A Spring in Imaginary Time

Jeff Morton

1. If we have a spring with fixed ends tracing a curve q in \mathbb{R}^{n} whose energy is E as given, we find that taking the variation of E gives:

$$
\begin{aligned}
\delta E & =\delta \int_{s_{0}}^{s_{1}}\left(\frac{k}{2} \dot{q}(s) \cdot \dot{q}(s)+V(q(s))\right) d s \\
& =\int_{s_{0}}^{s_{1}}\left(\frac{k}{2} \delta(\dot{q}(s) \cdot \dot{q}(s))+\delta V(q(s))\right) d s \\
& =\int_{s_{0}}^{s_{1}}(k \dot{q}(s) \cdot \delta \dot{q}(s)+\nabla V(q(s)) \cdot \delta q(s)) d s \\
& =\int_{s_{0}}^{s_{1}}(-k \ddot{q}(s)+\nabla V(q(s))) \cdot \delta q(s) d s \quad \text { (by parts) }
\end{aligned}
$$

The boundary terms from the integration by parts disappear since we only consider variations which fix the endpoints of the curve traced by the spring (i.e. $\delta q=0$ at s_{0} and s_{1}). Then if we have that $\delta E=0$ for all variations δq, then the equation q must satisfy is

$$
-k \ddot{q}(s)+\nabla V(q(s))=0
$$

or

$$
k \ddot{q}(s)=\nabla V(q(s))
$$

2. If $V=m g z$ in \mathbb{R}^{3}, we have that $\nabla V=(0,0, m g)$, so that $\ddot{q}(s)=\left(0,0, \frac{m g}{k}\right)$. That is, the curve has a constant positive acceleration $\frac{m g}{k}$ in the z direction with respect to the parameter s, and constant velocity in the x and y directions with respect to s. So we can also think of the curve as having constant acceleration in the z direction with respect to distance in the (x, y) direction of the particle's horizontal velocity. So the curve is a parabola with local maxima at the endpoints.
3. Replacing s by t, we get

$$
\begin{aligned}
E & =\int_{i t_{0}}^{i t_{1}}\left(\frac{k}{2} \dot{q}(\boldsymbol{t}) \cdot \dot{q}(t)+V(q(t))\right) \dot{d t} \\
& =i \int_{i t_{0}}^{i t_{1}}\left(\frac{k}{2} q(\boldsymbol{t}) \cdot \frac{d}{d(t)} q(t)+V(q(t))\right) d t \\
& =i \int_{i_{0}}^{t_{1}}\left(\frac{i^{2} k}{2} \dot{q}(t) \cdot \dot{q}(t)+V(q(t))\right) d t \\
& =-i \int_{t_{0}}^{t_{1}}\left(\frac{k}{2}\|\dot{q}(-t)\|^{2}-V(q(-t))\right) d t \\
& =-i \int_{-t_{0}}^{-t_{1}}\left(\frac{k}{2}\|\dot{q}(t)\|^{2}-V(q(t))\right) d t
\end{aligned}
$$

Indeed, this is just $-i$ multiplied by the action along a path of a particle moving in a potential $\left(K-V\right.$, where $K=k / 2\|\dot{q}\|^{2}$ with k playing the role of the mass m).
4. We have the analogy:

STATICS	DYNAMICS
Principle of Least Energy	Principle of Least Action
spring	particle
energy	action
stretching energy	kinetic energy
potential energy	potential energy
spring constant k	mass m

5. The statics problem in (2) corresponds to the dynamics problem of a particle moving in a potential with constant gradient. The solution to that problem has the particle moving in a parabola with local minima at the endpoints the acceleration is in the direction opposite to that observed in the statics problem of the spring.
6. Formally replacing t by t in Newton's equation $F=m a$, where $a(t)$ is $\ddot{x}(t)$, the second derivative of position with respect to t :

$$
\begin{aligned}
F & =m \frac{d^{2}}{d t^{2}} x(t) \\
& =m i^{2} \ddot{x}(t) \\
& =-m \ddot{x}(t)
\end{aligned}
$$

(This equation $F=-m \ddot{x}$ is reminiscent of Hooke's law for springs, except that "acceleration" \ddot{x} plays the role of displacement.)

