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1 How Heat Flows and Why It Matters

Heat is most often experienced as energy density, related to temperature. While technically temperature
is only meaningful for a body in thermal equilibrium, temperature is the operational definition of heat
content, both in daily life and as a scientific measurement, whether at a point or averaged. For the present
discussion, it is taken as given that increasing atmospheric concentrations of carbon dioxide trap and
re-radiate Earth blackbody radiation to its surface, resulting in a higher mean blackbody equilibration
temperature for the planet, via radiative forcing [1, 2, 3, 4]. The question is, how does a given Joule
of energy travel? Once entrained on Earth, does it remain in atmosphere? Warm the surface? Go into
the oceans? And, especially, if it does go into the oceans, what is its residence time before released to
atmosphere? These are important questions [5, 6]. Because of the miscibility of energy, questions of
residence time are very difficult to answer. A Joule of energy can’t be tagged with a radioisotope like
matter sometimes can. In practice, energy content is estimated as a constant plus the time integral of
energy flux across a well-defined boundary using a baseline moment.

Variability is a key aspect of natural systems, whether biological or large scale geophysical systems such
as Earth’s climate [7]. Variability is also a feature of statistical models used to describe behavior of natural
systems, whether they be straightforward empirical models or models based upon ab initio physical
calculations. Some of the variability in models captures the variability of the natural systems which they
describe, but some variability is inherent in the mechanism of the models, an artificial variability which
is not present in the phenomena they describe. (The nomenclature can be confusing. With respect to
observations, variability arising due to choice of method is sometimes called structural uncertainty [37,
38].) No doubt, there is always some variability in natural phenomena which no model captures. This
variability can be partitioned into parts, at the risk of specifying components which are not directly
observable. Sometimes they can be inferred.

Models of planetary climate are both surprisingly robust and understood well enough that appreciable
simplifications are possible, such as setting aside fluid dynamism, without damaging their utility [2, Pref-
ace]. Thus, long term or asymptotic and global predictions of what consequences arise when atmospheric
carbon dioxide concentrations double or triple are known pretty well. What is less certain are the dis-
sipation and diffusion mechanisms for this excess energy and its behavior in time [8, 9, 10, 11]. There
is keen interest in these mechanisms because of the implications differing magnitudes have for regional
climate forecasts and economies [12,13,14]. Moreover, there is a natural desire to obtain empirical con-
firmation of physical calculations, as difficult as that might be, and as subjective as judgments regarding
quality of predictions might be [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 36, 37, 26, 27, 28, 29, 30, 31].

Observed rates of surface temperatures in recent decades have shown a moderating slope compared with
both long term statistical trends and climate model projections [32, 33, 15, 34, 36, 18, 21, 35, 16]. It’s the
purpose of this article to present this evidence, and report the research literature’s consensus on where the
heat resulting from radiative forcing is going, as well as sketch some implications of that containment.
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2 On Surface Temperatures, Land and Ocean

Independently of climate change, monitoring surface temperatures globally is a useful geophysical project.
They are accessible, can be measured in a number of ways, permitting calibration and cross-checking,

are taken at convenient boundaries, land-and-atmosphere or ocean-and-atmosphere, and coincide with
the living space about which we most care. Nevertheless, like any large observational effort in the field,
such measurements need careful assessment and processing before they can be properly interpreted. The
Berkeley Earth Surface Temperature (“BEST”) Project represents the most comprehensive such effort,
but it was not possible without many predecessors, such as HadCRUT4, and works by Kennedy, et al and
Rohde [39, 37, 27, 40, 41].

Surface temperature is a manifestation of four interacting processes. First, there is warming of the surface
by the atmosphere. Second, there is lateral heating by atmospheric convection and latent heat in water
vapor. Third, during daytime, there is warming of the surface by the Sun or insolation which survives
reflection. Last, there is warming of the surface from below, either latent heat stored subsurface, or
geologic processes. Roughly speaking, these are ordered from most important to least. These are all
manifestations of energy flows, a consequence of equalization of different contributions of energy to
Earth.

