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Chapter 1

Quasi-Categories

1.1 Simplicial Sets and Quasi-Categories

1.1.1 Initial Definitions

In the following, ∆ will denote as usual the category of nonempty finite ordinals, with the element [n] ∈ ∆
representing the ordinal {0, 1, . . . , n}.
Definition 1.1.1. A simplicial set is a presheaf on ∆, i.e. a functor ∆op → Sets. The image of [n] under such
a functor is called the set of n-simplices. The function from n-simplices to (n − 1)-simplices corresponding
to the morphism [n− 1] → [n] in ∆ whose image is all of [n] except k is called the kth boundary map ∂k; the
image of an n-simplex x under ∂k is called its kth face. The function from n-simplices to (n + 1)-simplices
corresponding to the surjection [n+ 1] → [n] in ∆ which contracts k and k+ 1 onto k ∈ [n] is called the kth

degeneracy map σk.

For future use, we name a few simplicial sets. For a nonnegative integer n, let ∆n be the presheaf
represented by [n]. This simplicial set has a single nondegenerate n-simplex and the n + 1 faces of this
n-simplex are its only nondegenerate n− 1-simplices. If we omit the nondegenerate n-simplex, we obtain a
simplicial set ∂∆n, the boundary of ∆n, also called an n-shell. If we omit in addition its kth face we obtain
a simplicial set which we will call the kth n-horn Λn

k . If k < n, then Λn
k is called a left n-horn; if k > 0, then

it is called a right n-horn; and if a horn is both a left and right horn, it will be called inner. We are now
prepared to define a quasi-category (or weak Kan complex as in [BV73]; our terminology follows [Joy02]).

Definition 1.1.2. Let C be a simplicial set. We say that C is a quasi-category if for every m > 1 and every
k with 0 < k < m, every morphism Λm

k → C can be extended to a full m-simplex ∆m → C (in short, every
inner horn can be filled). If in addition 0 < n ≤ ∞ and whenever k > n there is only one filler of inner
k-horns as above, we say that C is an n-quasi-category (so that an ∞-quasi-category is just a quasi-category).
If all horns (not just inner ones) have fillers, we say that C is a quasi-groupoid, and if all horns of dimension
m > n have unique fillers, we say that C is an n-quasi-groupoid.

In the sequel, we define the ∞-skeleton of a simplicial set X to just be X itself.
The 0-simplices of a quasi-category are often denoted objects, and the 1-simplices 1-morphisms, or

simply morphisms if there is no ambiguity. Given an m-simplex, its 0th and mth faces (the faces which
always are present in an inner horn) are denoted the target and source faces, respectively. More generally,
the nondegenerate m-simplex whose vertices are minimal will be referred to as the source m-simplex, and the
nondegenerate face whose vertices are maximal will be referred to as the target m-simplex. We note that the
automorphism op : ∆ → ∆ which takes a finite ordinal to its opposite order type induces an automorphism
op : SSets → SSets which clearly fixes the classes of n-quasi-categories and n-quasi-groupoids. In the
sequel, given a quasi-category X, its image under op will be denoted Xop and referred to as the opposite
quasi-category of X.
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1.1.2 Characterizations From Less Data

We provide a criterion for producing an n-quasi-category or n-quasi-groupoid from a finite chunk of data,
when n is finite. Recall that for a simplicial set X, the n-skeleton Xn of X is the smallest subfunctor of
X which contains all n-simplices of X (including degenerate ones, so it also contains all m-simplices with
m < n).

Proposition 1.1.3. Let n <∞ be a positive integer. Every n-quasi-category X is determined by its (n+1)-
skeleton. An n-skeleton Yn+1 is the (n + 1)-skeleton of an n-quasi-groupoid (n-quasi-category) if and only
if it satisfies the (resp. inner) horn-filling conditions up to dimension n + 1 and also has the property that
every (resp. inner) (n+ 2)-horn can be completed to an (n+ 2)-shell.

Proof. For the first part, we prove that given two n-quasi-categories X and Y and an isomorphism Xn+1 →
Yn+1, the isomorphism can be extended to Xn+2 → Yn+2; this will establish the result by induction, since
n-quasi-categories are m-quasi-categories for each m ≥ n. To wit, given an (n+ 2)-simplex x in X, consider
the Λn+2

1 part h of the (n+2)-simplex x. The inner (n+2)-horn h (because it is comprised of (n+1)-simplices
in X) maps to an inner (n+ 2)-horn in Y under the given isomorphism; this horn has a unique filler y in Y ,
and we declare this y to be the image of x.

To see that this respects the simplicial set structure, we must check that the remaining face ∂1x maps
to ∂1y under the given isomorphism. But the boundary of ∂1x is contained in h, and so the boundary of ∂1y
is the image of the boundary of ∂1x. Since (n+ 1)-shells can be filled in at most one way in both X and Y ,
this establishes that ∂1x must map to ∂1y.

Since this map is in fact canonically defined, we may also produce a map Yn+2 → Xn+2, and these two
maps must be inverse to one another.

We first do the case of an n-quasi-category. The only if direction is immediate, so let Xn+1 be an (n+1)-
skeleton satisfying the conditions in the proposition. We show by induction on m that there is an extension
of Xn+1 to an m-skeleton Xm (m > n) with the inner horn-filling conditions holding uniquely in dimensions
n+ 1 through m, and also such that every inner (m+ 1)-horn can be completed to an (m+ 1)-shell.

The base is clear, so assume we have the result for m− 1. We adjoin to Xm−1 one m-simplex for every
m-shell (with the obvious boundary maps); call this m-skeleton Xm. I claim that Xm has the property
that each inner m-horn has a unique filler. Indeed, given an inner m-horn h, it can be completed to a shell
in Xm−1, whence has at least one filler in Xm. But any two such fillers would agree on the boundary of
the face omitted in h (since that boundary is contained in h) and so by the unique horn-filling condition in
dimension m−1, those two fillers must have the same shell, whence must be the same. Finally, given an inner
(m+ 1)-horn in Xm, the boundary of the omitted face is an m-shell, and thus is fillable by the tautological
m-simplex, so that the inner (m + 1)-horn we started with can in fact be completed to an (m + 1)-shell as
we wanted.

The n-quasi-groupoid case follows by the same argument; just omit all occurrences of the word “inner.”

This proposition amounts to saying that to define an n-quasi-category one need only give data up to
dimension n+ 1 (objects, morphisms, and “weak composition laws”) and have this data satisfy an axiom in
dimension n+2 (“associativity”). That this characterization is not more complicated is an advantage of this
system as compared with other frameworks for higher category theory; we of course are taking advantage of
the fact that all our higher morphisms will be invertible.

We further note a corollary of the proof:

Corollary 1.1.4. If X is an n-quasi-category and Σ ↪→ Θ is a monomorphism of simplicial sets which is
an isomorphism on (n+ 1)-skeleta, any map Σ → X can be extended uniquely to Θ.

Proof. Immediate.
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1.1.3 Categories as Quasi-categories

Recall that given a small ordinary category C we may produce a simplicial set N(C) (the nerve of C) whose
0-simplices are the objects of C, and whose n-simplices for n > 0 are composable sequences of morphisms

x0 → x1 → x2 → · · · → xn.

The kth boundary map is given by eliminating the object xk from a sequence as above, either by composing
the two incident morphisms or omitting the one incident morphism. The kth degeneracy is given by inserting
an identity morphism at the kth place. This assignment of sets and functions is functorial because of the
associativity of morphism composition.

It is not hard to see from the proof of the last proposition that the simplicial set N(C) is actually the 1-
quasi-category associated to the 2-skeleton where the 0-simplices are the objects of C, the 1-simplices are the
morphisms, and the 2-simplices are commutative triangles. This satisfies the condition from the proposition
because e.g. a Λ3

1 has edges f , g, h, gf , hg, (hg)f (where f , g, and h are morphisms); the missing face in the
shell has edges gf , h, and (hg)f , and so that it is fillable says that morphism composition in C is associative
(similarly for Λ3

2). The fact that N(C) is just this 1-quasi-category follows upon noticing that in the nerve,
every compatible configuration of the 2-skeleton of an m-simplices is the 2-skeleton of an m-simplex in the
nerve.

Conversely, the same argument in reverse produces a category from a 1-quasi-category. The 0- and
1-simplices give the objects and morphisms with source, target, and identity maps. The 2-simplices define
composition, in that a composable pair of morphisms is nothing more than a Λ2

1, and so has a unique filler,
defining a composite. That the identities respect composition follows from basic facts about degeneracy
maps, namely that a degenerate 2-simplex consists of two identical 1-simplices (sharing a source or a target)
and a degenerate 1-simplex between them.

Summarizing this discussion, we have the following corollary.

Corollary 1.1.5. A simplicial set X is isomorphic to some N(C) where C is a small category if and only if
X is a 1-quasi-category.

An analogous statement is true for groupoids and 1-quasi-groupoids.

Corollary 1.1.6. A simplicial set X is isomorphic to one of the form N(G) where G is a small groupoid if
and only if X is a 1-quasi-groupoid.

Proof. First suppose that X = N(G), where G is a groupoid. By the preceding corollary, X is a 1-quasi-
category, so by the proposition we need only verify that non-inner horns are fillable in dimensions 2, and
that non-inner 3-horns can be completed to shells. Suppose we are given a Λ2

2 whose zeroth face is f and
whose first face is g; then this is filled by making the second face f−1g. Similar remarks apply for a Λ2

0. Now
suppose we are given a Λ3

3; we will for simplicity let fij (i < j) denote the morphism in this horn from i to
j. We wish to show that f12f01 = f02. But f13f01 = f03, f23f12 = f13, and f23f02 = f03, so

f12f01 =
(
f−1
23 f13

) (
f−1
13 f03

)
= f−1

23 f03 = f02.

Similar remarks apply to a Λ3
0.

Now suppose that X is a 1-quasi-groupoid. X is a 1-quasi-category, and so is of the form N(C) for some
category C. I claim that C is a groupoid. Indeed, if f : x→ y is any morphism in C, then we can produce a
(non-inner) 2-horn which has f as its zeroth face and idy as its first face; the filler will give a left inverse.
Similar remarks produce a right inverse, so we are done.

We also clearly have that N(Cop) = N(C)op.

1.2 Some Composable Shapes in a Quasi-Category

In an ordinary category, composition is a relatively simple business, as it only happens in one dimension
(at the morphism level). In higher categories, the higher dimensional morphisms can be composed as well,
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and so it will be useful for us to have a cornucopia of shapes which can be composed. We first produce a
small class of shapes which are useful for all quasi-categories, then a much broader class which is useful for
2-quasi-categories.

To accompany these shapes, we will occasionally utilize some notation. In the m-simplex ∆m, whose
vertices are labelled 0 through m, we will use (a0a1 · · · ar) for 0 ≤ a0 < · · · < ar ≤ m to denote the r-simplex
in ∆m with vertices a0, . . . , ar. For the purpose of the following definition, we set Faces(α) for a simplex
α ∈ ∆m to be the set of indices i for which α is contained in the ith face of ∆m.

Definition 1.2.1. Let m > 0 be an integer, S ⊆ [m] a subset. Define the partial horn Λm
S to be the

simplicial set which is ∆m minus every simplex α for which Faces(α) ⊆ S. Equivalently,

• it is the subfunctor of ∆m consisting of all simplices which do not include all of [m]− S, or

• it consists of the faces of ∆m whose indices are in [m]− S, or

• it is ∆m minus all simplices whose boundary contains (or which is) the (m−|S|)-simplex corresponding
to [m]− S.

Lemma 1.2.2. Let m > 0 be an integer and S ( [m] a subset. Then:

(i) If [m] − S is not a string of consecutive integers, then Λm
S can be filled out to ∆m by a sequence of

inner horn fillings where the horns all have dimension greater than m− |S|.

(ii) If [m] − S is not a string of consecutive integers containing 0, then Λm
S can be filled out to ∆m by a

sequence of left horn fillings where the horns all have dimension greater than m− |S|.

(iii) If [m] − S is not a string of consecutive integers containing m, then Λm
S can be filled out to ∆m by a

sequence of right horn fillings where the horns all have dimension greater than m− |S|.

(iv) If S is arbitrary then Λm
S can be filled out to ∆m by a sequence of arbitrary horn fillings.

Proof. Notice that all statements are vacuously true if S = ∅. We thus assume henceforth that |S| > 0.
For part (i), we induct on |S|. For |S| = 1, the statement follows from the definition of inner horn.

Suppose |S| > 1 and we’ve proven the statement for |S| − 1; let a ∈ S be such that a = 0 or a = m if 0 or
m is in S; otherwise a can be anything. The set S′ = S −{a} then satisfies the hypotheses both as a subset
of the ordinal [m]− {a} and as a subset of [m].

Consider simplices in ∆m which do not include all of [m]− S′ but which do include all of [m]− S (i.e.,
simplices we must fill to reduce to the inductive hypothesis). These are precisely the simplices which do not
contain a but which contain all of [m]− S, and in fact these are the simplices missing in Λm−1

S′ , where here
we consider S′ to be a set of 0-simplices in the (m − 1)-simplex ∂a∆m. Since this last is dimension m − 1,
|S′| = |S| − 1 and (m− 1)− |S′| = m− |S|, the inductive hypothesis gives us a filling to our liking.

We conclude that we can partially fill in the original Λm
S to a Λm

S′ , where S′ is a set of size |S|−1 in [m].
Applying the inductive hypothesis a second time, we get a filling over all of ∆m (by simplices of dimension
greater than m− |S|+ 1, so we’re still fine).

For part (ii), notice that as inner horns are right horns it is enough to treat the case where [m] − S
is a string of consecutive integers which does not contain 0. Again, we induct on |S|. If |S| = 1, the horn
Λm

S = Λm
0 and is itself a left m-horn. Assume the statement proven for all smaller sets than S. Let a be the

greatest element of S, so that as |S| > 1, a > 0 and hence S′ = S − {a} satisfies the hypotheses both as a
subset of [m] and as a subset of [m]− {a}.

