V (q(s))) · δq(s)ds (by parts)

The boundary terms from the integration by parts disappear since we only
consider variations which fix the endpoints of the curve traced by the spring
(i.e. δq = 0 at s0 and s1). Then if we have that δE = 0 for all variations δq,
then the equation q must satisfy is

−kq̈(s) + ∇V (q(s)) = 0

or
kq̈(s) = ∇V (q(s))

2. If V = mgz in
� 3, we have that ∇V = (0, 0, mg), so that q̈(s) = (0, 0, mg

k
).

That is, the curve has a constant positive acceleration mg
k

in the z direction
with respect to the parameter s, and constant velocity in the x and y direc-
tions with respect to s. So we can also think of the curve as having constant
acceleration in the z direction with respect to distance in the (x, y) direction
of the particle’s horizontal velocity. So the curve is a parabola with local
maxima at the endpoints.

3. Replacing s by it, we get

E =
∫ it1

it0

(

k
2 q̇(it) · q̇(it) + V (q(it))

)

idt

= i
∫ it1

it0

(

k
2 q(it) · d

d(it) q(it) + V (q(it))
)

dt

= i
∫ it1

it0

(

i2k
2 q̇(it) · q̇(it) + V (q(it))

)

dt

= −i
∫ t1

t0

(

k
2‖q̇(−t)‖2 − V (q(−t))

)

dt

= −i
∫

−t1

−t0

(

k
2‖q̇(t)‖

2 − V (q(t))
)

dt

Indeed, this is just −i multiplied by the action along a path of a particle
moving in a potential (K − V , where K = k/2‖q̇‖2 with k playing the role
of the mass m).

4. We have the analogy:
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STATICS DYNAMICS
Principle of Least Energy Principle of Least Action

spring particle
energy action

stretching energy kinetic energy
potential energy potential energy
spring constant k mass m

5. The statics problem in (2) corresponds to the dynamics problem of a particle
moving in a potential with constant gradient. The solution to that problem
has the particle moving in a parabola with local minima at the endpoints -
the acceleration is in the direction opposite to that observed in the statics
problem of the spring.

6. Formally replacing t by it in Newton’s equation F = ma, where a(t) is ẍ(t),
the second derivative of position with respect to t:

F = m d2

dt2
x(it)

= mi2ẍ(it)
= −mẍ(it)

(This equation F = −mẍ is reminiscent of Hooke’s law for springs, except
that “acceleration” ẍ plays the role of displacement.)
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