Physically speaking, the total energy of the Earth climate system is a constant plus the time integral
of energy of non-reflected insolation less the energy of the long wave radiation or blackbody radiation
which passes from Earth out to space, plus geothermal energy ultimately due to radioisotope decay within
Earth’s aesthenosphere and mantle, plus thermal energy generated by solid Earth and ocean tides, plus
waste heat from anthropogenic combustion and power sources. (There are tiny amounts of heating due
to impinging ionizing radiation from space, and changes in Earth’s magnetic field.) The amount of non-
reflected insolation depends upon albedo, which itself slowly varies. The amount of long wave radiation
leaving Earth for space depends upon the amount of water aloft, by amounts and types of greenhouse
gases, and other factors. Our understanding of this has improved rapidly, as can be seen by contrasting
Kiehl, et al in 1997 with Trenberth, et al in 2009 and the IPCC’s 2013 WG1 Report [42, 43, 44]. Steve
Easterbrook has given a nice summary of radiative forcing at his blog, as well as provided a succinct
recap of the 2013 IPCC WG1 Report and its take on energy flows elsewhere at the Azimuth blog. I refer
the reader to those references for information about energy budgets, what we know about them, and what
we do not.

Some ask whether or not there is a physical science basis for the “moderation” in global surface tempera-
tures and, if there is, how that might work. It is an interesting question, for such a conclusion is predicated
upon observed temperature series being calibrated and used correctly, and, further, upon insufficient pre-
cision in climate model predictions, whether simply perceived or actual. Hypothetically, it could be that
the temperature models are not being used correctly and the models are correct, and which evidence we
choose to believe depends upon our short-term goals. Surely, from a scientific perspective, what’s wanted
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is a reconciliation of both, and that is where many climate scientists invest their efforts. This is also an
interesting question because it is, at its root, a statistical one, namely, how do we know which model is
better [46, 7, 25, 45, 47, 48, 49]?

A first graph, Figure 1.1, depicting evidence of warming is, to me, quite remarkable. A similar graph

Figure 1.1: Ocean temperatures at depth, from http://www.yaleclimatemediaforum.org/2013/09/

examining-the-recent-slow-down-in-global-warming/.

is shown in the important series recapping the recent IPCC Report by Steve Easterbrook [50]. A great
deal excess heat is going into the oceans. In fact, most of it is. This can happen in many ways, but one
dramatic way is due to a phase of the El Niño Southern Oscillation (“ENSO”).

The trade winds along the Pacific equatorial region vary in strength. When they are weak, the phe-
nomenon called El Niño is seen, affecting weather in the United States and in Asia. Evidence for El
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Figure 1.2: Oblique view of variability of Pacific equatorial region from El Niño to La Niña and back. Vertical heigh of ocean is exaggerated
to show piling up of waters in the Pacific warm pool. (Note that this will be replaced on the Web page with a GIF file.)

Niño includes elevated sea-surface temperatures (“SSTs”) in the eastern Pacific. This short-term cli-
mate variation brings increased rainfall to the southern United States and Peru, and drought to east Asia
and Australia, often triggering large wildfires there. The reverse phenomenon, La Niña, is produced by
strong trades, and results in cold SSTs in the eastern Pacific, and plentiful rainfall in east Asia and north-
ern Australia. Strong trades actually pile ocean water up against Asia, and these warmer-than-average
waters push surface waters there down, creating a cycle of returning cold waters back to the eastern Pa-
cific. This process is depicted in Figures 1.2 and 1.3. At its peak, a La Niña causes waters to accumulate
in the Pacific warm pool, and this results in surface heat being pushed into the deep ocean. To the degree
to which heat goes into the deep ocean, it is not available in atmosphere. To the degree to which the
trades do not pile waters into the Pacific warm pool and, ultimately, into the depths, that warm water is
in contact with atmosphere [51]. There are suggestions warm waters at depth rise to the surface [52].

Documentation of land and ocean surface temperatures is done in variety of ways. There are several
important sources, including Berkeley Earth, NASA GISS, and the Hadley Centre/Climatic Research Unit
(“CRU”) data sets [39, 53, 37]. The three, referenced here as BEST, GISS, and HadCRUT4, respectively
have been compared by Rohde [41]. They differ in duration and extent of coverage, but allow comparable
inferences. For example, a linear regression establishing a trend using July monthly average temperatures
from 1880 to 2012 for Moscow from GISS and BEST agree that Moscow’s July 2010 heat was 3.67
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Figure 1.3: Trade winds vary in strength, having consequences for pooling and flow of Pacific waters and sea surface temperatures. (Note
that this will be replaced on the Web page with a GIF file.)

