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The problem of dynamics in quantum gravity is still a big chal-
lenge. We don’t know how to make spacetime a truly dynamical

entity with local degrees of freedom while taking quantum theory
into account:

• String theory has discovered a vast ‘landscape’ of vacua. Each
describes a background geometry in which strings can prop-

agate. Perturbative quantization about these vacua seems to
be well-behaved — thanks in large part to supersymmetry.

Some vacua are related by dualities, and one can study con-
tinuous adiabatic motions through the space of vacua (e.g.

‘flop and conifold transitions’). But nobody knows how any
of these vacua can describe our universe unless the big bang is
‘just a phase’ that our universe will outgrow when it tunnels

from its current metastable state to a true vacuum. Super-
symmetry breaking is also poorly understood.

• Loop quantum gravity has found a background-free kinemat-
ics with interesting properties, but no choice of dynamics has
been shown to reduce to general relativity in a suitable limit.

This is true both in the old canonical approach and the new
‘spin foam’ approach. In the canonical approach, extra sym-

metry assumptions can reduce the problem to one with finitely
many degrees of freedom: ‘loop quantum cosmology’. Then a

variety of choices of dynamics give reasonable results.

• Causal dynamical triangulations uses a preferred time-slicing
and gives a formula for the ‘one-time-step’ transition ampli-

tude between two triangulations of space. This dynamics
seems to have a well-behaved spacetime as its ground state

(vacuum). However, the preferred time-slicing means that ex-
tra work is required to show the theory reduces to Einstein’s
equations in the large-scale limit — rather than some theory

in which t plays a distinguished role.
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As far as I can tell, nobody has yet found:

A background-free quantum theory with
local degrees of freedom propagating causally.

So, to make progress we don’t need a ‘theory of everything’ — nor

even a theory that reduces to general relativity in the large-scale
limit! We just need theories that are:

• Background-free: not relying on fixed geometrical struc-
tures, e.g. fields that appear in the Lagrangian but are not

variable, such as a fixed ‘background metric’. (So: not per-
turbative quantum gravity, string theory in any background,

dynamical triangulations with a preferred time-slicing.)

• Quantum: subject to the uncertainty principle. (So: not

classical general relativity.)

and have

• Local degrees of freedom propagating causally: some

nontrivial sense of ‘region’ and ‘causal shadow’ such that ob-
servables living in a region R can be computed from observ-
ables living in the region S if R is in the causal shadow of S.

(So: not TQFTs, 3d quantum gravity).

Warning: these could be just emergent properties.
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Loop Quantum Gravity

To reach dynamics in loop quantum gravity involves a long road
full of choices. Ideally, we should:

1. Choose a description of kinematical states and observables.

2. Choose formulas for diffeomorphism and Hamiltonian
constraints.

3. Solve the constraints to find ‘physical states’.

4. Find ‘physical observables’.

5. Find ‘semiclassical states’ — physical states for which physical
observables have values close to the values of known classical

observables in known classical states.

6. Calculate physical observables on semiclassical states.

We’d like feedback saying we’re on the right track before the

very end! The LOST theorem suggests that if we take SU(2)
holonomies as kinematical observables, there’s a unique good kine-

matical Hilbert space. Area and volume operators on this space
are fairly well behaved.

But, this gives a setup in which all formulas for the Hamilto-
nian constraint seem contrived. Reason: this constraint involves
not just holonomies but curvature! Not enough results showing

these formulas have nice properties... and no luck so far getting
constraints that satisfy the Dirac algebra.
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This makes me worry:

• Is the Ashtekar–Barbero SU(2) connection the best one to
use? Why not a Lorentz or chiral spin connection? Are there

no-go theorems ruling these out? (Willis)

• Shouldn’t curvature be an observable too? Why not try a
setup with a less impoverished vocabulary? Observables for

surfaces as well as loops?

We shouldn’t be scared to tinker with the formalism... nor scared

to put more work into the existing formalism!

Short of radical rethinking, here are some ways to get feedback

soon:

• Quantize the theory after adding extra symmetry assump-
tions: quantum cosmology. Perturb about these symmetric
solutions?

