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Categorification

sets ~» categories
functions ~~» functors
equations ~» natural isomorphisms

Categorification ‘boosts the dimension’ by one:
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In strict categorification we keep equations as
equations. This is evil... but today we’ll do it whenever
it doesn’t cause trouble, just to save time.



Higher (Gauge Theory

groups ~» 2-groups
Lie algebras ~~ Lie 2-algebras
bundles ~~» 2-bundles
connections ~» 2-connections

Connections describe parallel transport for particles.
2-Connections describe parallel transport for strings!
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We should even go beyond n = 2... but not today:.



Fix a simply-connected compact simple Lie group G.

Then:

e The Lie algebra g gives a 1-parameter family of Lie
2-algebras string.(g).

e When k € Z, string;.(g) comes from a Lie 2-group
String.(G).

e The ‘geometric realization of the nerve’ of String.(G)
is a topological group, |String;.(G)].

e Principal String;.(G)-2-bundles are the same as
|String;.(G)|-bundles.

e For k = 1, |String,.(G)| is G with its 3rd homotopy
ogroup made trivial.

e We can define connections and characteristic classes
for String;.(G)-2-bundles!



2-Groups

A strict 2-group is a category in Grp: a category with
a group of objects and a group of morphisms, such that
all the category operations are group homomorphisms.

The objects in a 2-group look like this:
e~ e

The morphisms look like this:
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We can multiply objects:
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multiply morphisms: e /f1“\ o /fz“\
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and compose morphisms: e



All 3 operations have a unit and inverses. All 3 are
associative, so these are well-defined:
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Finally, the interchange law holds, meaning
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1s well-defined.



Mac Lane and Whitehead first introduced 2-groups in
the disguise of ‘crossed modules’:

Go <2 &

Here G and GG are groups, and G acts on G in a
manner compatible with the differential 0.

To get a crossed module from a 2-group, just let G be
the group of objects:
9
o e
and G1 be the group of morphisms starting at 1. The
differential O is defined as follows:



Lie 2-Algebras

A strict Lie 2-algebra is a category in LieAlg: a
category with a Lie algebra of objects and a Lie algebra
of morphisms, such that all the category operations are
Lie algebra homomorphisms.

A strict Lie 2-algebra can be viewed as an ‘infinitesimal

crossed module’: 5
g0 < 981

Here gg and g; are Lie algebras, and g acts as deriva-
tions of g in a manner compatible with the differential

0.



Theorem (Mac Lane, Sinh). A 2-group is determined
up to equivalence by:

e the group GG of isomorphism classes of objects,
e the abelian group A of endomorphisms of any object,

e an action of GG on A,
e an element of H3(G, A).

Theorem (Gerstenhaber, Crans). A Lie 2-algebra is
determined up to equivalence by:

e the Lie algebra g of isomorphism classes of objects,
e the vector space a of endomorphisms of any object,
e a representation of g on a,

e an clement of H3(g, a).



Suppose G is a simply-connected compact simple Lie
oroup. Let g be its Lie algebra. A lemma of Whitehead
says:

H’(g,R) =R
S0:

Corollary. For any £ € R there is a Lie 2-algebra
stringy.(g) for which:

e g is the Lie algebra of isomorphism classes of objects:;
e R is the vector space of endomorphisms of any object.

Every Lie 2-algebra with these properties is equivalent
to stringz.(g) for some unique k € R.



Theorem. For any k € 7Z, string;.(g) is the Lie 2-
algebra of an infinite-dimensional Lie 2-group String.(G).

An object of String;.(G) is a smooth path
f:10,2n] - G

starting at the identity. A morphism from fi to fo is an
equivalence class of pairs (D, a) where D is a disk going
from fi to fo and a € U(1):
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Any two such pairs (D1, a1) and (D9, o) have a 3-ball
B whose boundary is D1 U Dy. The pairs are equivalent

when
exp <2m'k/ V) = ay/ay
B

where v is the left-invariant closed 3-form on G with

v(@,y,z) = ([z,y], 2)
and (-, ) is the smallest invariant inner product on g
such that v gives an integral cohomology class.