Proceeding as before, the difference between Λm
S and Λm

S′ consists of the simplices missing in Λm−1
S′ , but

this last can be filled by the induction hypothesis, so that we fill Λm
S to Λm

S′ and fill this last to ∆m, again
by the induction hypothesis.

Part (iii) is argued similarly to part (ii).
For part (iv), since S is nonempty, the complement [m]− S will either be nonconsecutive or consist of

a consecutive string of integers which cannot contain both 0 and m, so that either (ii) or (iii) apply.
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Corollary 1.2.3. Let X be a n-quasi-category, and let S ( [m] be a subset such that [m] − S is not a
sequence of consecutive integers. Then any morphism Λm

S → X can be filled to all of ∆m, and uniquely if
m− |S| ≥ n. Moreover, if X is an n-quasi-groupoid, then the statement is true for arbitrary proper subsets
S of [m].

Proof. This follows immediately from Lemma 1.2.2.

This corollary also of course has a strengthened version (following Corollary 1.1.4):

Corollary 1.2.4. Let X be an n-quasi-category, and (Λm
S )n+1 the (n+ 1)-skeleton of Λm

S (where here again
[m] − S is not a string of consecutive integers). Then a morphism (Λm

S )n+1 → X may be extended to ∆m,
uniquely if m− |S| ≥ n.

Proof. Any (n+ 2)-simplex in Λm
S will have all of its boundary (n+ 1)-simplices in (Λm

S )n+1, and so we may
extend the given morphism uniquely to (Λm

S )n+2 by Corollary 1.1.4. Inducting, we fill out the morphism
uniquely to Λm

S , and then finish the proof with Lemma 1.2.2.

In the next two lemmas, we will be considering subcomplexes of a product of simplices such as ∆r×∆m,
and will need to identify specific simplices. A j-simplex ∆j → ∆r ×∆m consists of an order-preserving map
[j] → [r] and an order-preserving map [j] → [m].

Lemma 1.2.5. Let m and r be nonnegative integers. There is a sequence of inner horn fillings in ∆m×∆r

which will fill out the simplicial complex ∂∆m×∆r∪∆m×∂∆r to all of ∆r×∆m except for σ, where σ is the
(m+ r)-simplex of corresponding to the unique order-preserving maps s : [m+ r] → [m] and t : [m+ r] → [r]
with s(i) = i for i ≤ m and t(i) = i−m for i ≥ m.

Proof. As remarked above, a j-simplex of ∆m×∆r is just a pair (s, t) where s : [j] → [m−1] and t : [j] → [r].
We only should consider nondegenerate j-simplices. In general, s and t might be degenerate as simplices
in ∆m and ∆r, as long as they are not degenerate at the same index of [j] (in which case they would be
degenerate in ∆m×∆r). In a nondegenerate j-simplex, therefore, we see that for each i either s(i) < s(i+1)
or t(i) < t(i+ 1), and so j is at most m+ r (as we would expect).

Notice moreover that a simplex (s, t) is in the boundary ∂∆m×∆r∪∆m×∂∆r of ∆m×∆r if and only if
s or t is not surjective. We are assuming that the boundary (and only the boundary) has been filled in by the
induction hypothesis, and so the simplices (s, t) we wish to fill are precisely those which are nondegenerate
with s and t surjective; call these interior simplices, and the others boundary simplices.

Let (s, t) be a nondegenerate interior j-simplex, and let i be such that 0 < i < j. We call i a pivot
if s(i − 1) = s(i) and t(i) = t(i + 1) (so that by surjectivity and nondegeneracy s(i + 1) = s(i) + 1 and
t(i) = t(i− 1) + 1); if the roles of s and t are reversed, call i an antipivot. It is immediate that ∂i(s, t) is an
interior (j − 1)-simplex if and only if i is a pivot or an antipivot. Moreover, if (s, t) has a pivot i (and we
think of s and t as j-tuples), then it looks like:

s · · · s(i) s(i) s(i) + 1 · · ·
t · · · t(i)− 1 t(i) t(i) · · ·

and so there is a unique j-simplex sharing the ith face of (s, t), namely the following one:

s · · · s(i) s(i) + 1 s(i) + 1 · · ·
t · · · t(i)− 1 t(i)− 1 t(i) · · · .

We refer to this process as moving along a pivot, and analogously define it for antipivots.
Let (s, t) be a nondegenerate (m+r)-simplex (a nondegenerate simplex of maximal dimension in ∆m×∆r,

necessarily interior). We know that for each i with 0 ≤ i < m+r, either s(i) = s(i+1) and t(i)+1 = t(i+1)
or vice versa (by the maximality of dimension combined with nondegeneracy). Therefore, since both s and
t must increase at some point, there is only one (m+ r)-simplex without a pivot, namely the following one,

7



described in the statement of the lemma as the unique simplex we will not fill, and which henceforth we call
τ :

s 0 1 2 · · · m− 1 m m · · · m
t 0 0 0 · · · 0 0 1 · · · r

.

For an (m+ r)-simplex (s, t), define the level of (s, t) to be(
m+r∑
i=0

s(i)

)
− m(m− 1)

2
.

We see immediately that levels range from 0 to rm, and moving along a pivot (antipivot) increases (decreases)
the level by 1. Moreover, τ has level rm, and in fact is the only simplex with that level. Furthermore, there
is only one simplex β of level 0, namely

s 0 0 0 · · · 0 0 1 · · · m
t 0 1 2 · · · r − 1 r r · · · r

;

we observe that β has one pivot and no antipivots.
By induction on ` < rm, we fill in all nondegenerate (m + r)-simplices at levels ≤ `. I claim this will

fill in all of ∆m ×∆r except for τ . Indeed, the only interior face of τ is the one it shares with the unique
(m + r)-simplex at level rm − 1; thus all faces of τ will be filled. Since every nondegenerate j-simplex in
∆m×∆r, j < m+ r, is contained in the boundary of some nondegenerate (m+ r)-simplex, we conclude that
τ will be the only simplex missing from the filling.

For the base case ` = 0, we need only fill in β. But r is the only pivot of β, so its only interior face is
∂rβ; the rest is boundary, and so has been filled. Applying the inner horn-filling axiom on Y , we can fill in
β (and its interior face).

Now suppose we have filled in all (m+r)-simplices at levels < `, and let α = (s, t) be at level `. Consider
the ith face of α. If i is an antipivot, then ∂iα has been filled in (moving along i gives an (m + r)-simplex
of level `− 1 whose ith face is ∂iα). If i is neither a pivot nor an antipivot, then ∂iα is a boundary simplex,
and so is filled in. Therefore, any unfilled faces must be at the pivots of α.

Let i1 < i2 < · · · < ij be the pivots of α; we know that j ≥ 1 because ` < rm. Notice that for any
p < j, we actually have ip+1 ≥ ip +2; this is just because if ip is a pivot, then s(ip) 6= s(ip +1), and so ip +1
cannot be a pivot. But this means that any other (m+ r)-simplex agreeing with α away from i1, . . . , ij must
have a greater level: since s(ip − 1) = s(ip) and s(ip) + 1 = s(ip + 1), we can only put s(ip) or s(ip) + 1
at the ithp place, thereby increasing the level altogether. We conclude that any simplex (of any dimension)
in α which contains all non-pivots of α is unfilled, as such simplices are interior and not contained in any
(m+ r)-simplex of level ≤ ` except for α.

Applying Lemma 1.2.2, we find a filling of α by inner horns (as the non-pivots include 0 and m + r).
The induction is complete.

Lemma 1.2.6. Let m be a positive integer, k an integer with 0 ≤ k ≤ m, and r a nonnegative integer. Then
there is a filling of the subcomplex

∆m × ∂∆r ∪ Λm
k ×∆r

of ∆m ×∆r to all of ∆m ×∆r where all fillings but (possibly) the last are inner horn fillings, and where the
last is a filling of a Λm+r

k , unless k = m in which case the last horn filling is a filling of a Λm+r
m+r.

Proof. To begin with, assume k < m. Notice that the intersection of the shape we are given with ∂k∆m×∆r

is a ∂∆m−1 ×∆r ∪∆m−1 ∪ ∂∆r, and so Lemma 1.2.5 applies. We are left with one unfilled simplex which
we again name τ .

Note that (in the terminology of the proof of Lemma 1.2.5) the simplex τ is a boundary simplex in
∆m × ∆r, in fact the only boundary simplex not now filled. The boundary simplex τ is not, however,
contained in any interior (m + r)-simplex in ∆m × ∆r except the one of maximal level (again using the
terminology from before). This follows upon noticing that there is only one place to insert k into the values
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of s : [m + r − 1] → [m] (this is because k < m; otherwise, the unique such (m + r)-simplex would not be
maximal).

But then (since missing τ will be no obstruction) we may apply Lemma 1.2.5 again to conclude that we
may fill all simplices of ∆m ×∆r except the maximal interior (m+ r)-simplex. Finally, we observe that this
last missing simplex together with τ make for a Λm+r

k , which of course is what we wanted.
If k = m, we may apply the op functor to produce a situation where k = 0; applying op to go back, we

see that the last horn to fill is a Λm+r
m+r.

Thus we obtain a number of shapes which are fillable in any quasi-category.

Remark 1.2.7. The preceding proposition is probably more properly subsumed by a theory of anodyne
extensions (cf. e.g. [GJ99] I.4) suitably adapted to this context.

The following shapes will only really assist us in working with 2-quasi-categories.

Lemma 1.2.8. Let Π ⊆ ∆n be a simplicial complex obtained from a single vertex by successive (not neces-
sarily inner) horn fillings of horns of dimension 1 or higher. Then a sequence of horn fillings will enlarge Π
to contain the 1-skeleton of ∆n.

Proof. Clearly it is enough to produce a horn filling which adds at least one missing simplex in the 1-skeleton
of ∆n. If one of the vertices of ∆n is missing, we may fill any 1-horn whose missing vertex is this one and
whose given vertex is any vertex in Π (such exists since Π is nonempty). If all the vertices have been filled,
choose a missing 1-simplex (ab) of ∆n such that the shortest sequence of 1-simplices travelling from a to b is
of minimal length amongst all missing 1-simplices; choose in addition such a minimal path. I claim that this
minimal path has exactly two 1-simplices, making it a 2-horn, and fillable to complete the proof. Indeed, if
it were longer then any proper subpath of length at least 2 would also have to be minimal amongst all paths
from its head to its target, and so it would be a minimal path shorter than the given one. Thus, we have
what we want.

Proposition 1.2.9. Let X be a 2-quasi-category, m > 0 an integer, Π ⊆ ∆m a subcomplex, and Π → X a
diagram with shape Π. Suppose moreover that Π has the property that it can be assembled out of successive
fillings of inner horns, starting with the string of 1-simplices which moves consecutively from 0 to m in ∆m.
Then the morphism Π → X can be extended to ∆m, and uniquely if Π contains all 1-simplices of ∆m.

Proof. We will show that Π can be filled by means of inner horn filling to the 3-skeleton of Π, which will
obtain what we want by Corollary 1.1.4.

Let us prove this by induction on m. The case m = 1 is immediate. For an m > 1, we may then assume
that the 0th and mth faces of ∆m have intersection with Π which contains the 3-skeleta of these faces, as
the intersections of these (m− 1)-dimensional simplices with Π satisfy the same hypotheses and being in the
filling of an inner horn in one of these faces is the same thing as being in the filling of an inner horn in all
of ∆m.

Notice that by assumption (and by the previous paragraph) all of the inner horn filling that we must do
concerns horns of dimension 2 or higher which contain the vertices 0 and m, and moreover all outer faces of
such horns have been filled. Define a subcomplex Π′ ⊆ ∆m−2 to have as k-simplices all the k + 2-simplices
of Π which contain 0 and m (this is a subcomplex of ∆m−2 as one can associate to a simplex σ of Π′ the
simplex of ∆m−2 whose vertices are those of σ minus 0 and m, and shifted down 1).

I claim that Π′ has the property that a filling of an arbitrary horn in Π′ is the same thing as filling an
inner horn in Π. This is because horns in Π′ give rise to inner horns in Π by adding the vertices 0 and m
(and all incident simplices, which are present in Π by the previous paragraph); the reverse procedure is valid
since we have filled all inner horns in Π except these. Notice that if the 1-simplex (0m) is not present, we
may fill say (01m) to put it there, and then Π′ will be obtained by a sequence of horn fillings off a single
vertex.

Therefore a filling of Π′ to the 1-skeleton by arbitrary horns gives rise to a filling of Π by inner horns.
Since the former exists by Proposition 1.2.8, we have the filling to the 3-skeleton, hence the filling in our
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2-quasi-category. The uniqueness statement is clear as all we can ever fill in this case are inner horns of
dimension 3 or higher.

1.3 Comparing (2,1)-Categories and 2-Quasi-Categories

We may also consider (weak) (2,1)-categories (defined below; a special case of weak 2-categories) to be
quasi-categories in a natural way.

Definition 1.3.1. A (2,1)-category C consists of the data of a set of objects |C| and for every pair of objects
X,Y ∈ |C| a groupoid Hom(X,Y ) together with an “identity” functor for each X

1 → Hom(X,X),

the image being called 1X , and for each X,Y, Z ∈ |C| composition functors

Hom(Y, Z)×Hom(X,Y ) → Hom(X,Z)

which take (g, f) to something we will denote (gf). We also have the data of natural isomorphisms (“left and
right unitors” and “associators”) which relate the following functors respectively (where f ∈ Hom(X,Y ),
g ∈ Hom(Y, Z), and h ∈ Hom(Z,W )):

[f 7→ (1Y f)] ⇒ [(f 7→ f)]
[f 7→ (f1X)] ⇒ [(f 7→ f)]

[(h, g, f) 7→ (h(gf))] ⇒ [(h, g, f) 7→ ((hg)f)]

Abbreviating notation a bit, these natural isomorphisms are required to satisfy the “triangle identity:”

(g(1Y f)) ⇒ (gf) = (g(1Y f)) ⇒ ((g1Y )f) ⇒ (gf)

as well as the “Stasheff pentagon identity:”

(i(h(gf))) ⇒ (i((hg)f)) ⇒ ((i(hg))f) ⇒ (((ih)g)f) = (i(h(gf))) ⇒ ((ih)(gf)) ⇒ (((ih)g)f).

