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Abstract

We present a formalism for describing categories equipped with
extra structure that involves covariant and contravariant functors re-
lated by dinatural transformations. A typical example is the concept
of ‘cartesian closed category’, or more generally ‘monoidal closed cat-
egory’.

While at first this viewpoint may seem overly abstract, it can be very
useful to treat a strict monoidal category as a monoid in the category Cat
of categories and functors. The idea here is that a strict monoidal cate-
gory (M ,⊗, 1) is the same thing as an object M ∈ Cat equipped with
morphisms

M ×M
⊗−→ M 1

e−→ M (1)
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that make these diagrams commute:

M ×M ×M
⊗×M //

M×⊗

��

M ×M

⊗

��
M ×M ⊗

// M

M M×e

��

e×M

��
id

��

M ×M

⊗ 00

M ×M

⊗nnM

(2)
The first diagram expresses associativity; the second expresses the left and
right unit laws. This formulation lets us treat strict monoidal categories as
models of a particular algebraic theory (in this case, the theory of monoids)
presented by generators and relations.

The equational nature of the formulation comes out clearly when the
notion of monoid is expressed in the graphical language of string diagrams:
the generators (1) are depicted in this case as a binary node ⊗ and as a
nullary node e, with the commutative diagrams (2) formulated as follows:

m

m

=
m

m

e

m = =

e

m

This model-theoretic point of view on monoidal categories is conceptually
neat, and technically useful. Among other benefits, it leads to the definition
of a monoidal functor between monoidal categories as a morphism

f : M −→ N

making the diagrams

M ×M

⊗
��

f×f // N ×N

⊗
��

M
f // N

1

e

��

id // 1

e

��
M

f // N

commute in the category Cat. It also follows that there exists a universal con-
struction giving for any category A the free monoidal category TA generated
by A, defined as the colimit

TA = 1 + A + A2 + A3 + . . .

2



This free construction defines a monad T on the category Cat. As expected,
the category of strict monoidal categories and strict monoidal functors coin-
cides with the category of algebras for this monad T . Even better, T extends
to a 2-monad on the 2-category CAT of categories, functors and natural
transformations. This allows us to recover the 2-category of strict monoidal
categories, strict monoidal functors and monoidal natural transformations.

Algebraic theories may be relaxed or ‘weakened’ in several ways. A nice
illustration is provided by the notion of weak monoidal category, where the
equations (2) are replaced by natural isomorphisms:

M ×M ×M
⊗×M //

M×⊗

��

M ×M

⊗

��

⇓ a

M ×M ⊗
// M

Me×M

��

M×e

��
id

��

M ×M

⊗ //

⇒ ⇐ M ×M

⊗ooM

satisfying coherence laws including Mac Lane’s pentagon identity:

(w ⊗ (x⊗ y))⊗ z

((w ⊗ x)⊗ y)⊗ z

(w ⊗ x)⊗ (y ⊗ z)

w ⊗ (x⊗ (y ⊗ z))w ⊗ ((x⊗ y)⊗ z)

aw,x,y⊗id

zzuuuuuuuuuuuuuuuuuuuuu

aw,x⊗y,z

��)
))

))
))

))
))

))
))

))
))

))
)

id⊗ax,y,z

//

aw,x,y⊗z



��
��
��
��
��
��
��
��
��
��
��

aw⊗x,y,z

$$IIIIIIIIIIIIIIIIIIIII

A weak monoidal category may be seen as a model of a 2-dimensional
algebraic theory — in this case, the 2-theory of weak monoids — in the
2-category CAT. Alternatively, it may be seen as a weak algebra, or ‘pseu-
doalgebra’, of the 2-monad T [3]. This 2-dimensional extension of algebraic
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theories is particularly useful when one tries to characterize algebraic struc-
tures up to deformation. For example, the coherence theorem for monoidal
categories states that a category equivalent to a strict monoidal category is
the same thing as a weak monoidal category.