Theorem. The morphisms in String;.(G) starting at
the constant path form the level-k central extension of
the loop group QG:

1——U(l)——,G——QG——1



For any category C there is a space |C|, the geometric
realization of the nerve of C, built from a vertex for
each object:

o

an edge for each morphism:

f
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a triangle for each composable pair of morphisms:
[
f/\g
VX,
/g
a tetrahedron for each composable triple:

and so on...




A 2-group is a category with a product and inverses.
So, if G is a 2-group, |G| is a topological group.

More generally, we can define a topological group |G| for
any topological 2-group G.

Theorem. For any k € Z, there is a short exact
sequence of topological groups

1 ——K(Z,2)——|String,.(G)|——G 1
where p is a fibration. Using this we can show:

m1(|String.(G)]) = 0
mo(|String.(G)]) = Z/kZ
m3(|String,.(G)|) = 0 if k#0




Theorem. When k = 1, |String;.(G)| is the ‘3-connected
cover’ of GG: the topological group formed by making the
3rd homotopy group of G trivial.

For example, start with O(n):

e Making 7 trivial gives SO(n).

e Making 7y trivial gives Spin(n).
e 1o of Spin(n) is already trivial.

e Making 73 trivial gives String(n).

We are claiming
String(n) ~ |String(G)|
where G' = Spin(n) and k = 1.



2-Bundles — Quick and Dirty

For any topological 2-group G and any space X, we can
define a principal G-2-bundle over X to consist of:

e an open cover U; of X,
e continuous maps
gi;: UyNU; — Ob(G)
satistying g;; = 1, and
e continuous maps
hijk: Ui NU; N U — Mor(G)
with
hije(®): gi(x)gk(x) — gir(x)



satistying the nonabelian 2-cocycle condition:

on any quadruple intersection U; N U; N U N Uy.



There’s a natural notion of ‘equivalence’ for 2-bundles
over X, since they form a 2-category.

Theorem. For any topological 2-group G and paracom-
pact Hausdorfl space X, there is a 1-1 correspondence
between:

e equivalence classes of principal G-2-bundles over X,
e isomorphism classes of principal |G|-bundles over X,

e homotopy classes of maps f: X — B|G].

So, B|G]| is the classifying space for G-2-bundles.



We have homomorphisms

SO(n) O(n)

Given an n-dimensional Riemannian manifold X', we can
reduce the structure group of the frame bundle from

O(n) to:

e SO(n) if we have an orientation on X,

String(n) Spin(n)

e Spin(n) if we have a spin structure on X,

e String(n) if we have a string structure on X

Corollary. For any Riemannian n-manifold X, a string
structure on X gives a G-2-bundle over X, where § =

String;.(G) with G = Spin(n) and k = 1.



2-Connections — Quick and Dirty

Let G be a Lie 2-group, P the trivial principal G-2-bundle
over some smooth manifold X. A 2-connection on P
assigns holonomies to paths in X:

Y hol()
hol: z— ™y +— e e c Ob(G)

and surfaces going between paths:

fy\ hol%

hol: xﬂz Yy - OQhol(Z) e c Mor(G)
/ /
" hol(n)

in a manner preserving all 3 forms of composition:
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Theorem. Let 5
go < 91

be the infinitesimal crossed module obtained by
differentiating the crossed module

Gy <2~ G
corresponding to G. Then there is a 1-1 correspondence
between 2-connections on P — X and connections:
e a go-valued 1-form A on X
e a gi-valued 2-form B on X

satistying the fake flatness condition:

1
dA+ S[A,A] + 9B =0



All this generalizes to nontrivial 2-bundles.

Nice Problem. When G = String,.(G), compute the
real characteristic classes of a G-2-bundle in terms of an
arbitrary connection on this 2-bundle.

The homomorphism |G| La gives an algebra
homomorphism:

H*(BG,R) 2 H*(B|G|,R)

When £ = 1 this is onto, with kernel generated by the
‘second Chern class’ ¢o € H*(BG,R).

In this case, the real characteristic classes of G-2-bundles
are just like those of G-bundles, but with the second
Chern class killed!