Figure 1.4: Strong trade winds cause the warm surface waters of the equatorial Pacific to pile up against Asia.

standard deviations from the long term trend. (3.667 (GISS) versus 3.670 (BEST).) Nevertheless, there
is an important difference between BEST and GISS, on the one hand, and HadCRUT4.

BEST and GISS attempt to capture and convey a single best estimate of temperatures on Earth’s surface,
and attach an uncertainty measure to each number. Sometimes, because of absence of measurements or
equipment failures, there are no measurements, and these are clearly marked in the series. HadCRUT4 is
different. With HadCRUT4 the uncertainty in measurements is described by a hundred member ensemble
of values, actually a 2592-by-1967 matrix. Rows correspond to observations from 2592 patches, 36 in
latitude, and 72 in longitude, with which it represents the surface of Earth. Columns correspond to each
month from January 1850 to November 2013. It is possible for any one of these cells to be coded as
“missing”. This detail is important because HadCRUT4 is the basis for a paper suggesting the pause in
global warming is structurally inconsistent with climate models. That paper will be discussed later.
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Figure 1.5: Global surface temperature anomalies relative to a 1950-1980 baseline.

3 Rumors of Pause

Figure 1.5 shows the global mean surface temperature anomalies relative to a standard baseline, 1950-
1980. Before going on, consider that figure. Study it. What can you see in it?

Figure 1.6 shows the same graph, but now with two trendlines obtained by applying a smoothing spline,
one smoothing more than another. One of the two indicates an uninterrupted uptrend. The other shows a
peak and a downtrend, along with wiggles around the other trendline. Note the smoothing algorithm is
the same in both cases, differing only in the setting of a smoothing parameter1. Which is correct? What
is “correct”?

Figure 1.1 shows trend curves for ocean heat content over roughly the same period. Figure 1.7 shows a
time series of anomalies for Moscow, in Russia. Do these all show the same trends? These are difficult
questions, but the changes seen in Figure 1.6 could be evidence of a warming “hiatus” [54, 32]. (The
term hiatus has a formal meaning in climate science, as described by the IPCC itself [44, Box TS.3].)
Note that, given Figure 1.6 the most which can be said about it is that there is a reduction in the rate of

1Called “SPAR”.
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Figure 1.6: Global surface temperature anomalies relative to a 1950-1980 baseline, with two smoothing splines printed atop.

temperature increase. We’ll have a more careful look at this in Section 4. With that said, people have
sought reasons and assessments of how important this phenomenon is. The answers have ranged from
the conclusive “Global warming has stopped” to “Perhaps the slowdown is due to ’natural variability”’,
to “Perhaps it’s all due to ’natural variability”’ to “There is no statistically significant change”. Let’s see
what some of the perspectives are.

It is hard to find a scientific paper which advances the proposal that climate might be or might have
been cooling in recent history. The earliest I can find are repeated presentations by a single geologist
in the proceedings of the Geological Society of America, a conference which, like many, gives papers
limited peer review [55, 55, 56, 57, 58, 59, 60, 61]. It is difficult to comment on this work since their full
methods are not available for review. The content of the abstracts appear to ignore the possibility of
lagged response in any physical system.

These claims were summarized by Easterling and Wehner in 2009, attributing claims of a “pause” to
cherry-picking of sections of the temperature time series, such as 1998-2008, and what might be called
media amplification [54]. Further, technical inconsistencies within the scientific enterprise, perfectly
normal in its deployment and management of new methods of measurement, have been highlighted and
abused to parlay claims of global cooling [62, 63, 64]. Based upon subsequent papers, climate science
seemed to not only need to explain such variability is to be expected, but to provide a specific explanation
Westwood Statistical Studios Page 8
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Figure 1.7: Temperature anomalies for Moscow, Russia.

for what could be seen as a recent moderation in the abrupt warming of the mid-late 1990s, appealing
to oceanic capture, as described in Section 2 [51, 36, 32]. The reader should note that, given the overall
temperature anomaly series, such as Figure 1.6, and specific series, such as the one for Moscow in
Figure 1.7, moderation in warming is not definitive. It is a statistical question, and, pretending for the
moment we knew nothing of geophysics, a difficult one.

