
CATEGORY THEORY IN
EPIDEMIOLOGY

John Baez
Edinburgh Mathematical Society

2023 December 8



In “System Dynamics”, dynamical systems are modeled using
“stock-flow diagrams”:

These diagrams are now widely used in economics, population
biology, epidemiology, etc.

https://en.wikipedia.org/wiki/System_dynamics


Here is a simple example of a stock-flow diagram:

S I

D

Ri r

d

The boxes are stocks, the double arrows are flows, and the
blue arrows are links from stocks to flows.



If we equip each flow with a flow function, a stock-flow
diagram gives differential equations describing how the stocks
change with time.

dS
dt = −ϕi(S, I)

dI
dt = ϕi(S, I) − ϕr (I) − ϕd(I)

dR
dt = ϕr (I)

dD
dt = ϕd(I)

S I

D

Ri r

d



Why don’t we just write down the differential equations?

Shockingly, most people find it easier to understand diagrams
than differential equations!

In “community-based modeling”, diagrams help experts work
with community members to build models of the problems they
face.

https://link.springer.com/book/10.1007/978-1-4614-8763-0


Why don’t we just write down the differential equations?

Shockingly, most people find it easier to understand diagrams
than differential equations!

In “community-based modeling”, diagrams help experts work
with community members to build models of the problems they
face.

https://link.springer.com/book/10.1007/978-1-4614-8763-0




Sociologists would say the power of diagrams is that they’re
“boundary objects”:

A boundary object is any object that is part of multiple
social worlds and facilitates communication between
them; it has a different identity in each social world that
it inhabits.



There is a community of epidemiologists who use stock-flow
diagrams to model the spread of disease. This includes my
coauthors Nate Osgood and Xiaoyan Li, who did COVID
modeling for the government of Canada.

https://www.cs.usask.ca/faculty/osgood/
https://scholar.google.ca/citations?user=55dzbRgAAAAJ&hl=en


Most stock-flow modeling is done using software called
AnyLogic. It’s powerful, but it has several big problems:

▶ It has no support for “composing” models: that is, taking
several smaller models and putting them together to form a
larger model.

▶ It thus has no support for collaboratively building models.
▶ It is not free and not open-source!

Our new work aims to fix these problems.



Most stock-flow modeling is done using software called
AnyLogic. It’s powerful, but it has several big problems:

▶ It has no support for “composing” models: that is, taking
several smaller models and putting them together to form a
larger model.

▶ It thus has no support for collaboratively building models.

▶ It is not free and not open-source!

Our new work aims to fix these problems.



Most stock-flow modeling is done using software called
AnyLogic. It’s powerful, but it has several big problems:

▶ It has no support for “composing” models: that is, taking
several smaller models and putting them together to form a
larger model.

▶ It thus has no support for collaboratively building models.
▶ It is not free and not open-source!

Our new work aims to fix these problems.



Most stock-flow modeling is done using software called
AnyLogic. It’s powerful, but it has several big problems:

▶ It has no support for “composing” models: that is, taking
several smaller models and putting them together to form a
larger model.

▶ It thus has no support for collaboratively building models.
▶ It is not free and not open-source!

Our new work aims to fix these problems.



The ability to compose models is crucial because realistic
models are complicated and built out of many smaller parts.
Here is Osgood and Li’s COVID model used by the government
of Canada:



For compositional modeling we use an idea going back to Bill
Lawvere’s 1963 thesis: “functorial semantics”.

In traditional applications to computer science, this says
roughly:

▶ There is a category C whose objects are data types and
morphisms are programs.

▶ There is a category D whose objects are sets and whose
morphisms are (partially defined) functions.

▶ There is a functor F : C→ D sending each data type to the
set of data of that type, and sending each program to the
function it computes.

We say F maps syntax to semantics.

https://ncatlab.org/nlab/show/Functorial+Semantics+of+Algebraic+Theories


For compositional modeling we use an idea going back to Bill
Lawvere’s 1963 thesis: “functorial semantics”.