• Study coherent states peaked at classical solutions, but in

which the constraints hold only approximately.

• Relate loop quantum gravity to perturbative quantum grav-
ity. Gravitons should emerge in some limit; let’s get them

soon! (Carrión Álvarez)
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Spin Foam Models

The Idea: spacetime and everything in it is a quantum super-
position of ‘spin foams’. A spin foam is a generalized Feynman
diagram where instead of a graph we use a higher-dimensional

complex:

A spin foam model specifies a class of complexes and labels for

vertices, edges, faces, etc. It also says how to calculate an ampli-
tude for any such spin foam — typically as a product of vertex
amplitudes, edge amplitudes, face amplitudes, etc.

The Goal: to supplement the Hamiltonian/canonical approach
to loop quantum gravity with a Lagrangian/path-integral

approach, bringing dynamics into the game sooner. Just as spin
networks describe 3d quantum geometry, spin foams should de-

scribe 4d quantum geometry!
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The road to dynamics via spin foams should go something like
this:

1. Choose a description of 3-geometries using spin networks and

4-geometries using spin foams. Superpositions of spin net-
works are ‘kinematical states’; superpositions of spin foams

are ‘quantum histories’.

2. Choose formulas for amplitudes associated to vertices, edges,
faces, etc.

3. Find a sum over spin foams that implements the projection
onto physical states AND/OR a sum over spin foams of a

certain ‘timelike thickness’ that implements proper-time evo-
lution when applied to kinematical states.

4. Find ‘semiclassical 3-geometries’: physical states that ap-
proximate classical metric-connection pairs satisfying the con-

straints.

5. Calculate time evolution on semiclassical states.

Much less energy has been put into the foundational questions
here than for canonical quantum gravity. The problem of time
isn’t gone, just different. Lower-dimensional toy models can help

if they have local degrees of freedom — 3d quantum gravity is
beautiful, but dangerous.
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The Barrett–Crane Model

This model was motivated by the Plebanski action for GR:

S =

∫

εijk` Bij ∧ Fk` + φijk` Bij ∧ Bk`

where i, j, k, ` are internal indices, F is the curvature of an SO(3, 1)
connection, B is an so(3, 1)-valued 2-form, and φ is a Lagrange

multiplier field such that δS/δφ = 0 ensures that B ij ∧ Bk` has
the same symmetries as it does when B is built from a cotetrad:

Bij = ei ∧ ej

If B is built from a cotetrad this way, S equals the Einstein-Hilbert
action. But, there are other possibilities:

Bij =







±ei ∧ ej

±εijk`(ek ∧ e`)

when B is nondegenerate... and still others when B is degenerate!

Without the Lagrange multiplier field to constrain the B field,

the Plebanski action reduces to that of ‘BF theory’:

S =

∫

εijk`B
ij ∧ Fk`

BF theory has no local degrees of freedom, and has a well-understood

spin foam quantization. So, to get the Barrett–Crane model we
impose constraints on the spin foams being summed over, which

are analogous to the constraints on B in the Plebanski theory.
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To cut a long story short... we obtain a model where for each way
of sticking 4-dimensional simplices together along their tetrahe-

dral faces, we get a spin foam after we label each triangle by an
area a ≥ 0.

How do we calculate the amplitude for such a spin foam? First

we compute an amplitude for each 4-simplex by doing an integral.
A 4-simplex has 10 triangles labelled by areas, and ‘morally’ this

integral is:
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where the hyperboloid

H = {t2 − x2 − y2 − z2 = 1, t > 0}

is equipped with its usual Lorentz-invariant measure, φkl is the

hyperbolic distance between points hk, h` ∈ H, and

Ka(φ) =
sin aφ

sinh φ

is the integral kernel for projecting L2(H) down to the subspace of

functions with ∇2f = −(a2 + 1)f . The points h1, . . . , h5 describe
the timelike normal vectors of the 5 faces of a 4-simplex with all

spacelike triangles.

However, this integral diverges because of Lorentz symmetry! So,
we ‘gauge-fix’ it, holding one point hk fixed.

