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Abstract. In 1914 Lebesgue defined a ‘universal covering’ to be a convex subset of the plane
that contains an isometric copy of any subset of diameter 1. His challenge of finding a universal

covering with the least possible area has been addressed by various mathematicians: Pál, Sprague

and Hansen have each created a smaller universal covering by removing regions from those known
before. However, Hansen’s last reduction was microsopic: he claimed to remove an area of

6 · 10−18, but we show that he actually removed an area of just 8 · 10−21. In the following, with
the help of Greg Egan, we find a new, smaller universal covering with area less than 0.8441153.

This reduces the area of the previous best universal covering by 2.2 · 10−5.

1. Introduction

A ‘universal covering’ is a convex subset of the plane that covers a translated, reflected and/or
rotated version of every subset of the plane with diameter 1. In 1914, Lebesgue [8] laid down the
challenge of finding the universal covering with least area, and since then various other mathe-
maticians have worked on it, slightly improving the results each time. The most notable of them
are J. Pál [10], R. Sprague [11], and H. C. Hansen [8]. More recently Brass and Sharifi [3] have
found a lower bound on the area of a universal covering, while Duff [4] showed that dropping the
requirement of convexity allows for an even smaller area.

The simplest universal covering is a regular hexagon in which one can inscribe a circle of diameter
1. All the improved universal coverings so far have been constructed by removing pieces of this
hexagon. Here we describe a new universal covering with less area than those known so far.

To state the problem precisely, recall that the diameter of a set of points A in a metric space is
defined by

diam(A) = sup{d(x, y) : x, y ∈ A}.
We define a universal covering to be a convex set of points U in the Euclidean plane R2 such
that any set A ⊆ R2 of diameter 1 is isometric to a subset of U . If we write ∼= to mean ‘isometric
to’, we can define the collection of universal coverings to be

U = {U : for all A such that diam(A) = 1 there exists B ⊆ U such that B ∼= A}.
The quest for smaller and smaller universal coverings is in part the search for this number:

a = inf{area(U) : U ∈ U}.
In 1920, Pál [10] made significant progress on Lebesgue’s problem. The regular hexagon in which

a circle of diameter 1 can be inscribed has sides of length 1/
√

3. Pál showed that this hexagon gives
a universal covering, and thus

a ≤
√

3

2
= 0.86602540 . . . .
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Pál then took this regular hexagon and fit the largest possible regular dodecagon inside it, as shown
in Figure 1. He then proved that two of the resulting corners could be removed to give a smaller
universal covering. This implies that

a ≤ 2− 2√
3

= 0.84529946 . . . .

(Here and in all that follows, when we speak of ‘removing’ a closed set Y ⊆ R2 from another closed
set X ⊆ R2, we mean to take the set-theoretic difference X − Y and then form its closure. The
universal covers we discuss are all closed.)

In 1936, Sprague went on to prove that more area could be removed from another corner of the
original hexagon. This proved

a ≤ 0.844137708436.

In 1992, Hansen [8] took these reductions even further by removing more area from two different
corners of Pál’s universal covering. He claimed that the areas that could be removed were 4 · 10−11

and 6·10−18, but we have found that his second calculation was mistaken. The actual areas removed
were 3.7507 · 10−11 and 8.4541 · 10−21, showing

a ≤ 0.844137708398.

We have created a Java applet illustrating Hansen’s universal covering [7]. This allows the user to
zoom in and see the tiny, extremely narrow regions removed by Hansen.

Our new improved universal covering gives

a ≤ 0.8441153.

This is about 2.2 ·10−5 less than the previous best upper bound, due to Hansen. On the other hand,
Brass and Sharifi [3] have given the best known lower bound on the area of a universal covering.
They did so by using various shapes such as a circle, a pentagon, and a triangle of diameter 1 in a
certain alignment. They concluded that

a ≥ 0.832.

Thus, at present we know that
0.832 ≤ a ≤ 0.8441153.

In their book Old and New Unsolved Problems in Plane Geometry and Number Theory, Klee
and Wagon [9] wrote:

. . . it does seem safe to guess that progress on [this problem], which has been
painfully slow in the past, may be even more painfully slow in the future.