This definition differs from the usual notion of weak 2-category (cf. e.g. [Lei02]) only insofar as the Hom-
categories here are actually groupoids. It should also be noted that a strict 2-category with all 2-morphisms
isomorphisms is a special case of a (2,1)-category; in a strict 2-category, the unitors and associators are just
identities, and so the triangle identity and the Stasheff pentagon are satisfied automatically. Moreover, every
weak 2-category is in fact weakly equivalent (in a sense to be discussed below) to a strict 2-category.

Notice that in a (2, 1)-category there are two other “triangle identities” which are always satisfied:

Lemma 1.3.2. Let f : X → Y and g : Y → Z be composable 1-morphisms in a (2,1)-category. The
following two identities then always hold (where all 2-morphisms are obtained from associators and unitors
in the obvious way):

((gf)1X) ⇒ (gf) = ((gf)1X) ⇒ (g(f1X)) ⇒ (gf)
(1Z(gf)) ⇒ (gf) = (1Z(gf)) ⇒ ((1Zg)f) ⇒ (gf).

Proof. To see why this is so, we will compute the first identity (the second is dual). We abbreviate 1X to
simply “1.” By naturality of right unitors, it is enough to check that

(((gf)1)1) ⇒ ((gf)1) = (((gf)1)1) ⇒ ((g(f1))1) ⇒ ((gf)1).

But the triangle identity gives us:

(((gf)1)1) ⇒ ((gf)1) = (((gf)1)1) ⇒ ((gf)(11)) ⇒ ((gf)1),
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so that by naturality of the associator we can conclude:

(((gf)1)1) ⇒ ((gf)1) = (((gf)1)1) ⇒ ((gf)(11)) ⇒ (g(f(11))) ⇒ (g(f1)) ⇒ ((gf)1).

Now, applying the triangle identity again, the above expression

= (((gf)1)1) ⇒ ((gf)(11)) ⇒ (g(f(11))) ⇒ (g((f1)1)) ⇒ (g(f1)) ⇒ ((gf)1).

By the Stasheff pentagon, this is

= (((gf)1)1) ⇒ ((g(f1))1) ⇒ (g((f1)1) ⇒ (g(f1)) ⇒ ((gf)1).

Finally, by naturality of the associator again, this

= ((gf)1)1 ⇒ ((g(f1))1) ⇒ ((gf)1).

which of course is what we wanted.

1.3.1 From (2,1)-Categories to 2-Quasi-Categories

Let C be a (2, 1)-category. We construct from C a 2-quasicategory N(C) by means of the method which
follows.

The 0-simplices of N(C) are the objects |C| of C; the 1-simplices are the objects of the groupoids
Hom(X,Y ) (letting X and Y vary) with the obvious boundary maps. The 2-simplices are (iso)morphisms
(gf) ⇒ h, and the 3-simplices are tetrahedra with edges fij , 0 ≤ i < j ≤ 3 and faces from the 2-simplices so
that

(f23(f12f01)) ⇒ ((f23f12)f01) ⇒ (f13f01) ⇒ f03 = (f23(f12f01)) ⇒ (f23f02) ⇒ f03.

Again, boundary maps are clear. Degeneracies of 0-simplices are given by the identity functors. Degeneracies
of 1-simplices are given by the left and right unitors. Degeneracies of 2-simplices are given by the (axiomatic
and proven) triangle identities in the sense that for a 2-simplex (gf) ⇒ h whose vertices are X,Y, Z, the
following equations are satisfied:

(g(f1X)) ⇒ (gf) ⇒ h = (g(f1X)) ⇒ ((gf)1X) ⇒ (gf) ⇒ h

(g(1Y f)) ⇒ (gf) ⇒ h = (g(1Y f)) ⇒ ((g1Y )f) ⇒ (gf) ⇒ h

(1Z(gf)) ⇒ (gf) ⇒ h = (1Z(gf)) ⇒ ((1Zg)f) ⇒ (gf) ⇒ h;

each of these then guarantees a (unique) 3-simplex with the required boundary maps for a corresponding
degeneracy of the original 2-simplex.

Given this construction, we can state a proposition.

Proposition 1.3.3. The data for N(C) described above characterizes a 2-quasicategory (which we also denote
N(C)).

Proof. We need to check that this data characterizes a 2-quasicategory. To see this, first note that the inner
horn-filling conditions hold for 2-horns, as every two composable 1-morphisms can be, well, composed. The
inner horn-filling conditions for 3-horns hold because given (say) the first 3-horn of a tetrahedron with edges
labelled as above, we may fill it with the isomorphism

(f23f02) ⇒ (f23(f12f01)) ⇒ ((f23f12)f01) ⇒ (f13f01) ⇒ f03,

and similarly for the second 3-horns.
Finally, consider the condition that inner 4-horns should be completable to 4-shells. Fix the 2-skeleton

of a 4-simplex (all 4-horns will contain the 2-skeleton of the desired 4-shell); we enumerate its 0-simplices
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xi, 0 ≤ i ≤ 4, its 1-simplices fij , 0 ≤ i < j ≤ 4, and note that as this is a 4-horn, we also have for each
i < j < k a given morphism (fjkfij) ⇒ fik.

The fact of a face of this 4-simplex being (uniquely) fillable is expressed as an equation (we have defined
it so). We thus have five equations, corresponding to the faces (in order from source to target):[

(f23(f12f01)) ⇒ ((f23f12)f01) ⇒ (f13f01) ⇒ f03

]
=

[
(f23(f12f01)) ⇒ (f23f02) ⇒ f03

]
[
(f24(f12f01)) ⇒ ((f24f12)f01) ⇒ (f14f01) ⇒ f04

]
=

[
(f24(f12f01)) ⇒ (f24f02) ⇒ f04

]
[
(f34(f13f01)) ⇒ ((f34f13)f01) ⇒ (f14f01) ⇒ f04

]
=

[
(f34(f13f01)) ⇒ (f34f03) ⇒ f04

]
[
(f34(f23f02)) ⇒ ((f34f23)f02) ⇒ (f24f02) ⇒ f04

]
=

[
(f34(f23f02)) ⇒ (f34f03) ⇒ f04

]
[
(f34(f23f12)) ⇒ ((f34f23)f12) ⇒ (f24f12) ⇒ f14

]
=

[
(f34(f23f12)) ⇒ (f34f13) ⇒ f14

]
We may as well assume that the source and target expressions hold, as this will happen no matter which
inner 4-horn we look at.

Let us simplify notation a bit by writing αijk` for the associator isomorphism

(fk`(fjkfij)) ⇒ ((fk`fjk)fij),

writing βijk for the given morphism (fjkfij) ⇒ fik. Moreover, given g, h : xi → xj and a morphism γ : g ⇒ h,
γk shall denote the morphism obtained by acting on the left by fjk or on the right by fki, whichever makes
sense. The five equations above then become:

β013β
0
123α0123 = β023β

3
012

β014β
0
124α0124 = β024β

4
012

β014β
0
134α0134 = β034β

4
013

β024β
0
234α0234 = β034β

4
023

β124β
1
234α1234 = β134β

4
123

The Stasheff pentagon will provide the relation amongst these that we desire. The Stasheff pentagon,
however, contains the following three morphisms:

(f34(f23(f12f01))) ⇒ ((f34f23)(f12f01))
((f34f23)(f12f01)) ⇒ (((f34f23)f12)f01)
(f34((f23f12)f01)) ⇒ ((f34(f23f12))f01)

which do not occur in the α’s and β’s alone. To represent these, we need to use the naturality of the associator
transformations. Using the usual relation for naturality, the first morphism above can be represented as

f34(f23(f12f01)) ⇒ f34(f23f02) ⇒ (f34f23)f02 ⇒ (f34f23)(f12f01).

The first two arrows here are just α0234(β3
012)

4; leave the third aside for a moment. The second arrow above
can be represented (by naturality) as

(f34f23)(f12f01) ⇒ f24(f12f01) ⇒ (f24f12)f01 ⇒ ((f34f23)f12)f01;

here the second and third arrows are [(β1
234)

0]−1α0124. Finally, notice that again by naturality[
(f34f23)f02 ⇒ (f34f23)(f12f01) ⇒ f24(f12f01)

]
=
[
(f34f23)f02 ⇒ f24f02 ⇒ f24(f12f01)

]
,
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so that in fact the composition of the first two Stasheff arrows above is

[(β1
234)

0]−1α0124[β4
012]

−1β0
234α0234(β3

012)
4.

The third Stasheff arrow above can be handled similarly, as it is just[
f34((f23f12)f01) ⇒ f34(f13f01) ⇒ (f34f13)f01 ⇒ (f34(f23f12))f01

]
= [(β4

123)
0]−1α0134(β0

123)
4.

Putting this all together, we see that the Stasheff pentagon relation is “just”

α0
1234[(β

4
123)

0]−1α0134(β0
123)

4α4
0123 = [(β1

234)
0]−1α0124[β4

012]
−1β0

234α0234(β3
012)

4.

Rearranging this expression a bit, we can write it as

[(β1
234)α1234(β4

123)
−1]0α0134[β0

123α0123(β3
012)

−1]4 = α0124[β4
012]

−1β0
234α0234.

Now, on the left-hand side, the two bracketed expressions can be replaced by equivalent expressions by means
of the source and target 3-simplex expressions above (both of which hold no matter which inner 4-horn we
are looking at), so we obtain

[(β124)−1β134]0α0134[(β013)−1β023]4 = α0124[β4
012]

−1β0
234α0234.

But this last expression can be written

[β024β
4
012α

−1
0124(β

0
124)

−1β−1
014][β014β

0
134α0134β

−1
034(β

4
013)

−1β−1
034] = [β024β

0
234α0234(β4

023)
−1β−1

034].

Each bracketed expression here corresponds to an inner 3-simplex, in that it is null if and only the corre-
sponding 3-shell can be filled. This last relation thus expresses that every inner 4-horn can be completed
to a 4-shell, and we conclude that the data of N(C) characterize a 2-quasicategory, as we wished to show.
Alternatively, the above discussion can be understood in terms of the following diagram:

f04

∂2 ∂3 f24f02

KS

∂1

f24(f12f01)

s{ nnnnnnn
nnnnnnn

19llllllll
llllllll

(f34f23)f02

em RRRRRRRR

RRRRRRRR

f14f01

,4

(f24f12)f01ks (f34f23)(f12f01)

em RRRRRRR

RRRRRRR
19lllllll

lllllll

qy lllllll
lllllll

f34(f23f02) +3

ck PPPPPPP
PPPPPPP

f34f03

jr

(∂0)f01 ((f34f23)f12)f01

ck PPPPPPP
PPPPPPP

s f34(f23(f12f01))

3;nnnnnnn
nnnnnnn

em RRRRRRR

RRRRRRR

��

f34(∂4)

(f34(f23f12))f01

��

KS

f34((f23f12)f01)

��

ks

(f34f13)f01

W_

f34(f13f01)

@H

ks

Here ∂i refers to the relation corresponding to the ith boundary of a 4-simplex, and s refers to the Stasheff
pentagon identity; the other squares always commute by naturality and functoriality, as above.
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1.3.2 From 2-Quasi-Categories to (2,1)-Categories

For the other direction, suppose we are given a 2-quasicategory C. We will make (nonuniquely) a (2, 1)-
category C̃ from this.

The objects of C̃ are the 0-simplices C0. Given two objects X and Y , we may define a category
Hom(X,Y ) whose objects are the 1-simplices with source and target X and Y respectively, and whose
morphisms are the 2-simplices whose three vertices are X,Y, Y (in that order) and whose zeroth face is 1Y .

We have a composition law on this collection of objects and morphisms because given two composable
morphisms ϕ and ψ in Hom(X,Y ), we may form a 3-horn whose filled faces are ϕ, ψ, and the degeneracy
of Y ; the unique filler to this horn gives the composition (call it “(ψϕ)”) on the remaining side. Moreover,
this composition law is associative; given composable ϕ, ψ, and χ, we may form a 4-horn whose four filled 3-
simplices are the 3-simplex witnessing the composition of ϕ and ψ, the 3-simplex witnessing the composition
of ψ and χ, the 3-simplex witnessing the composition of (ψϕ) and χ, and the degenerate 3-simplex over Y .
When this 4-horn is filled, the new 3-simplex has as faces (χψ), ϕ, (χ(ψϕ)), and the degeneracy over Y ;
by uniqueness, then, χ(ψϕ) must be the composition of ϕ and (χψ). Identity morphisms are just the first
degeneracies of 1-cells.

Notice that this construction of Hom(X,Y ) would go through just as well if we made the morphisms in
this category be 2-simplices with vertices X,X, Y and second face 1X . Call this latter category Hom′(X,Y ).

Lemma 1.3.4. Let ϕ : f → g and ψ : f → g be morphisms (2-simplices) in Hom(X,Y ) and Hom′(X,Y )
respectively. The following are equivalent:

(i) There is a 3-simplex with faces ϕ, ψ, and the zeroth and first degeneracy of f .

(ii) There is a 3-simplex with faces ϕ, ψ, and the zeroth and first degeneracy of g.

Proof. Assume that the first condition holds. Consider the 4-horn with vertices X,X, Y, Y, Y and whose
zeroth 3-simplex is the first degeneracy of ϕ, whose first 3-simplex is the second degeneracy of ϕ, whose
third 3-simplex is the zeroth degeneracy of ϕ, and whose fourth 3-simplex is the 3-simplex we are assuming
exists. Filling the horn, we obtain a 3-simplex as in the second condition.

