A Spring in Imaginary Time

Jeff Morton

1. If we have a spring with fixed ends tracing a curve q in \mathbb{R}^n whose energy is E as given, we find that taking the variation of E gives:

$$\begin{split} \delta E &= \delta \int_{s_0}^{s_1} \left(\frac{k}{2} \dot{q}(s) \cdot \dot{q}(s) + V(q(s)) \right) ds \\ &= \int_{s_0}^{s_1} \left(\frac{k}{2} \delta(\dot{q}(s) \cdot \dot{q}(s)) + \delta V(q(s)) \right) ds \\ &= \int_{s_0}^{s_1} \left(k \dot{q}(s) \cdot \delta \dot{q}(s) + \nabla V(q(s)) \cdot \delta q(s) \right) ds \\ &= \int_{s_0}^{s_1} \left(-k \ddot{q}(s) + \nabla V(q(s)) \right) \cdot \delta q(s) ds \quad \text{(by parts)} \end{split}$$

The boundary terms from the integration by parts disappear since we only consider variations which fix the endpoints of the curve traced by the spring (i.e. $\delta q = 0$ at s_0 and s_1). Then if we have that $\delta E = 0$ for all variations δq , then the equation q must satisfy is

$$-k\ddot{q}(s) + \nabla V(q(s)) = 0$$

or

$$k\ddot{q}(s) = \nabla V(q(s))$$

- 2. If V = mgz in \mathbb{R}^3 , we have that $\nabla V = (0, 0, mg)$, so that $\ddot{q}(s) = (0, 0, \frac{mg}{k})$. That is, the curve has a constant positive acceleration $\frac{mg}{k}$ in the z direction with respect to the parameter s, and constant velocity in the x and y directions with respect to s. So we can also think of the curve as having constant acceleration in the z direction with respect to distance in the (x, y) direction of the particle's horizontal velocity. So the curve is a parabola with local maxima at the endpoints.
- 3. Replacing s by t, we get

$$E = \int_{it_0}^{it_1} \left(\frac{k}{2}\dot{q}(t) \cdot \dot{q}(t) + V(q(t))\right) it$$

= $i \int_{it_0}^{it_1} \left(\frac{k}{2}q(t) \cdot \frac{d}{d(t)}q(t) + V(q(t))\right) dt$
= $i \int_{it_0}^{it_1} \left(\frac{i^2k}{2}\dot{q}(t) \cdot \dot{q}(t) + V(q(t))\right) dt$
= $-i \int_{t_0}^{t_1} \left(\frac{k}{2} \|\dot{q}(-t)\|^2 - V(q(-t))\right) dt$
= $-i \int_{-t_0}^{-t_1} \left(\frac{k}{2} \|\dot{q}(t)\|^2 - V(q(t))\right) dt$

Indeed, this is just -i multiplied by the action along a path of a particle moving in a potential (K - V), where $K = k/2 ||\dot{q}||^2$ with k playing the role of the mass m).

4. We have the analogy:

STATICS	DYNAMICS
Principle of Least Energy	Principle of Least Action
spring	particle
energy	action
stretching energy	kinetic energy
potential energy	potential energy
spring constant k	mass m

- 5. The statics problem in (2) corresponds to the dynamics problem of a particle moving in a potential with constant gradient. The solution to that problem has the particle moving in a parabola with local *minima* at the endpoints the acceleration is in the direction opposite to that observed in the statics problem of the spring.
- 6. Formally replacing t by t in Newton's equation F = ma, where a(t) is $\ddot{x}(t)$, the second derivative of position with respect to t:

$$F = m\frac{d^2}{dt^2}x(t)$$

= $mi^2\ddot{x}(t)$
= $-m\ddot{x}(t)$

(This equation $F = -m\ddot{x}$ is reminiscent of Hooke's law for springs, except that "acceleration" \ddot{x} plays the role of displacement.)