However, our reduction of Hansen’s universal covering is about a million times greater than Hansen’s
reduction of Sprague’s. The use of computers played an important role. Given the gap between
the area of our universal covering and Brass and Sharifi’s lower bound, we can hope for even faster
progress in the decades to come!
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2. Hansen’s calculation

Let us recall Hansen’s universal covering [8] and correct his calculation of its area.

1. Figure similar to the one used by Hansen

Figure 1 shows a regular hexagon A1B1C1D1E1F1 in which can be inscribed a circle of diameter
1. Inside this is a regular dodecagon, A3A2B3B2C3C2D3D2E3E2F3F2. Pál showed that one can
take the hexagon, remove the triangles C1C2C3 and E1E2E3, and still obtain a universal covering.
We generalize his proof in Reduction 1 of Section 3.

Later, Sprague [11] constructed a smaller universal covering. To do this he showed that near
A1 the region outside the circle of radius 1 centered at E3 could be removed, as well as the region
outside the circle of radius 1 centered at C2. We generalize this argument in Reduction 2.

Building on Sprague’s work, Hansen constructed a still smaller universal covering. First he
removed a tiny region XE2T , almost invisible in this diagram. Then he removed a much smaller
region T ′C3V . Each of these regions is a thin sliver bounded by two line segments and an arc, as
shown in our Java applet [7].

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.167.6499&rep=rep1&type=pdf
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To compute the areas of these regions, Hansen needed to determine certain distances x0, . . . , x4.
The points and arcs he used, and these distances, are defined as follows:

• The distance from W , the midpoint of A2A3, to the dodecagon corner A3 is x0.
• The circle of radius 1 centered at W is tangent to D2D3 at S and hits the dodecagon at
P . The distance from S to the dodecagon corner D2 can be seen to equal x0. The distance
from D2 to P is x1.

• The circle of radius 1 centered at P is tangent to B3A2 at R and hits the dodecagon at Q.
The distance from R to the dodecagon corner B3 can be seen to equal x1. The distance
from B3 to Q is x2.

• The circle of radius 1 centered at Q is tangent to E2E3 at X and hits the dodecagon at T .
The distance from X to the dodecagon corner E2 can be seen to equal x2. The distance
from E2 to T is x3.

• The circle of radius 1 centered at T is tangent to C3B2 at T ′ and hits the dodecagon at V .
The distance from T ′ to the dodecagon corner C3 can be seen to equal x3. The distance
from C3 to V is x4.

Here are the two regions Hansen removed:

• Hansen’s first region XE2T is bounded by the line segment XE2, the much shorter line
segment E2T , and the arc XT that is part of the circle of radius 1 centered at Q. He
claimed this first region has an area 4 · 10−11. This calculation is approximately right.

• Hansen’s second region T ′C3V is bounded by the line segment T ′C3, the much shorter line
segment C3V , and the arc T ′V that is part of the circle of radius 1 centered at T . He
claimed this second region had an area of 6 · 10−18. This calculation is far from correct.

In order to find the correct areas, we first calculate x0 and then recursively calculate the other
distances xi.

Let S be the midpoint of D2D3. Recall that x0 is the distance from S to D2, while x1 is the
distance from D2 to P . We compute these distances using some elementary geometry. To do this
we must keep in mind some basic facts. The length of each side of the hexagon is 1√

3
. The circle

inscribed in the hexagon has radius 1
2 . The arc from S to P has a radius of 1 and is tangent to

SD2 at S.
To compute the distance x0 we first need to determine the distance SD1. Let H be the center of

the circle, as in Figure 1. The distance SD1 is the distance HD1 minus the distance HS, that is,
1√
3
− 1

2 . Since D2SD1 is a 30–60–90 triangle, the length x0 = D2S is found
√

3 times SD1. Thus,

x0 = 1−
√

3

2
.