To get an amplitude for our spin foam, we take a product of these
•HH•vv

•
))

•
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)))) ’s over all 4-simplices... and perhaps some other fudge factors
for triangles and tetrahedra.
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All this is very much like the Ponzano–Regge model for Rieman-
nian 3d quantum gravity. Instead of
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A stationary phase approximation shows that
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MMMMMMM ∼ cos(S +
π

4
)

√

2

3πV

in the limit where we rescale all spins to infinity. Here S is the
Regge action of the dual tetrahedron with edge lengths 2jk + 1,
and V is its volume.

This is just the start of relating the Ponzano–Regge model to 3d
quantum gravity... but it’s promising.
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We hoped a similar stationary phase approximation would re-
late the 10j symbols to the Regge action for 4d gravity. But in

fact, the asymptotics of
•HH•vv
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)))) are dominated not by the stationary
phase points but by degenerate 4-simplices, whose triangles

have normal vectors h1, . . . , h5 ∈ H3 that are almost parallel!

In the Barrett–Crane model 4-simplices are like cotetrads ei. De-

scribing 4-simplices using their triangle areas is like describing ei

using Bij = ei ∧ ej. Degenerate 4-simplices are like degenerate

cotetrads.

So: perhaps the Barrett–Crane model is correctly quantizing the

Plebanski theory, but the path integral for this theory is dominated

by degenerate B fields, not those coming via Bij = ei ∧ ej from a
nondegenerate cotetrad.

It’s hard to tell if this is bad! Some thoughts:

• If our criterion for success were getting
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asymptotics in terms of the Regge action, we could simply
define a new
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)))) having those asymptotics. Our actual crite-

rion should be getting well-behaved dynamics.

• Realistic dynamics presumably involves spin foams with lots
of small 4-simplices, not a few big ones. So, the asymptotic
behavior of

•HH•vv
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)))) as triangle areas → ∞ may not be decisive.
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• In the Barrett–Crane model, the ‘fudge factors’ for triangles
and tetrahedra determine whether large or small 4-simplices

dominate the sum over spin foams.

For example, compare the partition function of S4 triangu-
lated as the boundary of a 5-simplex in two versions of the

Riemannian Barrett-Crane model:

J ZJ(M)

0 1.000 · 100

1/2 3.722 · 105

1 7.812 · 109

3/2 2.128 · 1013

2 1.345 · 1016

DePietri–Freidel–Krasnov–Rovelli model with spin cutoff J

J ZJ(M)

0 1.000000000000

1/2 1.000014319178

1 1.000014323656

3/2 1.000014323670

2 1.000014323670

Perez–Rovelli model with spin cutoff J

• To study spin foams with lots of small 4-simplices, we either
need new approximation methods or computer simulations.

We need to get our hands dirty and see what works! Chris-
tensen and Egan’s computer simulations are the only way we

got this far.
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• If we’re studying spin foam models with lots of 4-simplices
with amplitudes nicely related to the Regge action, we’re get-

ting pretty close to the Ambjorn–Jurkiewicz–Loll work on
causal dynamical triangulations, so we should borrow ideas

from them:

– Introduce a causal structure — with or without a time
slicing — with or without a preferred one. If we have a

time slicing, preferred or not, we can use Wick rotation.

– Livine–Oriti: a partial ordering of 4-simplices lets us re-

place

Ka(φ) =
eiaφ − e−iaφ

i sinhφ

by a ‘propagator’ consisting of one of the two terms, de-

pending on the causal relation between the two 4-simplices
sharing the triangle whose area is a. We should use this

not to compute the projection onto physical states, but
time evolution: it’s like a time-ordered exponential.

• We should also study spin foam perturbation theory: perturba-

tive quantum gravity where the excitations are described us-
ing spin foams rather than gravitons. See the work of Freidel
and Starodubtsev on perturbation about the Kodama state:

they get manifestly diffeomorphism-invariant power series in
the cosmological constant (Λ ≈ 10−122) where the terms are

spin foams involving the q-deformed deSitter group! Mathe-
matically beautiful, but what does it mean?

Again: any background-free quantum theory with local de-

grees of freedom propagating causally would be a good

thing!
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