By using a 4-horn with vertices X,X,X, Y, Y we may more or less reverse the roles of ϕ and ψ in the
above argument, obtaining the other direction.

Notice that for a given ϕ as in the lemma, there is exactly one ψ such that the conditions of the lemma
hold (by uniqueness of 3-horn fillers). In the sequel, we shall refer to ϕ and ψ as twin to one another.
Witnesses to twinness as in the first condition will be called simply “witnesses,” if they are as in the second
condition we will call them witnesses of the second type.

Proposition 1.3.5. There is a canonical isomorphism Hom(X,Y ) → Hom′(X,Y ) which acts identically on
objects and sends a morphism to its twin.

Proof. We need only check that the operation described in the statement of the proposition is in fact a
functor.

Identities are clearly sent to identities. Let ϕ : f → g and ψ : g → h be composable morphisms in
Hom(X,Y ). We wish to show that (ψϕ)′ = ψ′ϕ′. We will form a Λ5

1,4 whose vertices are X,X,X, Y, Y, Y .
The zeroth face is the third degeneracy of the 3-simplex witnessing that ϕ and ϕ′ are twins, and the fifth
face is the zeroth degeneracy of this same 3-simplex. To produce the second and third faces we perform
some auxiliary horn-fillings. To wit, consider the 4-horn whose vertices are X,X, Y, Y, Y and whose zeroth,
first, second, and fourth faces are the second degeneracy of ϕ, the witness to the composition of ϕ and ψ,
the witness to the twinness of ψ and ψ′, and the zeroth degeneracy of ϕ; the unique filler of this horn will
be the second face of our Λ5

1,4. The third face is obtained analogously.
Now, this Λ5

1,4 has a unique filler (because 5− 2 > 2). Let us look at the (only) filled 3-simplex: a quick
check reveals that its faces (in order) are the first degeneracy of f , ψϕ, ψ′ϕ′, and the zeroth degeneracy of
f . Thus this 3-simplex witnesses that ψϕ and ψ′ϕ′ are twins, which is what we wanted.

14



From now on we identify Hom(X,Y ) and Hom′(X,Y ); when passing from morphisms in Hom(X,Y )
to 2-simplices, we will say explicitly whether we are thinking of a morphism as living in Hom(X,Y ) or
Hom′(X,Y ).

Corollary 1.3.6. The category Hom(X,Y ) is a groupoid.

Proof. Given a morphism ϕ : f → g, we first think of it as in Hom(X,Y ), and we may form a 3-horn whose
zeroth face is the degeneracy of Y , whose second face is the first degeneracy of f , and whose third is ϕ itself.
Filling the horn, we find a morphism (in the sense of Hom(X,Y )) which is a left inverse of ϕ. Repeating
the discussion, this time thinking of ϕ as a morphism in Hom′(X,Y ), we find that ϕ has a right inverse as
well.

Now, once and for all, choose a subset C̃2 of C2 with the property that every inner 2-horn (i.e. pair of
composable 1-morphisms) is the inner 2-horn of exactly one 2-simplex in C̃2. This data will give us enough
information to force a (2,1)-category.

For two composable 1-morphisms f and g, we will denote by (gf) (“the composition of f and g”) the
third side of the unique 2-simplex in C̃2 with f and g comprising its inner horn. If X is an object of C̃, 1X

will just denote the (zeroth) degeneracy of X.
To define the composition law, our “composition” notation above gives us a map at the object level

Hom(Y, Z)×Hom(X,Y ) → Hom(X,Z).

This in fact extends naturally to a map on morphisms. Given a morphism ϕ : f → f ′ ∈ Hom(X,Y ) and
an object g ∈ Hom(Y, Z), we can produce naturally a morphism in Hom(X,Z), by considering the 3-horn
whose faces are ϕ (considered in Hom′) and the witnesses (in C̃2) to the compositions of (gf) and (gf ′).
The unique filler will give a morphism (gf) → (gf ′) ∈ Hom(X,Z). Similarly, we may switch the roles of X
and Z to obtain maps on morphisms in Hom(Y, Z).

Proposition 1.3.7. There is a one-to-one correspondence between 2-simplices with a fixed boundary (g, h, f)
(where g ∈ Hom(Y, Z), h ∈ Hom(X,Z), and f ∈ Hom(X,Y )) and morphisms (gf) → h in Hom(X,Z).

Proof. Suppose we are given a 2-simplex with boundary as in the proposition. Form a 3-horn whose vertices
are X,Y, Z, Z and whose zeroth, second, and third faces are the first degeneracy of g, the given 2-simplex,
and the witness to (gf) being the composition of f and g, respectively. Then, filling this (uniquely), we
obtain a 2-simplex which is the same thing as a morphism (gf) → h, as we’ve defined things.

Conversely, the same shape works; fill in the zeroth, first, and third faces, and the filled-in second gives
the desired 2-simplex.

Notice that in particular this gives us left and right unitors from the first and zeroth degeneracies of a
1-morphism f , respectively.

Lemma 1.3.8. Consider a 3-shell with vertices Xi, i ranging from 0 to 3, and 1-simplices fij : Xi → Xj.
Suppose, moreover, that X0 = X1 and f01 is the degenerate 1-simplex. Then this 3-shell can be filled to a
3-simplex if and only if:

(f23f12) → f13 → f03 = f23 ◦ [f12 → f02] → f03,

where f23◦ refers to the action of f23 on Hom(X0, X2), and all morphisms are as in Lemma 1.3.7. Analogous
statements hold if X2 = X3 and f23 is degenerate.

In particular, if both f01 and f23 are degenerate, then the shell fills if and only if the associated square
of morphisms in Hom(X1, X2) commutes.

Proof. For the first statement, first assume that the shell fills. We will form a Λ5
0,2,4. The vertices will be

X0, X0, X1, X1, X2, X3. The first face is formed from a Λ4
1,3, whose zeroth 3-simplex is the witness to the

composition (f23f12) → f13 as in Lemma 1.3.7, whose second 3-simplex is the given one, and whose fourth
3-simplex is the first degeneracy of the given witness to f12 → f02. The third face is formed from the Λ4

0,3
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whose first face is the given 3-simplex, whose second face is the witness to (f23f02 → f03 from the lemma,
and whose fourth face is the zeroth degeneracy of the given f12 → f02. The fifth face is given by the zeroth
degeneracy of the first degeneracy of the witness to f12 → f02.

Filling this (uniquely, as 5 − 3 ≥ 2) to a 5-simplex, we find inside two 3-simplices, one witnessing the
morphism (f23f12) → f13 → f03, the other witnessing the morphism (f23f12) → (f23f02) → f03, and which
share the 2-simplex which witnesses both compositions. This proves that both compositions are equal, as
desired.

For the other direction, we will form a Λ5
1,3 which will fill to the same 5-simplex (so that, e.g., its vertices

will also be X0, X0, X1, X1, X2, X3). The zeroth face will be formed from a Λ4
2,3 whose zeroth 3-simplex is

the witness to (f23f12) → f13 as in the lemma, whose first 3-simplex witnesses the action of f23 on f12 → f02,
and whose fourth 3-simplex is the first degeneracy of f12 → f02. The second face will be formed from a Λ4

1,3,
one whose zeroth face witnesses the action of f23 on f12 → f02, whose second face witnesses the morphism
(f23f02) → f03 (as in Lemma 1.3.7), and whose fourth face is just the zeroth degeneracy of the 2-simplex
f12 → f02.

The fourth face will be formed from a Λ4
0,3 whose first face is the witness to the composition (f23f12) →

f13 → f03, whose second face is the witness to the composition (f23f12) → (f23f02) → f03 (these agree on
their shared face by assumption), and whose fourth face is the degenerate 3-simplex on X0 = X1. Finally,
the fifth face as before is the zeroth degeneracy of the first degeneracy of the witness to f12 → f02. Filling
this to a full 5-simplex, we recover (as the unique filled 3-simplex) the 3-simplex we desire.

The second case in the statement of the lemma follows analogously.

Proposition 1.3.9. The data C̃2 and structures on the Hom-categories described above may be extended
(necessarily uniquely) to a functor

Hom(Y, Z)×Hom(X,Y ) → Hom(X,Z).

Proof. Let us first prove functoriality on separate factors. Indeed, that identities map to identities is a
consequence of uniquness of fillers of 3-horns. Without loss of generality, if ϕ : f → f ′ and ϕ′ : f ′ → f ′′

are morphisms in Hom(X,Y ), g an object of Hom(Y, Z), then we may assemble a Λ4
1,3 whose objects are

X,X,X, Y, Z whose 3-face with 0-simplices X,X,X, Y (the fourth) is the witness to composition of ϕ and
ϕ′ and whose zeroth and second 3-simplices witness the application of g to ϕ′ and ϕ, respectively. Filling
this Λ4

1,3 in the unique way, we obtain as its first face the witness to application of g to ϕ′ϕ and as its third
face the witness to composition of the applications of g to ϕ and to ϕ′. These two (uniquely characterized)
3-simplices share the 2-simplex which witnesses that both processes yield the same result, so that we have
functoriality on separate factors.

Note that if the above data are to be a part of a functor, a morphism (ψ,ϕ) : (g, f) → (g′, f ′) in
Hom(Y, Z)×Hom(X,Y ) must map to

(gf) → (gf ′) → (g′f ′) = (gf) → (g′f) → (g′f ′),

where the morphisms here are as defined above, so that the above identity must be verified in addition to
functoriality in both factors. This is in fact enough, for the map will then be defined on all morphisms and
functoriality for all morphisms follows easily from functoriality on both factors and the above commutativity.

For the commutativity statement, we use Lemma 1.3.8. Indeed, let ϕ : f → f ′ and ψ : g → g′ be
morphisms in Hom(X,Y ) and Hom(Y, Z), respectively. Form a 4-horn whose 0-simplices are X,X, Y, Z, Z,
whose zeroth and first face witness the applications of f and f ′ respectively to ψ, and whose third and fourth
faces witness the applications of g and g′ respectively to ϕ. Filling the horn, we obtain a 3-simplex which
(according to Lemma 1.3.8) witnesses the commutativity desired.

We should check that left and right unitors are natural transformations.

Proposition 1.3.10. Unitors (right and left) are natural transformations of functors.
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Proof. Let us first show that right unitors as described above are natural in f ; left unitors are treated
analogously. To wit, let ϕ : f → f ′ be a morphism in Hom(X,Y ), considered as a 2-simplex in Hom (as
opposed to Hom′). The zeroth degeneracy of ϕ is a 3-simplex which (after Lemma 1.3.8) witnesses that

(f1X) → f → f ′ = (f1X) → (f ′1X) → f ′,

showing that right unitors are natural transformations, as desired.

Now let f , g, and h be objects in Hom(X,Y ), Hom(Y, Z), and Hom(Z,W ). Form a 3-horn whose
vertices are X,Y, Z,W and whose zeroth, second and third faces witness the compositions (hg), ((hg)f), and
(gf); after filling, the filled face will be a morphism (h(gf)) → ((hg)f), which will be our associator.

Notice that we might have performed the operations in the above paragraph in the other order, producing
a morphism ((hg)f) → (h(gf)). Our first task will be to show that these two are in fact inverse to one another.

Lemma 1.3.11. The two methods for producing an associator, descibed above, are inverse to one another.

Proof. Let f, g, h be as in the definition of these associators. Form a Λ5
3,4 with vertices

X,X,X, Y, Z,W.

The zeroth face witnesses the associator (h(gf)) → ((hg)f) as a 2-simplex in Hom′(X,W ), the first face is
the zeroth degeneracy of the 3-simplex from which the alternate associator ((hg)f) → (h(gf)) is derived, the
second face witnesses the alternate associator ((hg)f) → (h(gf)) as a 2-simplex in Hom′, and the fifth face
is the zeroth degeneracy of the zeroth degeneracy of the 2-simplex which composes f and g. Filling this to
a 5-simplex, we see that the filled 3-simplex witnesses that the composition of the two associator candidates
is the identity, as desired.

Proposition 1.3.12. The associators are natural in all three variables.

Proof. First let us prove naturality in h. Let h → h′ be a morphism in Hom(Z,W ), seen as a 2-simplex
in Hom(Z,W ). We form a 4-horn with objects X,Y, Z,W,W whose zeroth faces witnesses application of g
to h → h′, whose second face witnesses the application of f to (hg) → (h′g), and whose third and fourth
faces witness the associators of (f, g, h′) and (f, g, h), respectively. Filling this, the first face witnesses (after
Lemma 1.3.8) that

h(gf) → h′(gf) → (h′g)f = h(gf) → (hg)f → (h′g)f,

as desired. The same argument applies to naturality in f , as the argument would give naturality in the
“alternate” associator, which as we proved in Lemma 1.3.11, is just inverse to the usual associator.

We are left with proving naturality in g. Fix a morphism g → g′, considered as in Hom′. Let us form a
composition diagram with vertices X,X, Y, Y, Z,W , labelled 0 through 5. We fill the 3-simplex (0123) with
the fitting degeneracy of f , and then fill (234) with the morphism g → g′, (345) with the composition of
g and h, (245) with the composition of g′ and h, (134) with the composition of g and f , (024) with the
composition of g′ and f . Finally, put the composition of (hg) and f in (135) and the composition of (hg′)
and f in (025). Composing this diagram, we find that (0145) witnesses (after Lemma 1.3.8) that

(h(gf)) → (h(g′f)) → ((hg′)f) = (h(gf)) → ((hg)f) → ((hg′)f),

as we wanted.

Proposition 1.3.13. There is a one-to-one correspondence between 3-simplices in our 2-quasi-category C
and families of 1-morphisms {

Xi

fij // Xj

}
0≤i<j≤3

together with morphisms {
(fjkfij)

ϕijk // fik

}
0≤i<j<k≤3

17



such that

(f23(f12f01))

��

f23◦ϕ012 // (f23f02)
ϕ023

))RRRRRRRRRRRRRRRR

((f23f12)f01)
ϕ123◦f01 // (f13f01)

ϕ013 // f03

commutes.