Knowing x0 we can then calculate x1. More generally, knowing xi we can calculate xi+1. The
diagram in Figure 2 can be used to solve for xi+1, and further to calculate the area of the region
IJK bounded by the line IJ , the line IK, and the arc through I and K that is part of a circle of
radius 1 centered at A. The two regions Hansen removed, namely XE2T and T ′C3V , are examples
of this type of region IJK.
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2. Diagram used to solve for xi and xi+1

In Figure 2 we let AI and AK be line segments of length 1. We let AI be perpendicular to JI
and KB and parallel to CJ . Let xi be the distance from J to I and xi+1 be the distance from K
to J ; BI = CJ . KI is an arc of a circle centered at A with radius 1. We set ∠IJK = 150◦, the
interior angle of a regular dodecagon.

Note that ∠IJC = 90◦ and ∠CJK = 60◦. The triangle CJK is a right triangle with ∠CKJ =
30◦. We thus obtain

BI = CJ =
xi+1

2
, CK =

√
3xi+1

2
, BC = xi.

Then by applying the Pythagorean theorem to the triangle ABK, we see

1 = (AK)2 = (BK)2 + (AB)2 = (CK +BC)
2

+ (1−BI)
2

=

(√
3xi+1

2
+ xi

)2
+
(

1− xi+1

2

)2
.

This gives a quadratic relationship between xi and xi+1 which can be solved for xi+1:

xi+1 =
1−
√

3xi −
√

1− 2
√

3xi − x2i
2

.
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To avoid rounding errors we multiply the numerator and denominator by 1−
√

3xi+
√

1− 2
√

3xi − x2i .

This leaves us with

xi+1 =
2x2i

1−
√

3xi +
√

1− 2
√

3xi − x2i
.

Let ai be the area of the region IJK bounded by the line segments IJ , JK and the arc centered
at A going through I and K. To compute ai, we first calculate the area of the triangle IJK and
then subtract the area of the region between the line segment IK and the arc through I and K.
The area of the triangle IJK is

IJ · CJ
2

=
xixi+1

4
.

The area of the other region is

R2

2
(θ − sin θ),

where θ is the angle ∠BAK and R is the radius of the circle, namely AK, which is 1. We determine
θ using the formula θ = 2 sin−1(d/2R), where d is the length of the chord IK. We thus obtain

ai =
xixi+1

4
− (θ − sin θ)

2

where θ = 2 sin−1(d
2 ) and

d =

√√√√xi+1
2

4
+

(
xi +

√
3

2
xi+1

)2
.

Table 1 shows the lengths xi and areas ai. We see that the area of the first region Hansen removed,
namely XE2T , is a2 ≈ 3.7507 · 10−11. This is close to Hansen’s claim of a2 = 4 · 10−11. However,
we see that the area of the second region Hansen removed, namely T ′C3V , is a3 ≈ 8.4541 · 10−21.
This is significantly smaller than Hansen’s claim of a3 = 6 · 10−18.

i xi ai

0 1.339745962156 · 10−1 4.952913815765 · 10−4

1 2.413116066646 · 10−2 2.418850424555 · 10−6

2 6.080990483915 · 10−4 3.750723412843 · 10−11

3 3.701744790810 · 10−7 8.454119457933 · 10−21

4 1.370292328207 · 10−13 4.288332272809 · 10−40

Table 1: Lengths xi and areas ai in Hansen’s construction
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3. An improved universal covering

Theorem 1. There exists a universal covering with area less than or equal to 0.8441153.

Proof. We begin with the regular hexagon in Figure 1. We shall modify this universal covering in
the following ways:

Reduction 1.

3. Reduction with slant angle σ

Start with a regular hexagon H with a circle of diameter 1 inscribed inside of it. Pál proved that
this is a universal covering [10]. Let H′ be a regular hexagon of the same size centered at the same
point, rotated counterclockwise by an angle of 30 + σ degrees.