But there certainly is not any problem with accounting for the Earth’s energy budget overall, even if one
grants distribution of distribution cannot be specifically explained [42, 43, 2]. That should really not be
a surprise, since, for example, the equipartition theorem of physics fails to apply to a system which has
not achieved thermal equilibrium.

In my opinion, an interesting discrepancy is presented in a pair of papers in 2013 and 2014. The first,
by Fyfe, Gillet, and Zwiers, has the (somewhat provocative) title “Overestimated global warming over
the past 20 years” [21, 35]. It has been followed by another paper by Fyfe and Gillet applying the
same methods to argue that even with the Pacific surface temperature anomalies and accommodating the
coverage bias in the HadCRUT4 dataset there are discrepancies between the surface temperature record
and climate model ensemble runs [65, 20, 33]. How this pair of papers presents that challenge and its
possible significance is a story unto itself.
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Figure 1.8: Keeling CO2 concentration curve at Mauna Loa, Hawaii, showing original data and its decomposition into three parts, a
sinusoidal annual variation, a linear trend, and a stochastic residual.

4 Trends Are Tricky

Trends as a concept are easy. But trends as objective measures are slippery. Consider the Keeling
Curve, the record of atmospheric carbon dioxide concentration first begun by Charles Keeling in the
1950s and continued in the face of great obstacles [66]. This curve is reproduced in Figure 1.8, and there
presented in its original, and then decomposed into three parts, an annual sinusoidal variation, a linear
trend, and a stochastic remainder. The question is, which component represents the true trend, long term
or otherwise? Are linear trends superior to all others? The importance of a trend is tied up with to what
use it will be put. A pair of trends, like the sinusoidal and the random residual of the Keeling, might be
more important for predicting its short term movements. On the other hand, explicating the long term
behavior of the system being measured might feature the large scale linear trend, with the seasonal trend
and random variations being but distractions.

Consider the global surface temperature anomalies of Figure 1.5 again. What are some ways of determin-
ing trends? Apart from a single long term trend, such as Figure 1.9, local linear trends can be estimated,
depicted in Figure 1.11. These can be averaged, if you like, to obtain an overall trend. There is a question
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Figure 1.9: Global surface temperature anomalies relative to a 1950-1980 baseline, with long term linear trend atop.

of what to do if local intervals for fitting the little lines overlap, since these are not independent of one
another. There are a number of statistical devices for making them independent. One way is to do clever
kinds of random sampling from a population of linear trends. Another way is to shrink the intervals until
they are infinitesimally small, and, so, necessarily independent. That’s just the point slope of a curve
going through the data, or its first derivative. Numerical methods exist of estimating these, one involving
a smoothing spline and estimating the derivative(s) of that [67]. Such an estimate is shown in Figure 1.12
where the instantaneous slope is plotted atop the data of Figure 1.5. The spline is a cubic spline and
the smoothing parameter is determined by generalized cross-validation [68]. (The smoothing parameters
specifies the weight of the penalty term for the second derivative of curvature.)

What else might we do? We could go after a really good approximation to the data of Figure 1.5. One
possibility is to use the Bayesian Rauch-Tung-Striebel (“RTS”) smoother to get a good approximation for
the underlying curve and estimate the derivatives of that [69]. There is a problem in that the prior vari-
ances of the signal need to be estimated. The larger the ratio of the estimate of the observations variance
to the estimate of the process variance is, the smoother the RTS solution. (Here, the process variance was
taken here to be 1

300
of the observations variance.) The RTS smoother result for two variance values of

0.156 and high 0.0.312 is shown in Figure 1.13. These are 4 and 8 times the decorrelated variance value
for the series of 0.039, estimated separately.
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Figure 1.10: Global surface temperature anomalies relative to a 1950-1980 baseline, with randomly placed trends from local linear having
5 year support atop.