Proof. In either case (i.e. given all four faces of the 3-simplex), we concoct a monumental composition
diagram, with nine vertices

X0, X1, X2, X2, X3, X3, X3, X3, X3,

labelled as usual 0 through 8.
The 2-simplex (012) is the composition of f01 and f12; the 6-simplex (2345678) is the fitting degeneracy

of f23. The remaining 1-simplices are the those whose first vertex is 0 or 1 (and which have not yet been
filled). Moving along, the 2-simplex (123) is the degeneracy of f12, (013) is the morphism (f12f01) → f02,
and (124) will be the composition of f12 and f23. The 2-simplex (024) is the composition of (f12f01) and
f23. The simplex (125) is the composition of f12 and f23; the simplex (015) is the composition of f01 and
(f23f12). The simplex (126) is the morphism (f23f12) → f13; the simplex (016) is the composition of f01
and f13. The simplex (137) is the composition of f12 and f23; the simplex (037) is the composition of f02
and f23. Finally, the simplex (138) is the morphism (f23f12) → f13, and the simplex (068) is the morphism
(f13f01) → f03.

Fill this (uniquely).
To prove ⇐, we see that we obtain a 5-simplex (045678) which contains (in (078), as an element of

Hom) a morphism (f23f02) → f03 that satisfies the same identity as in the statement of the proposition, so
that it must be the same morphism as given by the data, and thus also be witnessed by (038). But then
(0138) is evidently the 3-simplex we were looking for.

Conversely, by uniqueness of fillers of 3-simplices, we know that (0138) must agree with our given 3-
simplex, so that (038) and thus (078) correspond to the given (f23f02) → f03. But then the identity holds
in (045678).

We now have the main result.

Proposition 1.3.14. The data for C̃ define a (2,1)-category.

Proof. All that remains is to show that the triangle and pentagon identities hold.
For the triangle identity, let f : X → Y and g : Y → Z be 1-morphisms. Notice that the 3-simplex

which is the first degeneracy of the composition of f and g actually witnesses (according to Proposition
1.3.13) that

g(1f) → gf → gf = g(1f) → (g1)f → gf → gf,

where gf → gf is the identity, so that we have the triangle identity.
For the pentagon, we suppose that we are given 1-morphisms f : X → Y , g : Y → Z, h : Z → W , and

i : W → V , and we concoct a 9-simplex, this one with vertices

X,Y, Z,W,W, V, V, V, V, V.

The 2-simplex (012) will be the composition of f and g, while the 7-simplex (23456789) will be the degeneracy
of the composition of h and i. The simplices (123) and (124) will both be the composition of g and h (so
that (1234) is the a degeneracy of this composition). Let (023) and (024) be the compositions of (gf) and
h and of f and (hg), respectively. Let (125) be the composition of g and (ih), and (035) be the composition
of (h(gf)) and i. Let (126) be the composition of g and (ih), and (046) the composition of ((hg)f) and i.
Let (137) be the composition of (hg) and i, and (017) the composition of f and (i(hg)). Let (128) be the
composition of g and (ih), with (028) the composition of (gf) and (ih). Finally, let (129) be the composition
of g and (ih), with (019) the composition of f and ((ih)g).

Filling the diagram, we obtain a 6-simplex (056789) which witnesses the pentagon identity.
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1.4 Morphisms of Quasi-Categories

1.4.1 Quasi-Functors

The elegance of the following definition is another reason why the simplicial sets approach to higher category
theory is pedagogically useful.

Definition 1.4.1. Let X and Y be quasi-categories. A quasi-functor (sometimes a (1)-morphism) f : X →
Y is a morphism of simplicial sets.

We define the categories nQCat, and nQGpd to be the categories of n-quasi-categories, and n-quasi-
groupoids respectively. Define QCat = ∞QCat and QGpd = ∞QGpd.

It will be useful to have a finite characterization of what the data of a morphism entails for n-quasi-
categories.

Proposition 1.4.2. Let X be a quasi-category, Y an n-quasi-category. A quasi-functor f : X → Y is
determined by what it does on the n-skeleton of X. Moreover, a morphism of simplicial sets g : Xn → Y
extends to a quasi-functor X → Y if and only if for each (n+ 1)-simplex x in X, g takes the boundary of x
to a fillable shell in Y .

Proof. Given a morphism f : Xn → Y , we first show that this has at most one extension to Xn+1; this shows
the first part of the proposition by induction (because Y is an m-category for each m ≥ n). So let x be an
(n + 1)-simplex in X. The boundary of x maps to an (n + 1)-shell in Y ; such an (n + 1)-shell has at most
one filler since Y is an n-quasi-category. Therefore, there is at most one place x can map, and we are done
with the first part.

For the second part, we show that we may extend any g as in the proposition statement to Xn+1 in such
a way that each boundary of an (n + 2)-simplex in X maps to a fillable (n + 2)-shell in Y ; this will prove
the result by induction. To wit, the condition in the proposition immediately gives us an extension to Xn+1.
Suppose that x is an (n+2)-simplex in X; consider the (inner) horn of type Λn+2

1 in the boundary of x. This
maps to an inner horn in Y , which has a filler y. But ∂1y, being an (n+ 1)-simplex in the n-quasi-category
Y sharing a boundary with the image of ∂1x, must actually be the image of ∂1x, so that the image of the
boundary of x is fillable (by y).

Notice what the preceding proposition says about quasi-functors between nerves of categories. A quasi-
functor consists of the data of a map on objects and a map on morphisms which respects the source, target,
and identity maps and which takes commutative triangles to commutative triangles. This is of course the
definition of a functor between categories, and so we conclude (combining with the corollary above):

Corollary 1.4.3. There is a functor (of categories) N : Cat → SSets which takes a category to its nerve
and a functor to its corresponding quasi-functor. This is a full embedding of categories, and it is essentially
surjective onto the (full) subcategory of SSets consisting of the 1-quasi-categories.

Recall that if X and Y are simplicial sets, then the (categorial) product X ×Y is just the simplicial set
whose m-simplices are defined

(X × Y )m = Xm × Ym.

It is immediate from the definition that if X and Y are n-quasi-categories or n-quasi-groupoids respectively,
that X × Y is also an n-quasi-category or an n-quasi-groupoid. Thus because nQCat and nQGpd are full
subcategories of SSets, these products in SSets are also products in nQCat and nQGpd, respectively.

Finally, note that there are forgetful functors nQCat → mQCat and nQGpd → mQGpd whenever
n ≤ m.

1.4.2 Quasi-Functor Quasi-Categories

We first make a rather general definition:
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Definition 1.4.4. Suppose X and Y are simplicial sets. The simplicial set [X,Y ] is defined to have as its
set m-simplices [X,Y ]m the set of morphisms X ×∆m → Y , with boundary and degeneracy maps induced
from those on the ∆k.

This definition is clearly functorial in X and Y (contravariantly and covariantly, respectively). The
following property characterizes the simplicial set [X,Y ].

Proposition 1.4.5. For any simplicial set X, the functor [X,−] is right adjoint to the functor (−)×X as
endofunctors of SSets.

Proof. Let Y and Z be simplicial sets; we wish to produce a natural bijection between Hom(Y × X,Z)
and Hom(Y, [X,Z]). Indeed, given a morphism f : Y × X → Z and an m-simplex y : ∆m → Y of Y , the
composition f ◦ (y × idX) defines an m-simplex in [X,Z], and the correspondence y 7→ f ◦ (y × idX) is a
morphism of simplicial sets. Conversely, given a morphism g : Y → [X,Z] we may produce a morphism
Y ×X → Z by taking an m-simplex (y, x) to g(y)(x, sm) where sm is the unique m-simplex in ∆m. These
operations are clearly inverse to one another, and functorial, so we have what we want.

The operation [X,Y ] is thus an “internal Hom” in SSets. Moreover, we see that the 0-simplices of [X,Y ]
are just the morphisms X → Y , and the 1-simplices are just homotopies of morphisms, in the obvious sense.

We now relate this notion to quasi-categories.

Lemma 1.4.6. Let X be a simplicial set and Y an object of nQCat (resp. nQGpd). Then the simplicial
set [X,Y ] is an object of nQCat (resp. nQGpd).

Proof. Suppose we are given a horn of [X,Y ], i.e. a morphism Λm
k → [X,Y ], or equivalently a morphism

h : Λm
k ×X → Y. We would like to extend this to a morphism g : ∆m ×X → Y (uniquely, if m > n). We

will build a morphism gr : ∆m × Xr → Y for each r so that the gr’s form a chain of extensions and such
that each agrees with h as far as it goes; their union will be the g we want.

The base case g0 is simple. X0 consists of a set of points, and so for each p : ∗ → X we need only map
p to a filler of the horn h ◦ (id × p) : Λm

k → Y ; such a filler is unique if m > n. Now suppose that we have
defined gr−1. Given an r-simplex s : ∆r → X in Xr, we have already defined the map

g′ = gr−1 ◦ (id× s|∂∆r ) : ∆m × ∂∆r → Y,

as well as wanting the map
h′ = h ◦ (id× s) : Λm

k ×∆r → Y

to agree with the gr we will construct; both g′ and h′ already agree on the (r − 1)-skeleton of X by the
induction hypothesis. We endeavor to extend the union of these maps to ∆m ×∆r; this will finish the proof
by induction on r.

But now we have reduced to the case of filling a morphism

Λm
k ×∆r ∪∆m × ∂∆r → Y

to ∆m ×∆r. According to Lemma 1.2.6, we may fill this by a succession of inner horn fillings followed by
a filling of a Λm+r

k (or a Λm+r
m+r if k = m). Thus, the diagram fills (in the case of quasi-groupoids and quasi-

categories both). Moreover, the diagram as given already has all simplices of dimension max(r−1,m−2) (as
all such simplices either have a ∆m-component in the (m−2)-skeleton or a ∆r-component in the boundary).
Therefore, if m > n, all n− 1-simplices were given already, and so all the horns we fill must fill uniquely. We
thus finish the induction, and the proof.

Using again the fact that QCat, nQCat, QGpd, and nQGpd are full subcategories of SSets, we see that
the adjunction between (−)×X and [X,−] holds in these categories as well; it therefore makes sense to refer
to [X,Y ] as an internal Hom in these categories.
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1.5 Equivalence

There are two major notions of equivalence which concern us: that of equivalence of objects in a quasi-
category, and equivalence of quasi-categories themselves. We deal with both in turn, but first we look at the
key new notion for this discussion, what we will call very surjective morphisms (also known as trivial Kan
fibrations).

1.5.1 Very Surjective Morphisms

A very surjective morphism will serve for us to be a prototypical equivalence of quasi-categories. That
trivial Kan fibrations serve this purpose is an adaptation of the “main new concept” in [Mak97]. We use the
terminology from this paper, to point to the “logical” (as opposed to “topological”) source of inspiration.

Definition 1.5.1. Let f : X → Y be a map of simplicial sets and 0 < n ≤ ∞. We say that f is n-very
surjective if for every m-simplex ∆m → Y and every lift of its boundary to a shell σ : ∂∆m → X in X, there
is an extension of σ to an m-simplex ∆m → X, and moreover that these extensions are unique whenever
m ≥ n.

In the sequel, we may abbreviate “∞-very surjective” to “very surjective.” Notice that a very surjective
map of categories is the same thing as a functor which is fully faithful and surjective on objects. Also,
a very surjective map of simplicial sets is known in the literature as a “trivial Kan fibration.” We use
the terminology from [Mak97] mainly because it is in Makkai’s work that the connection of these maps to
equivalences of categories is fleshed out.

We have the following “nicer” characterization of n-very surjective maps which subsumes the topological
notion that a trivial Kan fibration is a morphism that possesses the right lifting property with respect to
cofibrations.

Proposition 1.5.2. Let f : X → Y be a morphism of simplicial sets. Then f is very surjective if and only if
for every monomorphism of simplicial sets Σ ↪→ Θ together with compatible morphisms Σ → X and Θ → Y ,
there is a compatible lift Θ → X. The map f is n-very surjective if and only if in addition whenever Σ ↪→ Θ
is an isomorphism on (n− 1)-skeleta, then there is only one lift (this is also of course vacuously true when
n = ∞).

Proof. As ∂∆m ↪→ ∆m is a monomorphism which is an isomorphism on (n − 1)-skeleta for all n ≤ m, one
direction is clear in both parts of the proposition statement.

For the other direction, assume that f : X → Y is very surjective. We prove inductively that we may
extend the map Σ → X to Σ ∪Θm, where Θm is the m-skeleton of Θ and the union is taken in Θ. Indeed,
since the very surjective condition allows us to lift vertices (as ∂∆0 = ∅ and ∆0 is a point), we may extend
to Σ∪Θ0. Now, suppose we are given a map on Σ∪Θm−1. Any missing m-simplex has its boundary already
there, so we are given a map ∂∆m → X with a filler ∆m → Y downstairs; the very surjective condition allows
us to lift this (freely, as we have already lifted the (m− 1)-skeleton of Θ). This completes the induction, and
so the union of these extensions to Σ ∪Θm gives us the extension to Θ that we wanted.

For the n-very surjective condition, notice that every lift of Θ → Y to X arises in the way described
in the previous paragraph, and so as the lifts of m-simplices will be unique for m ≥ n (and all simplices of
lesser dimension have already been filled in the condition), we have a unique lift, as desired.

Thus, setting B = Y , we see that very surjective maps have the property that partial sections always
extend to full sections; in particular, a section always exists. This motivates the terminology: the axiom of
choice fails in general in the presheaf category SSets, and a very surjective map is a map for which choice
holds in a very strong way.

Proposition 1.5.3. The class of n-very surjective maps is stable under composition and base change. If
X → Y is n-very surjective and S is a simplicial set, then [S,X] → [S, Y ] is n-very surjective. For a
morphism X → Y of simplicial sets, the following are equivalent:
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(i) The simplicial set X is an n-quasi-category (n-quasi-groupoid) and the morphism X → Y is very
surjective.