In traditional applications to computer science, this says
roughly:

▶ There is a category C whose objects are data types and
morphisms are programs.

▶ There is a category D whose objects are sets and whose
morphisms are (partially defined) functions.

▶ There is a functor F : C→ D sending each data type to the
set of data of that type, and sending each program to the
function it computes.

We say F maps syntax to semantics.

https://ncatlab.org/nlab/show/Functorial+Semantics+of+Algebraic+Theories


For compositional modeling we use an idea going back to Bill
Lawvere’s 1963 thesis: “functorial semantics”.

In traditional applications to computer science, this says
roughly:

▶ There is a category C whose objects are data types and
morphisms are programs.

▶ There is a category D whose objects are sets and whose
morphisms are (partially defined) functions.

▶ There is a functor F : C→ D sending each data type to the
set of data of that type, and sending each program to the
function it computes.

We say F maps syntax to semantics.

https://ncatlab.org/nlab/show/Functorial+Semantics+of+Algebraic+Theories


For compositional modeling we use an idea going back to Bill
Lawvere’s 1963 thesis: “functorial semantics”.

In traditional applications to computer science, this says
roughly:

▶ There is a category C whose objects are data types and
morphisms are programs.

▶ There is a category D whose objects are sets and whose
morphisms are (partially defined) functions.

▶ There is a functor F : C→ D sending each data type to the
set of data of that type, and sending each program to the
function it computes.

We say F maps syntax to semantics.

https://ncatlab.org/nlab/show/Functorial+Semantics+of+Algebraic+Theories


In compositional modeling, functorial semantics works a bit
differently:

▶ There is a category C where morphisms are models and
composing morphisms lets us putting together smaller
models to form bigger ones.

▶ There is a functor D where morphisms are collections of
first-order ordinary differential equations.

▶ There is a functor F : C→ D sending each model to the
differential equations it describes.

This needs more explanation!



In compositional modeling, functorial semantics works a bit
differently:

▶ There is a category C where morphisms are models and
composing morphisms lets us putting together smaller
models to form bigger ones.

▶ There is a functor D where morphisms are collections of
first-order ordinary differential equations.

▶ There is a functor F : C→ D sending each model to the
differential equations it describes.

This needs more explanation!



In compositional modeling, functorial semantics works a bit
differently:

▶ There is a category C where morphisms are models and
composing morphisms lets us putting together smaller
models to form bigger ones.

▶ There is a functor D where morphisms are collections of
first-order ordinary differential equations.

▶ There is a functor F : C→ D sending each model to the
differential equations it describes.

This needs more explanation!



A stock-flow diagram consists of finite sets and functions:

Flows Stocks

Links

u

d

st

together with, for each f ∈ Flows, a flow function ϕf : R
L(f ) → R

where L(f ) is the set of all ℓ ∈ Links with t(ℓ) = f .

ϕi : R
2 → R gives ϕi(S, I)

ϕr : R→ R gives ϕr (I)

ϕd : R→ R gives ϕd(I)

S I

D

Ri r

d



An open stock-flow diagram is a stock-flow diagram equipped
with maps i : A→ Stocks,o : B → Stocks for some finite sets
A,B.

S I

R

Di r

d

1

2

3

4

A B

We call this an open stock-flow diagram from A to B and write

it as A
F
−→ B.



We can compose open stock-flow diagrams A
F
−→ B and

B
G
−→ C by “gluing them together along B”.

We get an open stock-flow diagram called A
G◦F
−−−→ C.



A
F
−→ B

S I

R

Di r

d

1

2

3

4

A B

B
G
−→ C

R Sℓ3

4

B C

A
G◦F
−−−→ C

S I

R

Di r

d

ℓ

1

2

A C



Thus, we get a category Open(StockFlow) with:
▶ finite sets as objects,
▶ open stock-flow diagrams as morphisms.