Combining all six methods of estimating trends results in Figure 1.14 which shows the overprinted
densities of slopes. To match each of the methods by statistical weight, since, for instance, the spline and
RTS methods produce many more estimates of trends than do the local linear fits, 30 randomly selected
trends were chosen from each of the kinds of trends, and these are plotted. Note the spread of possibilities
given by the local linear fits. Such fits to HadCRUT4 time series were used by Fyfe, Gillet, and Zwiers
in their 2013 paper [21, 35].
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Figure 1.11: Global surface temperature anomalies relative to a 1950-1980 baseline, with randomly placed trends from local linear having
10 year support atop.

Westwood Statistical Studios Page 13



Heat, Ocean, and Atmosphere: A summary April 26, 2014, revised draft 001

Figure 1.12: Global surface temperature anomalies relative to a 1950-1980 baseline, with instaneous numerical estimates of derivatives
atop. Support for the smoothing spline used to calculate the derivatives is obtained using generalized cross validation [67]. Note how the
value of the first derivative never drops below zero although its magnitude decreases as time approaches 2012.
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Figure 1.13: Global surface temperature anomalies relative to a 1950-1980 baseline, with fits using the Rauch-Tung-Striebel smoother
placed atop, in magenta and dark red. The former uses a prior variance of 4 times that of the Figure 1.5 data corrected for serial correlation.
The latter uses a prior variance of 4 times that. The instaneous numerical estimates derived from the two solutions are shown in green and
blue, respectively. Note the two solutions are essentially identical.
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Figure 1.14: Composite of trends estimated using the long term linear fit (the vertical black line), the local linear fits with 5 years separation
(navy blue trace), the local linear fits with 10 years separation (dashed navy blue trace), the smoothing spline (blue trace), the RTS smoother
with variance 4 times the corrected estimate for the data as the prior variance (green trace), and the RTS smoother with eight times the
corrected estimate for the data (red trace). 30 randomly chosen (without replacement) trends have densities estimated to construct this chart.
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5 Internal Decadal Variability

The recent IPCC AR5 WG1 Report sets out the context [44, Box TS.3]:

Hiatus periods of 10 to 15 years can arise as a manifestation of internal decadal climate vari-
ability, which sometimes enhances and sometimes counteracts the long-term externally forced
trend. Internal variability thus diminishes the relevance of trends over periods as short as 10
to 15 years for long-term climate change (Box 2.2, Section 2.4.3). Furthermore, the timing
of internal decadal climate variability is not expected to be matched by the CMIP5 histori-
cal simulations, owing to the predictability horizon of at most 10 to 20 years (Section 11.2.2;
CMIP5 historical simulations are typically started around nominally 1850 from a control run).
However, climate models exhibit individual decades of GMST trend hiatus even during a pro-
longed phase of energy uptake of the climate system (e.g., Figure 9.8; Easterling and Wehner,
2009; Knight et al., 2009), in which case the energy budget would be balanced by increasing
subsurface-ocean heat uptake (Meehl et al., 2011, 2013a; Guemas et al., 2013).

Owing to sampling limitations, it is uncertain whether an increase in the rate of subsurface-
ocean heat uptake occurred during the past 15 years (Section 3.2.4). However, it is very likely2

that the climate system, including the ocean below 700 m depth, has continued to accumu-
late energy over the period 1998-2010 (Section 3.2.4, Box 3.1). Consistent with this energy
accumulation, global mean sea level has continued to rise during 1998-2012, at a rate only
slightly and insignificantly lower than during 1993-2012 (Section 3.7). The consistency be-
tween observed heat-content and sea level changes yields high confidence in the assessment
of continued ocean energy accumulation, which is in turn consistent with the positive radia-
tive imbalance of the climate system (Section 8.5.1; Section 13.3, Box 13.1). By contrast,
there is limited evidence that the hiatus in GMST trend has been accompanied by a slower
rate of increase in ocean heat content over the depth range 0 to 700 m, when comparing the
period 2003-2010 against 1971-2010. There is low agreement on this slowdown, since three
of five analyses show a slowdown in the rate of increase while the other two show the increase
continuing unabated (Section 3.2.3, Figure 3.2).