(ii) The simplicial set Y is an n-quasi-category (n-quasi-groupoid) and the morphism X → Y is n-very
surjective.

Proof. Stability under composition is clear. Suppose that X → Y is very surjective and Z → Y is any
morphism. Let ∆m → Z be an m-simplex of Z and ∂∆m → X ×Y Z a lift of its boundary. Composing with
the morphisms of base change, we get an m-simplex of Y and a lift of its boundary to X, whence a full lift
of the simplex to X. Thus we get compatible maps ∆m → Z and ∆m → X, whence a map ∆m → X ×Y Z
which is the desired extension. It is easy to check that if m > n, this extension is unique.

If X → Y is n-very surjective, let S be a simplicial set, ∂∆m → [S,X] an m-simplex in [S,X] with a
filling ∆m → [S, Y ] of its projection to Y . This the same as a morphism ∂∆m × S → X with an extension
to ∆m × S → Y in Y . But then the given ∂∆m × S → X extends to ∆m × S → X over the given filler, and
uniquely so if m > n because in that case the n-skeleton of ∆m × S is contained in ∂∆m × S.

Suppose now that X → Y is very surjective, and assume that X is an n-quasi-groupoid (n-quasi-
category). If Λm

k → Y is an (inner) horn, then by lifting simplices one by one according to the definition of
n-very surjective, we may lift this horn to a horn Λm

k → X. Filling it upstairs, we may map it downstairs
and obtain the result. If m > n, any other filler downstairs lifts to a filler upstairs, but by uniqueness of
fillers in X, these must be equal, hence equal downstairs, so we have uniqueness.

Lastly, we need to show that X → Y is n-very surjective. Suppose τ, τ ′ : ∆m → X are two m-simplices
in X with the same boundary and which map to the same m-simplex τ̄ in Y , with m ≥ n. Form an (n+ 1)-
shell whose kth face is σm−1∂kτ = σm−1∂kτ

′, 0 ≤ k ≤ m− 1, and whose mth and (m+ 1)th faces are τ and
τ ′ respectively. This shell maps to the boundary of the σmτ̄ , and so by very surjectivity the filler in Y lifts
to X, showing that this shell fills. But the mth horn of this filler can also be filled by the mth degeneracy of
τ ′. As m + 1 > n, uniqueness of fillers above dimension n in the n-quasi-category X shows that τ = τ ′, as
desired.

For the other direction, assume that Y is a n-quasi-groupoid (n-quasi-category), X → Y is n-very
surjective, and Λm

k → X is an (inner) horn. Composing with X → Y , we obtain a horn Λm
k → Y which we

may fill to an m-simplex. The kth face of this m-simplex has been filled downstairs and its boundary has
been lifted upstairs, so we may lift the interior by the definition of very surjective. Now, the m-simplex itself
has been filled in downstairs and its boundary has been lifted upstairs, so we may fill that as well. Every
filler of this horn clearly arises in this fashion, so if m > n this filler is unique as both steps characterize the
filler uniquely.

1.5.2 Equivalence and Loose n-Quasi-Categories

Definition 1.5.4. Let X and Y be simplicial sets. We say that X and Y are n-(quasi-)equivalent if there
is a simplicial set P and n-very surjective morphisms πX : P → X and πY : P → Y (so that if X or Y is
e.g. an n-quasi-category then P is also an n-quasi-category).

As before, we will habitually omit “∞-” in the terms ∞-(quasi-)equivalent and ∞-equivalence.

Proposition 1.5.5. The relation of n-quasi-equivalence is an equivalence relation on simplicial sets.

Proof. The relation in quastion is clearly reflexive and symmetric. For transitivity, suppose that P → X,
P → Y , Q → Y , and Q → Z are n-very surjective. Then P ×Y Q → P → X and P ×Y Q → Q → Z are
n-very surjective, so that X is equivalent to Z.

Recalling the definition of this equivalence relation, it is clear that n-quasi-equivalence is the smallest
equivalnce relation so that P ∼ X whenever there is an n-very surjective morphism P → X.

The work in [Mak97] suggests that this notion of equivalence (which is “semantic” in nature) should
be sharply faithful to an appropriate notion of “syntactic equivalence.” We will not attempt to make this
formal here, although at times it will be a guiding principle.
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Definition 1.5.6. Let X be a quasi-category. We say that X is a loose n-quasi-category if X is equivalent
to an n-quasi-category.

Before we prove the main result about loose n-quasi-categories, we will need a few combinatorial lemmas
about general quasi-categories.

Lemma 1.5.7. Let X be a quasi-category and m ≥ 1 an integer. Define a relation ∼ on m-simplices by
saying that µ ∼ µ′ if there is an (m + 1)-simplex τ with ∂mτ = µ, ∂m+1τ = µ′, and for k with 0 ≤ k < m
we have ∂kτ = σm−1∂kµ = σm−1∂kµ

′. Then ∼ is an equivalence relation. Moreover, we obtain the same
relation if we use the “jth” condition (0 ≤ j ≤ m), namely that µ ∼ µ′ if there is an (m+ 1)-simplex τ such
that ∂jτ = µ, ∂j+1τ = µ′, and for k with 0 ≤ k ≤ m+ 1 and k 6= j, j + 1 we have ∂kτ = ∂kσjµ.

Proof. Notice that equivalent m-simplices have equal boundaries.
Reflexivity is given by taking τ = σmµ. For symmetry, suppose that τ witnesses that µ ∼ µ′. Define a

Λm+2
m by letting its (m+2)th boundary be τ , its (m+1)th boundary be σmµ, and by letting its kth boundary

with 0 ≤ k < m be σmσm−1∂kµ. Filling this inner horn, an extracting its mth boundary, we obtain a witness
to µ′ ∼ µ. Finally, for transitivity, let τ witness µ ∼ µ′ and τ ′ witness µ′ ∼ µ′′. Then we can form a
Λm+2

m+1 whose (m+ 2)th boundary is τ , whose mth boundary is τ ′, and whose kth boundary for 0 ≤ k < m is
σmσm−1∂kµ. Filling this inner horn, the (m+ 1)th face of the filler gives us a witness to µ ∼ µ′′.

For the last part, we first check one direction. So, given τ witnessing µ ∼ µ′ as in the initial definition
of ∼, form a Λm+2

m+1 whose (m+ 2)th face is σjµ, whose jth face is σmµ, whose (j + 1)th face is τ , and whose
kth face for k 6= j, j + 1,m+ 1,m+ 2 is σjσm−1∂k−1µ. Filling this inner horn, we can extract its (m+ 1)th

face which will witness that µ ∼ µ′ in the “jth” sense.
Conversely, we can use essentially the same (m+2)-horn, only this time it will be a Λm+2

j+1 whose (m+1)th

face witnesses equivalence in the jth sense. We are done.

In the sequel, we will also use the term “homotopic” to refer to this relation.
Given a quasi-category X and an integer m ≥ 1, we can thus form an equivalence relation on r-simplices

by saying that two r-simplices are equivalent if their m-skeleta are equivalent (in the sense of the lemma).
We may then form a simplicial set πm(X) whose set of r-simplices is the set of r-simplices of X modulo this
equivalence relation. This simplicial set has the property that if two r-simplices agree on their m-skeleton,
then they are equal. Moreover, πm(X)op = πm(Xop).

Lemma 1.5.8. Let X be a quasi-category, m ≥ 1 an integer, and ∼ the equivalence relation defined in
the previous lemma. Let τ be an (m + 1)-simplex of X. Moreover, assume that for each integer k with
0 ≤ k ≤ m + 1, we are given an m-simplex µk with µk ∼ ∂kτ . Then there is an (m + 1)-simplex τ ′ with
∂kτ

′ = µk and for all k.

Proof. We will prove this assuming that all the µk but one are equal to ∂kτ ; the general case follows by
iterating the special case, changing one face at a time. For the rest of the proof, let k denote that unique
index such that µk 6= ∂kτ .

After possibly passing to the opposite category, we may assume that k > 0. Let ξ witness that ∂kτ ∼ µ.
Form a Λm+2

m+1 where for r with 0 ≤ r ≤ m, r 6= k, the rth face is σm∂rτ , the kth face is ξ, and the (m+ 2)th

face is τ . Filling this, the (m+ 1)th face will have the properties we desire.

Proposition 1.5.9. Let X be a quasi-category. The morphism of simplicial sets X → πn(X) has the
property that any morphism X → Y with Y an n-quasi-category factors uniquely as X → πn(X) → Y .

Proof. The morphism X → πn(X) is an epimorphism, so uniqueness is immediate. Suppose that X → Y
is a morphism, with Y an n-quasi-category. We need only show that if two r-simplices ξ and ξ′ in X are
equivalent, then they map to the same simplex in Y . In the case r = n, we have an (n+ 1)-simplex τ which
agrees with σnξ on Λn+1

n , but whose nth face is ξ′. Mapping this Λn+1
n forward to Y , it has only one filling,

which must be both the image of τ and the image of σnξ. We conclude that ξ and ξ′ map to the same
n-simplex in Y . In the case r > n, two equivalent r-simplices ξ and ξ′ map to simplices in Y with equal
n-skeleta, whence equal simplices.
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Theorem 1.5.10. Let X be a quasi-category. The following are equivalent:

(i) The quasi-category X is a loose n-quasi-category.

(ii) There is an n-quasi-category Y and a very surjective morphism X → Y .

(iii) For every monomorphism of simplicial sets Σ ↪→ Θ which is an isomorphism on (n+ 1)-skeleta, every
map Σ → X extends to a map Θ → X.

(iv) For every k ≥ n+ 2, every morphism ∂∆k → X can be extended to a morphism ∆k → X.

Moreover, in this case πn(X) is an n-quasi-category and the morphism X → πn(X) is very surjective.

Proof. The implication (ii)⇒(i) is immediate from the definition of equivalence.
For (i)⇒(iii), let P admit very surjective maps to X and to an n-quasi-category Y , say πX and πY

respectively. Let Σ → Θ be a monomorphism of simplicial sets which is an isomorphism on (n+ 1)-skeleta.
If Σ → X is a morphism, we may lift this to a morphism σ̃ : Σ → P , which then projects down to a morphism
πY ◦ σ̃ : Σ → Y . By Corollary 1.1.4, we may extend this map to Θ, and so by Proposition 1.5.2 we may
extend σ̃ to a morphism τ : Θ → P , so that πX ◦ τ extends σ to Θ, as desired.

The implication (iii)⇒(iv) is clear.
Finally, we prove (iv)⇒(ii). Let X satisfy (iv). I claim that X → πn(X) is very surjective. Indeed,

let ∂∆r → X be an r-shell and ∆r → πn(X) a filling of its projection in πn(X). If r ≥ n + 2, then by
assumption we may fill the shell in X, and the projection of this filler agrees with the given filler along
n-skeleta, so this filler is in fact a lift. If r ≤ n, then as X → πn(X) is an isomorphism along (n− 1)-skeleta,
any representative of the given r-simplex in πn(X) (which is an equivalence class of r-simplices in X) will
fill the given shell in X. So the only case left to consider is r = n+1. In this case, fix one representative σ̃ of
the given (n+ 1)-simplex in πn(X). The boundary of σ̃ is equivalent to the given shell in X, so by Lemma
1.5.8 the given shell can as well be filled in X. This completes the proof of the claim.

Now, as X → πn(X) is very surjective, we conclude that πn(X) is a quasi-category. I claim that πn(X)
is an n-quasi-category, which will complete the proof that (iv)⇒(ii). Indeed, suppose we are given two fillings
τ, τ ′ : ∆r → πn(X) of the same inner horn Λr

k → πn(X), with r > n. If r ≥ n + 2, τ and τ ′ agree on their
n-skeleta, and so must be equal. If r = n + 1, we may (by lemma 1.5.8) lift τ and τ ′ to (n + 1)-simplices
τ̃ and τ̃ ′ in X whose kth horns agree. We may then form a Λn+2

k in X whose mth face is σm+1∂mτ̃ for
0 ≤ m ≤ n, m 6= k, and whose (n+ 1)th and (n+ 2)th faces are τ̃ and τ̃ ′ respectively. Filling the horn and
extracting its kth face, we see that ∂k τ̃ ′ ∼ ∂k τ̃ , so that ∂kτ

′ = ∂kτ . Thus, τ and τ ′ agree on their n-skeleta,
and so must be equal in this case as well. We are done.

1.5.3 Truncation

We now use Theorem 1.5.10 to define a useful truncation operation on quasi-categories.

Corollary 1.5.11. Let X be a quasi-category, n ≥ 1 an integer. Then there is a loose n-quasi-category
Xn and a monomorphism X ↪→ Xn such that every morphism X → Y with Y an n-quasi-category factors
uniquely through Xn. In particular, the morphism X → πn(Xn) is initial in the category of n-quasi-categories
under X.

Proof. Define Xn
n+1 = X, and for k > n + 1, inductively define Xn

k to be the simplicial set obtained from
Xn

k−1 by adding one additional k-simplex for every unfilled k-shell, and giving the new k-simplices their
associated k-shells as boundaries. Let Xn =

⋃∞
k=n+1X

n
k ; by the theorem, Xn is a loose n-quasi-category.

If k ≥ n + 2 and Y is an n-quasi-category, then every k-shell in Y has a unique filler, and so these new
simplices will have (inductively) exactly one possible destination, showing that every morphism X → Y
extends uniquely to Xn → Y . This certainly shows that such morphisms also factor through X → πn(Xn);
for uniqueness, a different factorization through πn(Xn) would give a different factorization through Xn as
Xn → πn(Xn) is epimorphic, which would be a contradiction.
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In the sequel, for a quasi-category X, we will let Πn(X) denote the n-quasi-category under X which is
initial in the category of all such (the corollary proved that Πn(X) exists and is canonically isomorphic to
πn(Xn)).

