Connections as Functors

John C. Baez, October 21, 2004

In this homework we'll see how a vector bundle E equipped with a connection over a manifold X gives a functor

$$
F: \mathcal{P}(X) \rightarrow \text { Vect }
$$

where $\mathcal{P}(X)$ is the category of paths in X, defined in the last homework. Recall that objects of $\mathcal{P}(X)$ are points of X, while morphisms are piecewise-smooth paths in X. The functor F maps each point $x \in X$ to the the fiber of E over the point x. Similarly, F maps each path $\gamma: x \rightarrow y$ in X to a linear operator

$$
F(\gamma): F(x) \rightarrow F(y)
$$

defined using parallel transport along the path γ.
To warm up, let's see how any linear ordinary differential equation gives a functor. I'll let you use this fact:

Theorem 1. Let $\operatorname{End}\left(\mathbb{R}^{n}\right)$ be the algebra of linear operators from \mathbb{R}^{n} to itself. Suppose $A:[a, b] \rightarrow$ $\operatorname{End}\left(\mathbb{R}^{n}\right)$ is any smooth function and $t_{0} \in[a, b]$. Given any vector $\psi_{0} \in V$, the differential equation

$$
\begin{equation*}
\frac{d \psi(t)}{d t}=A(t) \psi(t) \tag{1}
\end{equation*}
$$

has a unique smooth solution $\psi:[a, b] \rightarrow \mathbb{R}^{n}$ with $\psi\left(t_{0}\right)=\psi_{0}$.

Sketch of Proof. With the given initial conditions, Equation (1) is equivalent to the integral equation

$$
\psi(t)=\psi_{0}+\int_{t_{0}}^{t} A(s) \psi(s) d s
$$

A solution of this equation is none other than a fixed point of the map T sending the function ψ to the function $T \psi$ given by

$$
(T \psi)(t)=\psi_{0}+\int_{t_{0}}^{t} A(s) \psi(s) d s
$$

T maps the Banach space of continuous \mathbb{R}^{n}-valued functions on $[a, b]$ to itself. If $\int_{a}^{b}\|A(s)\| d s=M$ then

$$
\left\|T\left(\psi_{1}\right)-T\left(\psi_{2}\right)\right\| \leq M\left\|\psi_{1}-\psi_{2}\right\|
$$

We call a map with this property a contraction if $M<1$. An easy argument shows that any contraction on a Banach space has a unique fixed point, so our equation has a unique solution. If $c \nless 1$, we can chop the interval $[a, b]$ into smaller intervals for which this bound does hold, and prove the theorem one piece at a time.

1. Let $K[a, b]$ be the category whose objects are points of the interval $[a, b]$, with exactly one morphism from any object to any other. Given a function $A:[a, b] \rightarrow \operatorname{End}\left(\mathbb{R}^{n}\right)$ satisfying the conditions of Theorem 1, use the theorem to prove there is a unique functor

$$
F: K[a, b] \rightarrow \text { Vect }
$$

such that:

- F sends any object to \mathbb{R}^{n}.
- F sends any morphism $f: t_{0} \rightarrow t_{1}$ to the linear operator

$$
\psi_{0} \mapsto \psi\left(t_{1}\right)
$$

where $\psi:[a, b] \rightarrow \mathbb{R}^{n}$ is the unique solution of Equation (1) with $\psi\left(t_{0}\right)=\psi_{0}$.

More poetically, $K[a, b]$ is the category whose objects are moments of time between time a and time b. The morphisms in this category are passages of time. Applied to the passage of time from t_{0} to t_{1}, the functor F gives the time evolution operator mapping $\psi\left(t_{0}\right)$ to $\psi\left(t_{1}\right)$, where ψ is any solution of

$$
\frac{d \psi(t)}{d t}=A(t) \psi(t)
$$

Next, suppose X is a smooth manifold and A is a smooth $\operatorname{End}\left(\mathbb{R}^{n}\right)$-valued 1-form on X. For each point $x \in X$, such a thing gives a linear map

$$
A_{x}: T_{x} X \rightarrow \operatorname{End}\left(\mathbb{R}^{n}\right)
$$

and A_{x} varies smoothly as a function of x. If we take $n=1, A$ becomes an ordinary 1-form and the following result reduces to a problem in the last homework assignment:
2. Suppose A is a smooth $\operatorname{End}\left(\mathbb{R}^{n}\right)$-valued 1 -form on the manifold X. Show that there is a unique functor

$$
F: \mathcal{P}(X) \rightarrow \text { Vect }
$$

such that

- F sends any point of X to \mathbb{R}^{n}.
- F sends any piecewise-smooth path $\gamma:[0, T] \rightarrow X$ to the linear operator

$$
\psi_{0} \mapsto \psi(T)
$$

where $\psi:[0, T] \rightarrow \mathbb{R}^{n}$ is the unique solution of the equation

$$
\begin{equation*}
\frac{d \psi(t)}{d t}=A_{\gamma(t)}\left(\gamma^{\prime}(t)\right) \psi(t) \tag{2}
\end{equation*}
$$

with $\psi(0)=\psi_{0}$.

An $\operatorname{End}\left(\mathbb{R}^{n}\right)$-valued 1-form A is called a connection on the trivial vector bundle

$$
\pi: X \times \mathbb{R}^{n} \rightarrow X
$$

If $\psi(t)$ satisfies Equation (2), we say the vector $\psi(t)$ is parallel transported along the path γ using the connection A. The linear operator $F(\gamma)$ is called the holonomy of the connection A along the path γ.

All this stuff generalizes to the case of a connection on a nontrivial vector bundle

$$
\pi: E \rightarrow X
$$

except that now the functor F maps each point $x \in X$ to the fiber of E over x, namely $E_{x}=\pi^{-1}(x)$. To handle this case, we choose an open cover of X such that E restricted to each open set is trivializable, and reduce the problem to the case treated above. After huffing and puffing, we get:

Theorem 2. Suppose A is a smooth connection on a smooth vector bundle $\pi: E \rightarrow X$ over a smooth manifold X. Then there is a unique functor

$$
F: \mathcal{P}(X) \rightarrow \mathrm{Vect}
$$

such that:

- For any object x of $\mathcal{P}(X), F(x)$ is the fiber of E over x.
- For any morphism $\gamma: x \rightarrow y$ of $\mathcal{P}(X), F(\gamma)$ is the holonomy of A along γ.

The converse is not true: there are functors $F: \mathcal{P}(X) \rightarrow$ Vect that don't come from connections on vector bundles! However, we can characterize the functors that do by means of three conditions:

- $F\left(\gamma_{1}\right)=F\left(\gamma_{2}\right)$ when γ_{2} is obtained by reparametrizing γ_{1} :

$$
\gamma_{2}(t)=\gamma_{1}(f(t))
$$

for any monotone increasing function f.

- $F\left(\gamma_{2}\right)=F\left(\gamma_{1}\right)^{-1}$ when γ_{2} is a reversed version of γ_{1} :

$$
\gamma_{2}(t)=\gamma_{1}(f(t))
$$

for any monotone decreasing function f.

- $F(\gamma)$ depends smoothly on γ (in a certain precise sense).

For some hints on how to prove this, try:
J. Barrett, Holonomy and path structures in general relativity and Yang-Mills theory, Int. J. Theor. Phys., 30 (1991), 1171-1215.

If we drop the smoothness condition, we call F a generalized connection. These play an important role in loop quantum gravity.

