Classical Mechanics, Lecture 17 March 6, 2008 lecture by John Baez notes by Alex Hoffnung

1 Weakly Hamiltonian Group Actions

The phase space for the free particle in \mathbb{R}^n is $X = T^* \mathbb{R}^n \cong \mathbb{R}^n \times \mathbb{R}^n \ni (q, p)$. We worked out the action of the Galilei group on X:

$$A: G(n+1) \times X \to X$$

so we have:

$$\alpha:\mathfrak{g}(n+1)\to Vect(X)$$

and indeed we have this commuting diagram:

where $\beta_f = \{f, \cdot\}$ and γ was described last time. But I claim: A is not Hamiltonian because there is no γ making this commute that is a Lie algebra homomorphism. We will see that the γ described last time does not work:

$$\gamma[r,s] \neq \{\gamma(r),\gamma(s)\}$$

for some $r, s \in \mathfrak{g}(n+1)$. We will take r to be the generator of translations in the 1st coordinate direction, and s to be the generator of Galilei boosts in that direction. E.g. if n = 1:

$$exp(ar)(x,t) = (x+a,t), \quad \forall a \in \mathbb{R}$$

 $exp(vs)(x,t) = (x+tv,t), \quad \forall v \in \mathbb{R}$

We have [r, s] = 0 since:

Lemma 1 If G is any Lie group and $r, s \in \mathfrak{g}$, then

- 0

$$[r,s] = 0$$

if and only if

$$exp(ar)exp(vs) = exp(vs)exp(ar), \quad \forall a, v \in \mathbb{R}$$

Sketch of Proof: We need just one direction of this if and only if, which can be shown roughly as follows:

$$exp(ar)exp(vs) = exp(vs)exp(ar)$$

 \mathbf{SO}

$$\frac{\partial^2}{\partial a \partial v} exp(ar) exp(vs) \bigg|_{a,v=0} = \frac{\partial^2}{\partial a \partial v} exp(vs) exp(ar) \bigg|_{a,v=0}$$

 \mathbf{SO}

$$rs = sr$$

 \mathbf{SO}

$$[r,s] \stackrel{?}{=} rs - sr = 0$$

This is legitimate if G is a group of matrices.

So $\gamma[r,s] = 0$. But $\{\gamma(r), \gamma(s)\} \neq 0$, since

$$\gamma(r) = p_1$$

(momentum generates translations), and

$$\gamma(s) = mq_1$$

(mass time position generates boosts), so

$$\{\gamma(r), \gamma(s)\} = \sum_{i=1}^{n} \frac{\partial}{\partial p_i} p_1 \frac{\partial}{\partial q_i} mq_1 - \frac{\partial}{\partial q_i} p_1 \frac{\partial}{\partial p_i} mq_1$$
$$= m$$

Here $m \in C^{\infty}(X)$ is really the constant function equal to m at all points of X. But what vector field on X does this observable generate? What is $v_m = \{m, \cdot\}$? It is zero! It generates this flow:

$$\phi \colon \mathbb{R} \times X \to X$$

$$(t, x) \mapsto x$$

All constant functions, or indeed, all locally constant functions f on any Poisson manifold give $v_f = 0$.

picture of phase space with two connected components

The problem is that this diagram:

 β is not 1-1; it sends all locally constant functions to 0, so we can have

$$\beta\gamma[x,y] = [\beta\gamma(x), \beta\gamma(y)]$$

even though

$$\gamma[x,y] \neq [\gamma(x),\gamma(y)]$$

This also means that different choices of γ can make this diagram commute.

Definition 2 If G is a Lie group acting on a Poisson manifold X:

 $A{:}\,G\times X\to X$

we say A is weakly Hamiltonian if there exists a linear map

$$\gamma: \mathfrak{g} \to C^{\infty}(X)$$

such that

$$\alpha = \beta \gamma$$

with γ not necessarily a Lie algebra homomorphism.

In our example we have:

$$\{\gamma(x), \gamma(y)\} = \gamma[x, y] + c(x, y)$$

where c(x, y) is a locally constant function, so $\{c(x, y), \cdot\} = 0$. In this situation we call c a "2-cocycle". We see this kind of problem in quantum mechanics too! It turns out that weakly Hamiltonian actions of the Galilei group G(n + 1) on the Poisson manifold $T^*\mathbb{R}^n$ are completely classified - there is one for each $m \in \mathbb{R}$. This m specifies the cocyle ... but physically it is the **mass**. So the concept of mass is inevitable ... even without gravity around.