In this article, we would like to develop a similar algebraic point of view
on monoidal closed categories. By definition, a monoidal category is closed
(on the left) when, for every object a of the category, the functor

a⊗−: M −→ M

has a right adjoint
a ( −: M −→ M . (3)

This adjunction is defined for every object a by a bijection

θa,b,c: M (a⊗ b, c) −→ M (b, a ( c) (4)

natural in b and c. Since the definition of a monoidal closed category is based
on a family of adjunctions, a first step towards an equational reformulation
is to remember that the notion of adjunction may be presented by genera-
tors and relations in any 2-category [5]. More specifically, the generators of
the adjunction a ⊗ − a a ( − associated to an object a are the natural
transformations called evaluation:

evala: a⊗ (a ( x) −→ x (5)

and coevaluation:

coevala: x −→ a ( (a⊗ x) (6)

while the relations (called triangular laws) satisfied by an adjunction require
that the natural transformations obtained by composition

a ( − coevala // a ( (a⊗ (a ( −))
a ( evala // a ( − (7)

a⊗− a ⊗ coevala // a⊗ (a ( (a⊗−))
evala // a⊗− (8)

are equal to the identity for every object a of the category M .
Let us summarize: a monoidal category M is closed precisely when there

exists a functor (3) and two natural transformations (5) and (6) such that
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the composite natural transformations (7) and (8) are equal to the identity
for every object a. This provides a family of generators and relations formu-
lated in the language of categories, functors and natural transformations —
apparently just like the weak notion of monoidal category!

There is a big difference, however: this formulation requires that we
parametrize the generators and relations by an object a of the category M .
This should not be considered satisfactory. In fact, just as the parameter x
in (5) and (6) has been eliminated using the hypothesis that evala and coevala
define natural transformations, one should make the parameter a disappear
by treating eval and coeval as transformations of some kind. But as we will
see, this step involves shifting from natural to extranatural transformations.

A good starting point in this direction is provided by the following well-
known fact: parameter-theorem Suppose that

L: A ×B −→ C

is a functor, and suppose that for every object a ∈ A , the functor L(a,−)
has a right adjoint Ra, thus defining a family of bijections

θa,b,c: B(La(b), c) −→ A (b, Ra(c))

natural in b and c. Then there exists a unique functor

R: A op ×B −→ C

such that R(a,−) = Ra for every object a ∈ A , and such that the bijec-
tion θa,b,c is natural in a, b and c. proposition The parameter theorem lets
us see the family of functors (a ( −)a∈M , parametrized by the object a, as
a single functor

(: M op ×M −→ M (9)

making the bijection (4) natural in a, b and c.
Having seen how ( becomes a functor, we can now study the sense in

which the evaluation evala and coevaluation coevala are natural in a. Note
that for any morphism f : a → b, the following diamonds commute:

a⊗ (a ( x)
evala,x

((RRRRRRRRR

a⊗ (b ( x)

a⊗(f(x) 55kkkkkkk

f⊗(b(x) ))SSSSSSS
x

b⊗ (b ( x)
evalb,x

66lllllllll

a ( (a⊗ x)
a((f⊗x)

))SSSSSSS

x

coevala,x
66lllllllll

coevalb,x ((RRRRRRRRR a ( (b⊗ x)

b ( (b⊗ x)
f((b⊗x)

55kkkkkkk
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This follows from the equations

evala,x = θ−1
a,a(x,x(1a(x) coevala,x = θa,x,a⊗x(1a⊗x).

together with the naturality of θ as defined in (4).
Next, recall that a dinatural transformation between two functors

F, G: A op ×A −→ C

is defined a family of morphisms

κa: F (a, a) −→ G(a, a)

indexed by objects a of the category A , such that hexagons of the form

F (a, a)
κa // G(a, a)

G(a,f)

%%KKKKKKKK

F (b, a)

F (f,a)
99ssssssss

F (b,f) %%KKKKKKKK
G(a, b)

F (b, b)
κb // G(b, b)

G(f,b)

99ssssssss

commute for every morphism f : a → b of the category A . When the func-
tor F is constant, and thus reduces to a functor F : 1 → C , or in other words
just an object of C , the dinaturality hexagon reduces to a diamond:

G(a, a)
G(a,f)

%%LLLLLLL

F

κa

99sssssssss

κb %%KKKKKKKKK G(a, b)

G(b, b)
G(f,b)

99rrrrrrr

(10)

The dinaturality hexagon also reduces to a diamond when the functor G is
constant:

F (a, a)
κa

%%KKKKKKKKK

F (b, a)

F (f,a)
99rrrrrrr

F (b,f) %%LLLLLLL G

F (b, b)

κb

99sssssssss

(11)
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In both cases, the dinatural transformation κ is called an extranatural
transformation from F to G. So, the diagrams above indicate that the trans-
formations evala and coevala are extranatural in the parameter a.