Corollary 1.5.12. Let X be a quasi-category. The quasi-functor X → Πn(X) is an isomorphism of simpli-
cial sets on (n− 1)-skeleta, and for k = n, n+ 1, any filler ∆k → Πn(X) of the image of a shell ∂∆k → X
in X lifts to a filler of the shell in X.

Proof. Given ∂∆k → X with a filler of its image ∆k → Πn(X) = πn(Xn), we can lift the filler along the
very surjective morphism Xn → πn(Xn), and then the filler must live in X, as the loose n-quasi-category
Xn only possesses additional simplices in dimensions n + 2 and higher. Moreover, the passage from Xn to
πn(Xn) only involves taking equivalence classes of simplices in dimensions n and higher, so X → Πn(X) is
an isomorphism along the (n− 1)-skeleton.

Corollary 1.5.13. There is a natural extension of Πn to a functor QCat → nQCat.

Proof. We need only say what Πn does on morphisms. But given a morphism of quasi-categories X → Y ,
the composition X → Πn(Y ) factors uniquely through X → Πn(X), giving a map Πn(X) → Πn(Y ). It is
easy to check that this assignment is functorial.

Corollary 1.5.14. If m ≥ n, the forgetful functor nQCat → mQCat is right adjoint to Πn.

Proof. Immediate from the fact that Πn(X) is the initial n-quasi-category under X.

Corollary 1.5.15. If m ≥ n, then Πn ◦Πm is naturally isomorphic to Πn.

Proof. This follows immediately from the previous corollary and the fact that the forgetful functors nQCat →
mQCat → QCat and nQCat → QCat are naturally isomorphic.

1.5.4 Loose n-Quasi-Categories for n < 1

Another application of Theorem 1.5.10 is to sensibly extend the notion of loose n-quasi-category to non-
positive n-values, although only the case n = 0 is even remotely interesting, and so the following definition
should probably only be seen as a integrative digression.

Definition 1.5.16. Let X be a quasi-category, n an integer (which could be nonpositive). We say that X is
a loose n-quasi-category if for each k ≥ n+ 2 and each k-shell ∂∆k → X of X, there is a k-simplex ∆k → X
which fills it.

Of course, Theorem 1.5.10 shows that this definition is compatible with what we have written earlier.
Recall that we may consider a poset to be a simplicial set by thinking of it as a category and then

taking the nerve of this category. Characteristically, a poset is a category which is skeletal and in which all
Hom-sets are empty or singletons.

Proposition 1.5.17. Let X be a quasi-category. Then X is a loose 0-quasi-category if and only if X is
equivalent to a poset, and in this case X admits a very surjective map to a poset (in fact, any poset it is
equivalent to) which is unique up to isomorphism. Moreover, X is a loose (−1)-quasi-category if and only if
X is equivalent to ∆0 or the empty simplicial set, and X is a loose n-quasi-category for n ≤ −2 if and only
if X is equivalent to ∆0.

Proof. Suppose that X is equivalent to a poset Y . Let P be a simplicial set and πX : P → X, πY : P → Y
very surjective maps. I claim that for any section s : X → P , the composition πY ◦ s is very surjective.
Indeed, let ∂∆k → X be a shell in X and ∆k → Y a filler in Y . If k ≥ 2, fillers exist in X and are unique
in Y , so this case is easy. For k = 0, we need to show that objects in Y lift to X. Let y be a 0-simplex in
Y , and lift it to an object p in P , projecting down to an object x of X. Since both p and s(x) map to x,
they have 1-morphisms between them in both directions (over 1x in X). Projecting these down to Y , we see
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that πY (s(x)) is isomorphic to y, hence equal to y. Similarly, given a lift to X of a the boundary of a ∆1 in
Y , we can lift this boundary to P via s which will lie over the given boundary of the given ∆1; filling it by
very surjectivity of πY , we map the filler back to X and are done. But then X is a loose 0-quasi-category
as fillers of k-shells exist in Y for all k ≥ 2, and these all lift by very surjectivity. It is easy to see that any
very surjective map between posets is an isomorphism, which gives uniqueness.

Conversely, if X is a loose 0-quasi-category, it is in particular a loose 1-quasi-category, and then π1(X)
is a category with the property that for any three morphisms f : x → y, g : y → z, and h : x → z, h = gf .
This clearly implies that π1(X) has Hom-sets which are empty or singletons, so that a skeletal subcategory
Y of π1(X) will be a poset. Moreover, the functor π1(X) → Y is very surjective as it is surjective on objects
and fully faithful. Therefore X is equivalent to a poset.

If X is a loose (−1)-quasi-category, the poset it is equivalent to will have the property that any two
objects x and y have that x ≤ y. This clearly implies that the poset is either empty or a singleton. Conversely,
if X is equivalent to the empty poset or the singleton, then the existence of the very surjective map to either
of these two cases will clearly imply that X is a loose (−1)-quasi-category. Being a loose (−2)-quasi-category
in addition is the same thing as imposing the existence of a point, hence the result.

After this proposition, it makes sense to define Π0(X) to be the initial poset under X, and it exists for
the same reasons the other Πn(X) exist.

Definition 1.5.18. We say that a simplicial set X is contractible if X is equivalent to ∆0, or (equivalently)
a (−2)-quasi-category.

1.5.5 The Slice Construction

We now proceed with more constructions reminiscent of those from ordinary category theory. The first
notion we generalize is that of slice (and coslice) categories.

Definition 1.5.19. Let X be a simplicial set, x an m-simplex of X. The slice quasi-category X/x is defined
to be the simplicial set whose r-simplices are the (r + m + 1)-simplices α of X whose target m-simplex
(i.e. the boundary simplex whose vertices are r + 2, . . . , r +m + 2) is x. These simplices carry an induced
simplicial set structure from X. Define x\X dually, or what is the same thing, as (Xop/xop)op.

We will not return to “coslice” quasi-categories until the next section, although most if not all of what
is done in this section would hold as well if we replaced uses of slice quasi-categories with coslice quasi-
categories.

It is immediate from the definition that for each m-simplex x we have a “forgetful quasi-functor”
X/x → X which just takes an r-simplex in X/x (which is an (r + m + 1)-simplex in X) to its boundary
face with vertices 0, . . . , r. Moreover, if x is a boundary simplex of f , then a similar procedure produces a
morphism X/f → X/x, and these morphisms are compatible with the correpsonding boundary morphisms in
∆. There are also degeneracy maps induced by corresponding degeneracies. The morphism X/x→ X could
be thought of as a morphism of this second type where the boundary simplex is “the unique (−1)-simplex
in the boundary;” the null simplex.

In the case where X is an n-quasi-category or n-quasi-groupoid, we should make sure that taking slices
respects these properties.

Proposition 1.5.20. Let X be an n-quasi-category or an n-quasi-groupoid, x an m-simplex of X. Then
X/x is an n-quasi-category or an n-quasi-groupoid, respectively.

Proof. Let α : Λr
k → X/x be a horn in X/x, inner in the n-quasi-category case. Then we can think of α as

a morphism Λr+m+1
k,r+1,...,r+m+1 → X, which has a filler in X (unique, if r > n) by Lemma 1.2.2; this of course

gives a filler in X/x.
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1.5.6 Quasi-isomorphisms

Proposition 1.5.21. Let X be a quasi-category and f : x → y a morphism in X. Then X/f → X/x
(induced from x being the domain of f) is very surjective.

Proof. An m-simplex of X/x together with a lift of its boundary to X/f amounts to the data of the (m+2)th

face of a (m+ 2)-simplex in X, together with its zeroth through mth faces. We thus have a horn, a Λm+2
m+1 in

X, which is inner and thus can be filled, giving the desired m-simplex in X/f .

This proposition begs the question of what happens if we use the quasi-functor induced from the
codomain of a morphism.

Definition 1.5.22. Let X be a quasi-category and f : x → y a morphism in X. We say that f is an
quasi-isomorphism if the quasi-functor X/f → X/y (induced from y being the codomain of f) is very
surjective.

The next lemma is key.

Lemma 1.5.23. Let X be a quasi-category and x an object of X. Then the morphism 1x is a quasi-
isomorphism.

Proof. The data of an m-simplex of X/x and a lift of its boundary to X/1x consists of an (m+ 1)-simplex
σ of X with target x along with a Λm+2

m+1,m+2 whose target morphism is 1x and whose intersection with the
(m+1)th face of ∆m+2 agrees with σ. We thus are given an (arbitrary) Λm+2

m+2 with target morphism 1x, and
desire to fill it. Call the given horn λ : Λm+2

m+2 → X.
Let k ≤ m be the largest integer such that for all subsets S ⊆ [m] of size k, the simplex of λ with

vertices S ∪ {m+ 1,m+ 2} is the kth degeneracy of some k-simplex. We will prove the result by induction
on m− k.

For the base of the induction, suppose m = k. Then σm+1∂m+1λ (i.e. the (m+ 1)th degeneracy of the
(m+ 1)th face of λ will fill the given horn.

Now, assume the induction hypothesis. We will form a morphism λ̃ : Λm+3
m+1,m+3 → X whose (m+ 1)th

(partial) boundary is λ; filling this horn (using Lemma 1.2.2) will thus fill λ. To this end, start with a partial
filling of ∆m+3 wherein only λ is filled in on the (m+ 1)th face. We will number vertices as in the ambient
∆m+3. For every subset S ⊆ [m] of size k + 1, let the simplex with vertices S ∪ {m + 1,m + 3} be the
(k + 1)th degeneracy of the simplex of λ with vertices S ∪ {m + 3}. Moreover, for every subset S ⊆ [m] of
size k, let the simplex with vertices S ∪ {m+ 1,m+ 2,m+ 3} be the (k + 1)th degeneracy of the simplex of
λ with vertices S ∪ {m + 2,m + 3}. Note that since by assumption this last simplex was a kth degeneracy,
we get the same result by taking the kth degeneracy of this simplex. Therefore, these two sets of simplices
are compatible with one another (they are clearly compatible amongst themselves).

First, let us fill in the (m + 2)th face of λ̃. Inductively assume we have filled in all r-simplices of this
face which contain the vertex m+ 3; we may base the induction at r = k+ 2 (as λ gives all such faces which
contain m+ 3 but not m+ 1). The only unfilled (r + 1)-simplices containing the vertex m+ 3 will be those
with vertices S ∪{m+ 1,m+ 3}, where S ⊆ [m] has r elements. Each such is a Λr+1

r+1 with the property that
for each subset T ⊆ S of size k + 1, the simplex with vertices T ∪ {m+ 1,m+ 3} is a (k + 1)th degeneracy.
But we know that r + 1 ≤ m+ 2, so

(r − 1)− (k + 1) ≤ m− k − 1 < m− k,

and so by the inductive hypothesis we may fill this horn in. We thus have filled in the (m+ 2)th face of λ̃.
Next, we fill in all remaining simplices of λ̃. It will be enough to produce a filling such that for all

S ( [m], the simplex with vertices S ∪ {m + 1,m + 2,m + 3} is filled. We fill all such by inducting on |S|,
noting that we have covered the case |S| = k by assumption, and in any case we will have |S| ≤ m. Let
|S| = r. If we have filled in all such simplices of dimension less than r+ 2, then of the simplex with vertices
S ∪ {m + 1,m + 2,m + 3} we will have a Λr+2

r+2 filled in (the (m + 1)th face comes from λ, the (m + 2)th
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from the preceding paragraph). Moreover, this horn has the property that for every subset T ⊆ S ∪{m+ 1}
of size k + 1, the simplex with vertices T ∪ {m + 2,m + 3} is a (k + 1)th degeneracy of a (k + 1)-simplex.
Therefore, as

r − (k + 1) ≤ m− k − 1 < m− k,

we can fill this horn by the induction hypothesis, which completes both inductions, and the proof.

In the following theorem, we denote by S∞ the (nerve of the) groupoid with two objects 0 and 1 and
one isomorphism (in either direction) between them. The name comes from the fact that the geometric
realization of this simplicial set is the infinite-dimensional sphere.

Theorem 1.5.24. Let X be a quasi-category and f : x→ y a morphism in X. The following are equivalent:

(i) The morphism f is a quasi-isomorphism.

(ii) There is a quasi-functor S∞ → X taking 0 → 1 to f .

(iii) The quasi-functor X → Π1(X) maps f to an isomorphism in the (1-quasi-)category Π1(X).

(iv) There is a morphism g : y → x, a 2-simplex with zeroth face f , first face 1y, and second face g, and
another 2-simplex with zeroth face g, first face 1x, and second face f .

Proof. We first prove that (i)⇒(ii). Assume that f is a quasi-isomorphism. An n-simplex of S∞ is just a
sequence of n composable morphisms, which is characterized by a length-n + 1 sequence of objects in S∞,
i.e. binary sequence. The nondegenerate simplices are precisely those with no two consecutive digits the
same, i.e. the alternating sequences, of which there are two in each dimension. Let σn be the nondegenerate
simplex with target object (last digit) 0, and τn the nondegenerate simplex with target object 1. We would
like to find a quasi-functor S∞ → X which takes σ0 to x, τ0 to y, and τ1 to f .

We will inductively prove that given a partial quasi-functor S∞ → X defined for σm with m < n and
τm with m ≤ n, we may extend it to σn and τn+1. But of τn+1 we have filled in a horn, specifically a Λn+1

n+1,
because the inner faces are all degenerate and the zeroth face is taun. But by assumption this horn has a
target morphism of f . Since f is a quasi-isomorphism and X/f → X/y is very surjective, we can fill in the
horn, producing our desired τn+1 and σn.

To show (ii)⇒(iii), notice that the image of f under X → Π1(X) is the image of the isomorphism 0 → 1
under S∞ → X → Π1(X), and so is an isomorphism.