Next we can construct a category Open(Dynam) of “open
dynamical systems”, and a functor

Φ: Open(StockFlow)→ Open(Dynam)

This turns any open stock-flow diagram into an open dynamical
system.

We have already seen how this works without the “openness”:

dS
dt = −ϕi(S, I)

dI
dt = ϕi(S, I) − ϕr (I) − ϕd(I)

dR
dt = ϕr (I)

dD
dt = ϕd(I)

S I

D

Ri r

d



A dynamical system on some finite set of variables X is a
vector field v on RX . This lets us write down a system of
first-order ordinary differential equations.

For example, if X = {S, I,D,R} and v is the 4-component vector
field (vS , vI , vD , vR) on RX � R4, we get

d
dt S(t) = vS(S(t), I(t),D(t),R(t))

d
dt I(t) = vI(S(t), I(t),D(t),R(t))

d
dt D(t) = vD(S(t), I(t),D(t),R(t))

d
dt R(t) = vR(S(t), I(t),D(t),R(t))



A dynamical system on some finite set of variables X is a
vector field v on RX . This lets us write down a system of
first-order ordinary differential equations.

For example, if X = {S, I,D,R} and v is the 4-component vector
field (vS , vI , vD , vR) on RX � R4, we get

dS
dt = vS

dI
dt = vI

dD
dt = vD

dR
dt = vR



An open dynamical system A
V
−→ B is a dynamical system v

on some finite set X equipped with maps i : A→ X , o : B → X
for some finite sets A,B.

For example:

dS
dt = vS

dI
dt = vI

dR
dt = vR

dD
dt = vD

S I

R

D1

2

3

4

A B

Here X = {S, I,D,R}.



Just as we constructed the category Open(StockFlow), we can
construct a category Open(Dynam) with:
▶ finite sets as objects,
▶ open dynamical systems as morphisms.

The process we’ve already seen for converting stock flow
diagrams into dynamical systems then gives a functor

Φ: Open(StockFlow)→ Open(Dynam)



Just as we constructed the category Open(StockFlow), we can
construct a category Open(Dynam) with:
▶ finite sets as objects,
▶ open dynamical systems as morphisms.

The process we’ve already seen for converting stock flow
diagrams into dynamical systems then gives a functor

Φ: Open(StockFlow)→ Open(Dynam)



For example, Φ maps this open stock flow diagram:

S I

R

Di r

d

1

2

3

4

A B

to this open dynamical system:

dS
dt = −ϕi(S, I)

dI
dt = ϕi(S, I) − ϕr (I) − ϕd(I)

dR
dt = ϕr (I)

dD
dt = ϕd(I)

S I

R

D1

2

3

4

A B



What does it mean that

Φ: Open(StockFlow)→ Open(Dynam)

is a functor?

Most importantly, it means that for any open stock-flow

diagrams A
F
−→ B and B

G
−→ C we have

Φ(G ◦ F ) = Φ(G) ◦ Φ(F )



What does it mean that

Φ: Open(StockFlow)→ Open(Dynam)

is a functor?

Most importantly, it means that for any open stock-flow

diagrams A
F
−→ B and B

G
−→ C we have

Φ(G ◦ F ) = Φ(G) ◦ Φ(F )



We created software to implement these ideas with Evan
Patterson and Sophie Libkind at the Topos Institute, who are
experts on categories for computing:

▶ JB, Xiaoyan Li, Sophie Libkind, Nathaniel D. Osgood and
Evan Patterson, Compositional modeling with stock and
flow diagrams.

https://www.epatters.org/
https://www.epatters.org/
https://slibkind.github.io/
https://arxiv.org/abs/2205.08373
https://arxiv.org/abs/2205.08373


We used AlgebraicJulia: a framework for high-performance
scientific computing using categories. This was developed by
James Fairbanks, Evan, Sophie, and many others.