In short, we can define a monoidal closed category to be a monoidal
category equipped with a functor (3) and two transformations (5) and (6)
natural in x and extranatural in a, such that the composites (7) and (8)
are equal to the identity. To formalize this definition in terms of some sort
of ‘bivariant algebraic theory’, we need a framework in which extranatural
transformations can be defined and composed.

Here it is useful to introduce profunctors, also known as distributors [1].
Given categories A and B, a profunctor F : A 9 B is defined to be
a functor from A ×Bop to Set. We may also think of it as a cocontinuous
functor F̂ : Â → B̂, where Â denotes the category of presheaves on A , and
similarly for B̂. The latter description makes it easy to compose profunctors
in a strictly associative way, obtaining a 2-category PROF where:

• the objects are categories,

• the morphisms are profunctors,

• the 2-morphisms are natural transformations between profunctors.

This description also lets us treat a functor as a special sort of profunctor:
namely, one that sends representable presheaves to representable presheaves.
As a consequence, we can compose a functor and a profunctor and obtain a
profunctor.

Given functors F : A ×A op → B and G: 1 → B, an extranatural trans-
formation from F to G is the same as a natural transformation

A ×A op F // C

κ
�#

??????

1
G

//

_iA

OO

C

_id

OO

Here we are using iA to denote the functor

homA : A op ×A → Set
(a, b) 7→ A (a, b)
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regarded as a profunctor from 1 to A ×A op. Note that in the above square,
we are using our ability to compose functors with profunctors. Most impor-
tantly, the naturality of κ here is equivalent to the fact that the extranatu-
rality diamond (10) commutes!

Similarly, given functors F : 1 → C and G: A ×A op → C , an extranatural
transformation from F to G is the same as a natural transformation

1
F // C

κ
�#

??????

A op ×A
G

//

_eA

OO

C

_id

OO

Here eA denotes the functor homA regarded as a profunctor from A op×A to
1. Now the naturality of κ is equivalent to the fact that the extranaturality
diamond (11) commutes.

In short, extranatural transformations can be seen as certain squares in
the double category PROCAT where:

• the objects are categories,

• the horizontal morphisms are functors,

• the vertical morphisms are distributors,

• the squares are natural transformations.

This suggests that we use the formalism of double categories to describe
bivariant algebraic theories.

On a technical note: one may wonder if the above structure is a true
double category or merely a ‘pseudo double category’, in which the vertical
morphisms compose in a weakly associative manner. The answer depends on
how we treat profunctors. If we treat them as cocontinuous functors from Â
to B̂, they compose in a strictly associative way, and we obtain an honest
double category. So, this is the approach we shall take. It is worth noting
here that every pseudo double category is equivalent to a double category
[2].

In our treatment of extranatural transformations, we are implicitly using
some special features of the double category PROCAT. First, it is an example
of a ‘proarrow equipment’. This concept was first developed by Wood [6] as
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part of ‘formal category theory’: that is, the project of generalizing tools
from CAT to more general 2-categories. Profunctors are part of a network of
concepts including the Yoneda embedding, Kan extensions, end, and coends.
All these concepts may be generalized from CAT to other 2-categories using
Wood’s formalism. Wood defined a proarrow equipment to be a functor
i: X −→ Y between 2-categories which is bijective on objects, locally fully
faithful, and such that the image of each arrow of X has a right adjoint in
Y. The example to keep in mind is where X = CAT, Y = PROF, and
i: X −→ Y is the already discussed method of treating a functor as a special
sort of profunctor.

However, as emphasized by Shulman [4], a proarrow equipment may be
profitably regarded as double category with a special property. In this ap-
proach, a proarrow equipment is a double category such that each diagram
of this form:

C
G // D

A
F

// B

_H

OO

extends to a square

C
G // D

α
�#

??????

A
F

//

_A

OO

B

_H

OO

with the following universal property: any square of the form

C ′ GG′
// D

κ
�#

??????