During the 15-year period beginning in 1998, the ensemble of HadCRUT4 GMST trends lies
below almost all model-simulated trends (Box 9.2 Figure 1a), whereas during the 15-year
period ending in 1998, it lies above 93 out of 114 modelled trends (Box 9.2 Figure 1b; Had-
CRUT4 ensemble-mean trend 0:26 ıC per decade, CMIP5 ensemble-mean trend 0:16 ıC per
decade). Over the 62-year period 1951-2012, observed and CMIP5 ensemble-mean trends
agree to within 0:02 ıC per decade (Box 9.2 Figure 1c; CMIP5 ensemble-mean trend 0:13 ıC
per decade). There is hence very high confidence that the CMIP5 models show long-term

2“In this Report, the following terms have been used to indicate the assessed likelihood of an outcome or a result: Virtually certain 99�100% probability,
Very likely 90�100%, Likely 66�100%, About as likely as not 33�66%, Unlikely 0-33%, Very unlikely 0-10%, Exceptionally unlikely 0-1%. Additional
terms (Extremely likely: 95 � 100%, More likely than not > 50 � 100%, and Extremely unlikely 0-5%) may also be used when appropriate. Assessed
likelihood is typeset in italics, e.g., very likely (see Section 1.4 and Box TS.1 for more details).”
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GMST trends consistent with observations, despite the disagreement over the most recent 15-
year period. Due to internal climate variability, in any given 15-year period the observed
GMST trend sometimes lies near one end of a model ensemble (Box 9.2, Figure 1a, b; East-
erling and Wehner, 2009), an effect that is pronounced in Box 9.2, Figure 1a, because GMST
was influenced by a very strong El Niño event in 1998.

The contributions of Fyfe, Gillet, and Zwiers (“FGZ”) are to (a) pin down this behavior for a 20 year
period using the HadCRUT4 data, and, to my mind, more importantly, (b) to develop techniques for
evaluating runs of ensembles of climate models like the CMIP5 suite without commissioning specfic runs
for the purpose [21,33]. This, if it were to prove out, would be an important experimental advance, since
climate models demand expensive and extensive hardware, and the number of people who know how to
program and run them is very limited, possibly a more limiting practical constraint than the hardware [70].
(“”It’s great there’s a new initiative,” says modeler Inez Fung of DOE’s Lawrence Berkeley National
Laboratory and the University of California, Berkeley. ”But all the modeling efforts are very short-
handed. More brains working on one set of code would be better than working separately”” [70].) FGZ
try to explicitly model trends due to internal variability [35]. They begin with two equations:

Mij .t/ D um.t/ C Eintij .t/ C Emodi.t/; i D 1; : : : ; N m; j D 1; : : : ; Ni(1.1)

Ok.t/ D uo.t/ C Einto.t/ C Esampk.t/; k D 1; : : : ; N o(1.2)

with time explicitly indicated, unlike FGZ [35, page 2]. i is the model membership index. j is the index
of the i th model’s j th ensemble. Here, Mij .t/ and Ok.t/ are trends calculated using models or obser-
vations, respectively. um.t/ and uo.t/ denote the “true, unknown, deterministic trends due to external
forcing” common to models and observations, respectively [35]. Eintij .t/ and Einto.t/ are the perturba-
tions to trends due to internal variability of models and observations. Emodi.t/ denotes error in climate
model trends for model i . Esampk.t/ denotes the sampling error in the kth sample. Notably FGZ assume
Emodi.t/ are exchangeable with each other as well, at least for the same time t . Note that while the in-
ternal variability of climate models Eintij .t/ varies from model-to-model, run-to-run, and time-to-time,
the ‘internal variability of observations’, namely Einto.t/, is assumed to only vary with time.

The technical innovation FGZ use is to employ bootstrap resampling on the observations ensemble of
HadCRUT4 and an ensemble of runs of 38 CMIP5 climate models to perform what is essentially a two-
sample comparison [71,72]. In doing so, they explicitly assume, in the framework above, exchangeability
of models. (Exchangeability is a weaker assumption than independence. Random variables are exchange-
able if their joint distribution only depends upon the set of variables, and not their order [73,74,75]. Note
the caution in Coolen [76].) k runs over the bootstrap samples taken from HadCRUT4 observations.