When σ = 0, the case considered by Pál, the intersection H ∩H′ is the largest possible regular
dodecagon contained in the original hexagon H. As shown in Figure 1, this dodecagon has corners
A3A2B3B2C3C2D3D2E3E2F3F2. Pál proved that if we remove the triangles C1C2C3 and E1E2E3

from the hexagon H, the remaining set is still a universal covering.
We generalize this to the case where σ is some other small angle—say, less than 10◦. Later we

shall determine that the optimal value of σ for our purposes is about 1.29◦. Note that H with H′
removed is the union of six triangles A,B,C,D,E, F shown in Figure 3. Let K be H with C and
E removed. We claim that K is a universal covering.

To prove this, we generalize an argument due to to Pál [10]. Imagine two parallel lines each
tangent to the circle, containing two opposite edges of the rotated hexagon H′. Any pair of points
inside H and on opposite sides of H′ have a distance of at least 1 from each other, since the diameter
of the circle is 1. Consider the six triangles A,B,C,D,E, F . An isometric copy of any set of diameter
1 can be fit inside H. Since the distance between any two triangles that are opposite each other is
1, this set cannot simultaneously have points in the interior of two opposite triangles. Thus, this set
can only have a nonempty intersection with three adjacent triangles or three nonadjacent triangles.
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In the first case we can rotate the set so that the only triangles it intersects are F , A and B. In
the second case we can rotate it so that the only triangles it intersects are F , B and D. In either
case, it fails to intersect the triangles E and C. Thus, the set K consisting of the hexagon H with
these two triangles removed is a universal covering.

Reduction 2. Recall that a curve of constant width is a convex subset of the plane whose width,
defined as the perpendicular distance between two distinct parallel lines each having at least one
point in common with the sets boundary but none with the set’s interior, is independent of the
direction of these lines. Vrećica [12] has shown that any subset of the plane with diameter 1 can be
extended to a curve of constant width 1. Thus, a set will be a universal covering if it contains an
isometric copy of every curve of constant width 1.

Consider any curve of constant width 1 inside K. It must touch each of the hexagon’s sides at a
unique point. To see this, note that if it does not touch one of the sides, it would have width less
than 1. On the other hand, if it touched a side at two points, then it would have width greater
than 1.

The curve must touch the side of H running from D to C at some point to the left of O, the
corner of the removed triangle C. This implies that all points near A outside an arc of radius 1
centered on O can be removed from the closure of K, obtaining a smaller universal covering.

Similarly, the curve must touch the side of the hexagon running from E to D somewhere to the
right of N , the corner of the removed triangle E. Thus, all points near A outside an arc of radius
1 centered on N can also be removed. The remaining universal covering then has a vertex at the
point X where these two arcs meet; for a closeup see Figure 4.

This reduces the area of the univeral covering, but not enough to make it smaller for any nonzero
value of σ than Sprague’s universal covering, which is the case σ = 0. So, we must go further.

4. Reduction closeup

Reduction 3. For the final reduction we refer to Figures 4 and 5. Figure 4 shows a region WXY
bounded by two arcs WX and XY and a straight line segment WY defined as follows:

• The arc through W and X is the arc of radius 1 centered at O, which is a point where the
rotated hexagon H′ intersects the original hexagon H.

• X is the point of intersection of the arc of radius 1 centered at O and the arc of radius
1 centered on N , which is another point where the rotated hexagon intersects the original
hexagon.
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• W is the intersection of the arc centered at O with the arc of radius 1 centered on M , the
midpoint of the edge E1D1 of the original hexagon.

• Y is the intersection of the arc with radius 1 centered at N and the arc with radius 1
centered at L, which is another point where the rotated hexagon intersects the original
hexagon.

We claim that the univeral covering considered in Reduction 2 can be further reduced by removing
the region WXY for a specific angle σ that we will specify. (In fact, we could remove the whole of
region WXY Z outside the arcs WZ and ZY and still be left with a set that contains an isometric
copy of every curve of constant width 1. However, this set would not be convex, since it contains W
and Y but not points on the line segment between W and Y . Since a universal covering is required
to be convex, we only remove the smaller region WXY , one of whose sides is the straight segment
WY .)