Composition of dynamical systems had already been
implemented in AlgebraicJulia:

▶ Sophie Libkind, Andrew Baas, Evan Patterson and James
Fairbanks, Operadic modeling of dynamical systems:
mathematics and computation.

https://www.algebraicjulia.org/
https://www.cise.ufl.edu/fairbanks-james/
https://arxiv.org/abs/2105.12282
https://arxiv.org/abs/2105.12282


Using AlgebraicJulia we created a software package called
StockFlow, now available on GitHub. This lets you:
▶ build stock-flow diagrams
▶ view them
▶ make them “open”
▶ apply various functors to interpret stock-flow diagrams,

e.g. as systems of differential equations but also other
things

▶ numerically solve the resulting differential equations.

https://github.com/AlgebraicJulia/StockFlow.jl


Besides composing open stock-flow diagrams end-to-end, our
software also let you compose them in more complex ways, like
this:



With Eric Redekopp we have made a graphical user interface
for StockFlow, called ModelCollab — also available on GitHub.

▶ John C. Baez, Xiaoyan Li, Sophie Libkind, Nathaniel D.
Osgood, Long Pham and Eric Redekopp, A categorical
framework for modeling with stock and flow diagrams.

https://github.com/UofS-CEPHIL/modelcollab
http://math.ucr.edu/home/baez/MFPHbookchapter.pdf
http://math.ucr.edu/home/baez/MFPHbookchapter.pdf


ModelCollab runs in your browser, so teams can collaborate to
build stock-flow diagrams.

And you don’t need to know anything about category theory or
AlgebraicJulia to use it!

The fancy stuff is black-boxed.



Next steps:

In the spring of 2024, Nate, Xiaoyan, Evan, Kris Brown (Topos),
Sean Wu (Merck) and I will spend 6 weeks at the ICMS here in
Edinburgh.

We’ll extend our work to “agent-based models”. These simulate
individual agents rather than treating them en masse as mere
“stocks”.

https://johncarlosbaez.wordpress.com/2023/08/17/agent-based-models-part-2/


Together with Patricia Mabry at the HealthPartners Institute for
Education and Research, Nate Osgood and I will apply
compositional modeling to health problems related to
substance abuse.

https://www.healthpartners.com/knowledgeexchange/display/person-Mabry-P-L


Finally, a little announcement.

Nate Osgood and I have been called in to lead a program
called Mathematics for Climate Change at the Fields Institute in
Toronto.

It’s not mainly about the geophysics of climate change — but
rather, the human response to it: that is, figuring out what we
should do!

http://www.fields.utoronto.ca/centres/centre-sustainable-development
http://www.fields.utoronto.ca/centres/centre-sustainable-development


Finally, a little announcement.

Nate Osgood and I have been called in to lead a program
called Mathematics for Climate Change at the Fields Institute in
Toronto.

It’s not mainly about the geophysics of climate change — but
rather, the human response to it: that is, figuring out what we
should do!

http://www.fields.utoronto.ca/centres/centre-sustainable-development
http://www.fields.utoronto.ca/centres/centre-sustainable-development


A lot of mathematicians want to do something about climate
change... but don’t know what.

I hope we can form working groups where mathematicians
learn from experts trying to solve the problems of climate
change — and help them with subjects like these:

▶ Parameter estimation
▶ Causal discovery and attribution
▶ Optimization
▶ Uncertainty quantification
▶ Agent-based models
▶ Tipping point theory
▶ Game theory
▶ Decision theory



A lot of mathematicians want to do something about climate
change... but don’t know what.

I hope we can form working groups where mathematicians
learn from experts trying to solve the problems of climate
change — and help them with subjects like these:

▶ Parameter estimation
▶ Causal discovery and attribution
▶ Optimization
▶ Uncertainty quantification
▶ Agent-based models
▶ Tipping point theory
▶ Game theory
▶ Decision theory