So, what is a bootstrap? In its simplest form, a bootstrap is a nonparametric, often robust, frequentist
technique for sampling the distribution of a function of a set of population parameters, generally irre-
spective of the nature or complexity of that function, or the number of parameters. Since estimates of the
variance of that function are themselves functions of population parameters, assuming the variance ex-
ists, the bootstrap can also be used to estimate the precision of the first set of samples, where “precision”
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is the reciprocal of variance. In the case in question here, with FGZ, the bootstrap is being used to deter-
mine if the distribution of surface temperature trends as calculated from observations and the distribution
of surface temperature trends as calculated from climate models for the same period have in fact similar
means. This is done by examining differences of paired trends, one coming from an observation sample,
one coming from a model sample, and assessing the degree of discrepancy based upon the variances of
the observations trends distribution and of the models trends distribution.

The equations (1.1) and (1.2) can be re-written:

Mij .t/ � Eintij .t/ D um.t/ C Emodi.t/; i D 1; : : : ; N m; j D 1; : : : ; Ni(1.3)

Ok.t/ � Einto.t/ D uo.t/ C Esampk.t/; k D 1; : : : ; N o(1.4)

moving the trends in internal variability to the left, calculated side. Both Eintij .t/ and Einto.t/ are not
directly observable. Without some additional assumptions, which are not explicitly given in the FGZ
paper, such as

Eintij .t/ � N .0; †model int/(1.5)

Einto.t/ � N .0; †obs int/(1.6)

we can’t really be sure we’re seeing Ok.t/ or Ok.t/�Einto.t/, or at least Ok.t/ less the mean of Einto.t/.
The same applies to Mij .t/ and Eintij .t/. Here †model int and †obs int are covariances among models and
among observations. FGZ essentially say these are diagonal with their statement “An implicit assump-
tion is that sampling uncertainty in [observation trends] is independent of uncertainty due to internal
variability and also independent of uncertainty in [model trends]” [35]. They might not be so, but it is
reasonable to suppose their diagonals are strong, and that there is a row-column exchange operator on
these covariances which can produce banded matrices.
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6 On Reconciliation

The centerpiece of the FGZ result is their Figure 1, reproduced here as Figure 1.15. Their conclusion, that
climate models do not properly capture surface temperature observations for the given periods, is based
upon the significant separate of the red density from the grey density, even measuring that separation
using pooled variances. But, surely, a remarkable feature of these graphs is not only the separation of the
means of the two densities, but the marked difference between the variance of the two densities. Why
are climate models so less precise than HadCRUT4 observations? Conceivably, why do climate models

Figure 1.15: Figure 1 from Fyfe, Gillet, Zwiers [21].

not agree with one another so dramatically? We cannot tell without getting into CMIP5 details, but the
same result could be obtained if the climate models came in three Gaussian populations, each with a
variance 1.5x that of the observations, but mixed together. We could also obtain the same result if, for
some reason, the variance of the HadCRUT4 was markedly understated.

That brings us back to the comments about HadCRUT4 made at the end of Section 2. HadCRUT4 is
noted for “drop outs” in observations, where either the quality of an observation on a patch of Earth was
poor or the observation was missing altogether for a certain month in history. It also has incomplete
coverage [20]. Whether or not values for patches are imputed in some way, perhaps using kriging,
or supports to calculate trends are adjusted to avoid these holes, is an important question. As seen
in Section 4, what trends you get depends a lot on how they are done. FGZ did linear trends. These
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are nice because means of trends have simple relationships with the trends themselves. On the other
hand, confining trend estimation to local linear trends binds these estimates to being only supported by
pairs of actual samples, however sparse they may be. Furthermore, the sampling density of such a trend
estimator is equivalent to convolving with a box or moving average filter (also known as a FIR filter) with
broadly spaced taps. The connection between Fourier representations and sampling densities is available
through the density’s characteristic function representation. Figure 1.14 can be interpreted as the result
of convolving the RTS density with a sinc function. This has the unfortunate effect of producing a broadly
spaced set of trends which, when averaged, appear to be a single, tight distribution, close to the vertical
black line of Figure 1.14, and erasing all the detail available by estimating the density of trends with a
robust function of the time series’ first derivative. FGZ could be improved by using such, repairing this
drawback and also making it more robust against HadCRUT4’s inescapable data drops.