A ′
FF ′

//

_K

OO

B

_H

OO

factors uniquely as
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C ′ G′
// C

G // D

β
�#

?????? α
�#

??????

A ′
F ′

//

_K

OO

A
F

//

_A

OO

B

_H

OO

We call a square with this universal property a universal filler of the original
diagram

C
G // D

A
F

// B

_H

OO

and we call A: A 9 C the universal proarrow. As Shulman notes, this
definition of equipment is equivalent to Wood’s original definition. (Check!!!)
In the case of PROCAT, the universal proarrow A is defined as follows:

A(a, c) = K(Fa,Gc).

In addition to being an equipment, PROCAT also has a symmetric monoidal
structure, coming from the cartesian product in CAT and the tensor prod-
uct in PROF... defined how??? We may quickly summarize this as follows.
A double category is a category internal to Cat. Similarly, we may de-
fine a symmetric monoidal double category to be a category internal
to SymmMonCat. Here SymmMonCat is the category of (weak) symmet-
ric monoidal categories and (weak) symmetric monoidal functors. One can
check that PROCAT is a symmetric monoidal double category. (Do it!!!)

Even better, PROCAT is a symmetric monoidal equipment, meaning that
the tensor product of universal fillers of diagrams

C
G // D

A
F

// B

_H

OO
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and

C ′ G′
// D ′

A ′
F ′

// B′

_H′

OO

is a universal filler for

C ⊗ C ′ G×G′
// D ⊗D ′

A ⊗A ′
F×F ′

// B

_H⊗H′

OO

From Naturality to Extranaturality (old stuff)

In order to understand how naturality produces extranaturality, it is useful
to start from the observation that both kinds of transformation may be ex-
pressed by end formulas. The set of natural transformations between two
functors F, G: A −→ B is equal to the end∫

a∈A

B(Fa,Ga)

computed in the category of sets and functions. In particular, the set of
natural transformations from the functor (: M op × M → M to itself is
equal to the end ∫

a∈M op, x∈M

M (a ( x, a ( x). (12)

Applying the natural bijection θa,a(x,x componentwise induces a bijection
between (12) and the end∫

a∈M op,x∈M

M (a⊗ (a ( x), x). (13)

This end describes the set of transformations natural in x and extranatural
in a = b from the functor

1⊗ (2 ( 3): M ×M op ×M −→ M
(a, b, x) 7→ a⊗ (b ( x)
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to the identity functor on the category M . (SORT OF AWKWARD!!! Do
you say ‘extranatural in a = b’ here, or what???) The extranatural transfor-
mation eval is an element of (13), the image of the element of (12) associated
to the identity natural transformation. Similarly, one shows that coeval is
an element of the end∫

a∈M , x∈M

M (x, a ( (a⊗ x)).

In order to formulate an algebraic theory of monoidal closed categories, it
seems necessary to consider there dinatural transformations.

To that purpose, it is tempting to start from the strong relationship
observed between natural and dinatural transformations when they are for-
mulated as ends, and to investigate how the 2-category CAT of categories,
functors and natural transformations may be extended to incorporate a suf-
ficiently large class of dinatural transformations: namely, the extranatural
ones. To that purpose, it appears useful to start from the observation that
the end of a functor

ϕ: A op ×A −→ Set

may be computed as a right Kan extension in the bicategory of categories,
distributors and natural transformations. More specifically, the end is the
right Kan extension

A op ×A
ϕ //

εA

��

1

⇑

1
R

a∈A ϕ(a,a)

JJ

of the distributor ϕ along the distributor eA , which is the functor

homA : A op ×A → Set
(a, b) 7→ A (a, b)

regarded as a profunctor from A op ×A to 1.
From this follows that an element of the end∫

a∈A

ϕ(a, a)
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is the same thing as a natural transformation

A op ×A
ϕ //

homA

��

1

id

��

⇒

1
id

// 1

Eval and Coeval (old stuff)

The above constructions may be applied to eval

M ×M op ×M
1⊗(2(3) // M

⇓ eval

M
id //

hom×id

OO

M

id

OO

and to coeval:

M
id // M

⇓ coeval

M op ×M ×M
1((2⊗3) //

hom×id

OO

M

id

OO
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