To prove our claim, consider Figure 5. This shows an axis of symmetry of the hexagon H going
through a point M , the midpoint of the side D1E1. When the triangles A,B,C,D,E, F are reflected
about this axis they are mapped to new triangles A′, B′, C ′, D′, E′, F ′, some of which are shown in
gray in this figure.

5. Reduction with symmetry

To prove our claim, it suffices to show that any curve of constant width 1 can be positioned
inside the hexagon with the corners removed at E and C in such a way that no point enters the
region WXY . To show this, we separately consider three cases. Case (1) is where the curve of
constant width 1 enters the interior of triangle E′. Case (2) is where the curve does not enter the
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interior of E′ but it does enter the interior of region C ′. Case (3) is where the curve does not enter
the interior of E′ or C ′.

Case (1): If a curve of constant width 1 enters the interior of E′ then it cannot enter the
interior of B′ since all points inside B′ are at a distance greater than 1 from points inside E′. It is
therefore sufficient to show that all points in the region WXY are inside B′. This can be checked
by calculation for the specific slant angle σ to be used.

Case (2): If a curve Q of constant width 1 enters the interior of C ′ then it cannot enter the
interior of the region F ′. It must therefore touch the side D1C1 between D1 and L. It follows that
no point inside Q can lie outside the arc of radius 1 centered at L within the triangle A.

Therefore, no point of Q will lie inside the region WXY provided the interior of this region lies
outside the arc of radius 1 centered at L. This condition holds if no points on the segment WY
lie inside the arc of radius 1 centered at L. This in turn follows from ∠WY L being greater than a
right angle. We shall check this by a calculation for the specific angle σ we use.

Case (3): If a curve Q of constant width 1 does not enter the interior of E′ or C ′ then it can
be reflected about the axis through M and the center of the hexagon, giving a curve Q′ also of
constant width 1. This reflection maps C ′ to C and E′ to E, so Q′ will lie inside the hexagon with
the two corners C and E removed. Recall from Reduction 1 that Q has no points in C or E. Thus
Q′ has no points in C ′ or E′.

Each of the curves Q and Q′ touch the side of the hexagon between N and N ′ at a single point.
If Q touches this side between N and M then Q′ will touch this side between M and N ′, and vice
versa. Since reflections are an allowed isometry, we are free to use the curve in either position Q or
Q′, so we choose to use whichever of the two touches the side between M and N ′. No point inside
the curve will then lie both outside the arc of radius 1 centered at M and to the left of the line of
reflection.

Therefore, no point of the chosen curve will lie inside the region WXY provided that no point
in the interior of this region lies inside the arc of radius 1 centered at M . This condition holds if
no points on the segment WY lie inside the arc of radius 1 centered at M . This is turn follows
from ∠MWY being greater than a right angle. We shall check this by a calculation for the specific
angle σ we use.

Our computation of the area of the resulting universal covering using Java is available online
[1], along with the output [2]. The output lists various choices of σ, followed by the corresponding
values of the area of the would-be universal covering, together with the angles ∠WY L and ∠MWY .
We find that when σ = 1.3◦, the area of the universal covering is

0.8441153768593765

within the accuracy provided by double-precision floating-point arithmetic. For this value of σ,
∠WY L is approximately 90.00593◦ and ∠MWY is approximately 122.9277◦. We could obtain a
smaller area if σ were smaller, but if were too small the constraint that ∠WY L exceed a right angle
would be violated.

Greg Egan has checked our calculations using Mathematica with high-precision arithmetic (2000
digits working precision). He found that an angle

σ = 1.294389444703601012◦

still obeys the necessary constraints, giving a universal covering with area

0.844115297128419059 . . . .
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Egan has kindly made his Mathematica notebook available online [5], along with a printout that is
readable without this software [6].

With Egan’s help, we thus claim to have proved that

a ≤ 0.8441153. �

Acknowledgements. We thank Greg Egan for catching some mistakes in this paper, and espe-
cially for verifying and improving our result. We also thank both referees for spotting and helping
us fix various errors.
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[11] R. Sprague, Über ein elementares Variationsproblem, Matematiska Tidsskrift Ser. B (1936), 96–99.
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