If Earth’s climate is thought of as a dynamical system, and taking note of the suggestion of Kharin
that “There is basically one observational record in climate research”, we can do the following thought
experiment [28]. Suppose the total state of the Earth’s climate system can be captured at one moment
in time, no matter how, and the climate can be reinitialized to that state at our whim, again no matter
how. What happens if this is done several times, and then the climate is permitted to develop for, say,
exactly 100 years on each “run”? What are the resulting states? Suppose the dynamical “inputs” from the
Sun, as a function of time, are held identical during that 100 years, as are dynamical inputs from volcanic
forcings, as are human emissions of greenhouse gases. Are the resulting states copies of one another? No.
Stochastic variability in the operation of climate means these end states will be each somewhat different
than one another. Then of what use is the “one observation record”? Well, it is arguably better than no
observational record.

Setting aside the problems of using local linear trends, FGZ’s bootstrap approach to the HadCRUT4
ensemble is an attempt to imitate these various runs of Earth’s climate. The trouble is, the frequentist
bootstrap can only replicate values of observations actually seen, in this case, those of the HadCRUT4
ensembles. It will never produce values in-between and, as the parameters of temperature anomalies are
in general continuous measures, that seems a reasonable thing to do. It may be possible to remedy this
using a different kind of bootstrap, such as a Bayesian bootstrap, but I think there’s another way [72,
Section 10.5]. . Suppose the Mij .t/ are used to construct, for each time t , an average model, say,
M.t/ [77]. That construction also yields a time-varying variance, varŒM�.t/ of this average model. And,
while it can be done without the Gaussian assumption, suppose for example, deviations from that model
are treated as Gaussian, so particular climate variable, like surface temperature, �.t/, abides a Gaussian
density, per the usual:

(1.7) n.t; �.t// D
1p

2� varŒM�.t/
exp

�
�

.�.t/ �M.t//2

2 varŒM�.t/

�
Such an expression can be interpreted as a likelihood function of a particular �.t/ and therefore seen as
the probability of having an excursion from the best known model average of �.t/�M.t/. (It is possible
to develop an empirical likelihood function as well. See Owen [78].) Such a reformulation would change
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the FGZ title of “Overestimated global warming over the past 20 years” to something like Warming over
the past 20 years is unusual, which, by what’s known of the science, seems more consistent.

More work needs to be done to assess the proper virtues of the FGZ technique. By rights, while climate
models and observations might have different mean values in their estimates of variability for any time
interval in the record, the widths of their distributions should broadly overlap. In my opinion, it is less
the difference of their means that is interesting than the remarkably narrow distribution attributed to
HadCRUT4 after processing. A device like that Rohde used to compare BEST temperature observations
with HadCRUT4 and GISS, one of supplying the FGZ procedure with synthetic data, would be perhaps
the most informative regarding its character [41]. It would be worthwhile.

And regarding climate models, assessing parametric uncertainty hand-in-hand with the model builders
seems to be a sensible route [79]. If the FGZ technique, or any other, can contribute to this process, it
is most welcome. Lee reports how the GLOMAP model of aerosols was systematically improved using
such careful statistical consideration [80]. It seems likely to be a more rewarding way than “black box”
treatments. Incidently, Dr Lindsay Lee’s article was runner-up in the Significance/Young Statisticians
Section writers’ competition. It’s great to see bright young minds charging in to solve these problems!
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7 Summary

Various geophysical datasets recording global surface temperature anomalies suggest a slowdown in
anomalous global warming from historical baselines. Warming is increasing, but not as fast, and much of
the media attention to this is reacting to the second time derivative of temperature, which is negative, not
the first time derivative, its rate of increase. Explanations vary. In one important respect, 20 or 30 years is
an insufficiently long time to assess the state of the climate system. In another, while the global surface
temperature increase is slowing, oceanic temperatures continue to soar, at many depths. Warming might
even decrease. None of these seem to pose a challenge to the geophysics of climate, which has substantial
support both from experimental science and ab initio calculations. An interesting discrepancy is noted
by Fyfe, Gillet, and Zwiers, although their calculation could be improved both by using a more robust
estimator for trends, and by trying to integrate out anomalous temperatures due to internal variability in
their models, because much of it is not separately observable.

In summary, working out these details is the process of science at its best, and many discplines, not least
mathematics, statistics, and signal processing, have much to contribute to the methods and interpretations
of these series data. It is possible too much is being asked of a limited data set, and we have not yet
observed enough of climate system response to tell anything definitive [106]. But the urgency to act
responsibly given scientific predictions remains.
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