For (iii)⇒(iv), let f̄ : x → y denote the image of f under X → Π1(X). We know that f̄ is an
isomorphism, so there is a morphism ḡ in Π1(X) such that f̄ ḡ = 1y and ḡf̄ = 1x in Π1(X). By Corollary
1.5.12, we can lift ḡ to a morphism g : y → x in X, and then the fact that f̄ and ḡ are inverse lifts to the
desired pair of 2-simplices, again by the same corollary.

Finally, we will show (iv)⇒(i). To do this, we need to prove that for every k ≥ 0 and every k-shell
∂∆k → X/f with a filling of its image ∆k → X/y, there is a lift of this filler to X/f . Actually, we will prove
by induction on n that this filler lifting property is true for both X/f → X/y and X/g → X/x for every
k ≤ m.

First, let us prove this for m = 0. By symmetry, it is enough to consider X/f → X/y. We are tasked
with filling a Λ2

2 whose target morphism is f . To this end, form a Λ3
1.3 whose zeroth face is the given

2-simplex with sides f , 1y, and g, and whose second face is the first degeneracy of the first face of the given
horn; this can be filled by Lemma 1.2.2, and the first face of the filler will be a filler of the given horn.

Now assume that the filler lifting property is true for X/f → X/y and X/g → X/x for each k < m.
Again, by symmetry it is enough to consider X/f → X/y. We desire to fill an arbitrary Λm+2

m+2 whose target
morphism is f . To wit, we will form a Λm+3

m+1,m+3 whose partial (m + 1)th face is the given horn; this will
fill in X and give us the filler we want. We start with only this partial (m+ 1)th face filled in. We start by
filling in all simplices whose vertices are of the form S ∪ {m+ 1,m+ 2,m+ 3}, S ( [m], inducting on |S|.

To begin, we put in the given 2-simplex with sides f , 1y, and g as the simplex with vertices {m+1,m+
2,m+ 3}. Now let |S| = r ≤ m, and suppose that we have filled in all such simplices of dimension less than
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r + 2. Of the simplex with vertices S ∪ {m+ 1,m+ 2,m+ 3}, we have filled in its zeroth through (r − 1)th

faces, and also its rth face as this is contained in the Λm+2
m+2 we started with. We can fill in its (r + 2)th face

as at the moment this is partially filled as a Λr+1
r+1 with target morphism g, and this can be filled by the

induction hypothesis (as r + 1 < m+ 2). Thus we complete the induction on |S|.
We have now filled in the zeroth through mth faces of the desired horn. We need only fill in the (m+2)th

face. But as is easily verified, what we have already filled in comprises a Λm+2
m+2 in this face, and moreover

the face has a target morphism of 1y. Therefore, by Lemma 1.5.23, we can fill in this face, producing our
desired Λm+3

m+1,m+3, and finishing the proof.

Note that if X were the 2-quasi-category associated to the sub-2-category of Cat consisting of all
categories, all functors, and all natural isomorphisms, condition (ii) in the theorem can be rephrased “f is an
adjoint equivalence of categories,” and condition (iv) “f is an equivalence of categories,” so that we recover
the classical theorem that equivalences of categories are adjoint equivalences.

Corollary 1.5.25. Let f be a morphism in a quasi-category X. Then f is a quasi-isomorphism if and only
if the image of f in Xop is a quasi-isomorphism.

Proof. In Theorem 1.5.24, condition (iv) (say) is symmetric with respect to the operation of taking the
opposite quasi-category.

Corollary 1.5.26. Let X be an n-quasi-category. Then X is a n-quasi-groupoid if and only if all its
morphisms are quasi-isomorphisms (i.e., if and only if Π1(X) is a groupoid). In particular, an n-quasi-
category which is a quasi-groupoid is an n-quasi-groupoid, and moreover any quasi-category which has fillers
of all horns of the form Λm

m (or all horns of the form Λm
0 ) is a quasi-groupoid.

Proof. Suppose that in X, every morphism is a quasi-isomorphism. By symmetry, it is enough to show that
we can fill every Λm

m, and whenever m > n such horns fill uniquely. But the data of such a Λm
m is the same as

an (m−2)-shell in X/f and a filling of its image in X/y, where f : x→ y is the target morphism in the horn.
By very surjectivity of X/f → X/y and the fact that X/f is an n-quasi-category, morphism X/f → X/y is
actually n-very surjective (after Proposition 1.5.3). But then the horn fills in any case, and fills uniquely if
m− 1 ≥ n, i.e. m > n, as desired.

For the other direction, we can fill all horns of the form Λm
m in a quasi-groupoid, which clearly shows

that for every morphism f : x→ y, X/f → X/y is very surjective.

Definition 1.5.27. Let X be a quasi-category. We say that X is a loose n-quasi-groupoid if X is equivalent
to an n-quasi-groupoid.

Corollary 1.5.28. Let X be a quasi-category. Then X is a loose n-quasi-groupoid if and only if X is a
quasi-groupoid and X is a loose n-quasi-category, and in this case Πn(X) = πn(X) is an n-quasi-groupoid.

Proof. If X is a loose n-quasi-groupoid, then certainly X is both a quasi-groupoid and a loose n-quasi-
category. Conversely, if X is a quasi-groupoid and a loose n-quasi-category, then as X → πn(X) is very
surjective, every morphism in πn(X) is a quasi-isomorphism, so that πn(X) is actually an n-quasi-groupoid
equivalent to X.

Remark 1.5.29. We can thus extend this definition to n < 1 as we did for quasi-categories. It is immediate
from this that a loose n-quasi-groupoid is equivalent to a point if n ≤ −2, equivalent to a point or the empty
simplicial set if n = −1, and equivalent to a (discrete) set if n = 0.

Corollary 1.5.30. Let f, g, h be morphisms in a quasi-category X, and let h be “a composition” of f and g,
in the sense that there is a 2-simplex in X whose zeroth, first, and second faces are g, h, and f , respectively.
If any two of these morphisms is a quasi-isomorphism then so is the third. In particular, “compositions of
quasi-isomorphisms are quasi-isomorphisms,” and when h is an identity morphism, “left or right inverses of
quasi-isomorphisms are quasi-isomorphisms.”
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Proof. Project f , g, and h down to Π1(X), so that h̄ = ḡf̄ .

Corollary 1.5.31. Let f be a morphism in a quasi-category X with the property that f has left and right
inverses, in the sense that there are two 2-simplices, one with f as its zeroth face, the other with f as its
second face, and both with degenerate first faces. Then f is a quasi-isomorphism.

Proof. Project down to Π1(X).

Corollary 1.5.32. Let F : X → Y be a quasi-functor between quasi-categories, and f a quasi-isomorphism
in X. Then F (f) is a quasi-isomorphism in Y .

Proof. Given a morphism S∞ → X taking 0 → 1 to f , the composition S∞ → X → Y takes 0 → 1 to
F (f).

1.5.7 Fill Spaces and Hom Spaces

We now return to equivalences between quasi-categories.

Definition 1.5.33. Let X and Y be simplicial sets. A morphism F : X → Y will be called an n-equivalence
if there is a simplicial set P and n-very surjective morphisms πX : P → X and πY : P → Y such that
there is a section s : X → P with F = πY ◦ s. As usual, an ∞-equivalence will also be known simply as an
equivalence.

Notice that as very surjective morphisms always admit sections, simplicial sets X and Y are n-quasi-
equivalent if and only if there is a morphism F : X → Y which is an n-equivalence.

In the next section (Theorem 1.5.44) we prove that there is a characterization of equivalences between
quasi-categories which is almost identical to the usual definition for categories (and shows that the usual
notion is a special case of this one).

Definition 1.5.34. Let F : X → Y be a quasi-functor between quasi-categories. We say that F is essentially
surjective if for every objects y of Y there is an object x of X such that F (x) is quasi-isomorphic to y.

Definition 1.5.35. Let X be a simplicial set, Σ ↪→ Θ a monomorphism of simplicial sets, and σ : Σ → X a
morphism. Define a simplicial set Fill(σ,Θ) to be the simplicial set of all fillers of σ to Θ. More precisely, if
σ is represented by 1 → [Σ, X], then

Fill(σ,Θ) = 1×[Σ,X] [Θ, X].

In the case that X is a quasi-category and Σ ↪→ Θ is {0, . . . , n} ↪→ ∆n, the morphism σ consists of an
ordered n-tuple of objects (x0, . . . , xn), and so we define

HomX(x0, . . . , xn) = Fill(σ,∆n).

Keep in mind the case n = 1.

Notice that if X is an n-quasi-category, it is immediate that Fill(σ,Θ) is an n-quasi-category.

Proposition 1.5.36. Let X be a loose n-quasi-category (n a possibly nonpositive integer), k ≥ 0 an integer,
and Σ ↪→ Θ a monomorphism of simplicial sets which is an isomorphism on k-skeleta. Then for any σ : Σ →
X, the n-quasi-category Fill(σ,Θ) is a loose (n− k − 1)-quasi-groupoid (where we define ∞− k − 1 = ∞).

Proof. First we prove that Fill(σ,Θ) is a quasi-groupoid. Given a horn Λm
m → Fill(σ,Θ), we would like to

show that this horn fills. By definition, the horn is the same data as a morphism Λm
m×Θ → X, and in order

for our filler to land in Fill(σ,Θ), we ought to have that ∆m ×Σ → X factors through σ. Therefore, we are
given a morphism

Λm
m ×Θ ∪∆m × Σ → X,
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and we wish to fill this to ∆m×Θ. Notice that as the 0-simplices of Θ are all in Σ, all 1-simplices in ∆m×Θ
of the form ∆1 × {x} are in the above data and are identity morphisms in X.

As usual, to prove this by induction it will be enough to consider the case Σ ↪→ Θ = ∂∆s ↪→ ∆s.
According to the proof of Lemma 1.2.6, we see that in order to fill this diagram we only need to fill one
non-inner horn, which will be a Λm+s

m+s whose target morphism is an identity morphism. Therefore, as identity
morphisms are quasi-isomorphisms, the horn fills, and we have proven that Fill(σ,Θ) is a quasi-groupoid.

To show that Fill(σ,Θ) is a loose (n−k−1)-quasi-groupoid, consider an r-shell ∂∆r → Fill(σ,Θ) where
r ≥ n− k + 1. This data is the same as a morphism ∂∆r ×Θ → X which we must fill to ∆r ×Θ providing
that ∆r×Σ → X factors through σ. Progressively filling the skeleta of Θ, we reduce to the problem of filling
a given

∆r × ∂∆s ∪ ∂∆r ×∆s → X

to ∆r ×∆s, where s ≥ k + 1. Applying Lemma 1.2.5 will fill all of this by inner horn filling except the last
step, where we will have the shell of an r + s-simplex. But

r + s ≥ (n− k + 1) + (k + 1) = n+ 2,

so this last shell fills because X is a loose n-quasi-category. The proof is complete.

Remark 1.5.37. Notice the special case that in a loose n-quasi-category X, if x and y are objects of X then
Hom(x, y) is a loose (n−1)-quasi-groupoid. We thus recover that a category has Hom-objects which are sets
and that a poset has Hom-objects which are singletons or empty. Moreover, a 2-quasi-category has Hom-
objects which are (equivalent to) groupoids, as was discussed in §1.3. We will show later (in Proposition
2.4.3) that these notions are compatible with one another.

Remark 1.5.38. One might ask why we assumed that X is a loose n-quasi-category in the above proposition,
instead of an n-quasi-category. In the latter case, the result as stated cannot be strengthened, as is easy
to see upon recalling Lemma 1.2.6, where we had to fill horns of dimension less than that at which point
we know fillers to be unique. The result is not so bad though; the filler spaces are certainly equivalent in
a canonical way to their truncations to the appropriate level, and so one might just use the truncations as
filler and Hom-spaces (as we did implicitly in the case of 2-quasi-categories).

1.5.8 Equivalences of Quasi-Categories

Definition 1.5.39. Let F : X → Y be a quasi-functor between quasi-categories. We say that F is a
homotopy equivalence if there is a quasi-functor G : Y → X and quasi-isomrphisms GF → 1X and FG→ 1Y

in [X,X] and [Y, Y ] respectively. In this case, G is called a homotopy inverse to F .

Remark 1.5.40. The terminology is lifted from topology because in the special case that X and Y are
quasi-groupoids, X and Y are the same thing as Kan complexes, and this is the right notion of homotopy
equivalence in that context. In the sequel, we will occasionally refer to the morphisms GF → 1 and FG→ 1
as “homotopies.”

Lemma 1.5.41. Let F : X → Y and G : Y → X be quasi-functors between quasi-categories which are
homotopy inverse to one another, say via homotopies ϕ′ : FG → 1 and ψ : GF → 1. Then we can find a
quasi-isomorphism ϕ : FG→ 1 such that there is a 2-simplex in [X,Y ] whose zeroth, first, and second faces
are 1F , ϕF and Fψ, respectively.

Proof. Consider the (ordinary) categories Π1([X,X]), Π1([X,Y ]), and Π1([Y, Y ]). The functors [X,X] →
[X,Y ] and [Y, Y ] → [X,Y ] induced from composition by F then descend to functors λ̄F : Π1([X,X]) →
Π1([X,Y ]) and ρ̄F : Π1([Y, Y ]) → Π1([X,Y ]). I claim that λ̄F is an equivalence of categories. Indeed, the
functor of left composition λ̄G : Π1([X,Y ]) → Π1([X,X]) is an inverse, because the quasi-isomorphisms
GF → 1 and FG→ 1 induce natural isomorphisms λ̄GF = λ̄Gλ̄F → 1[X,X] and λ̄FG = λ̄F λ̄G → 1[X,Y ]. But
then λ̄F is fully faithful, so we may find a unique isomorphism ϕ̄ which maps to ρ̄F (ψ̄) under λ̄F .
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According to Corollary 1.5.12, we may lift ϕ̄ to a morphism ϕ : fg → 1, and by Theorem 1.5.24
this morphism will be a quasi-isomorphism. Again by Corollary 1.5.12, we may then lift the fact that
λ̄F (ϕ̄) = ρ̄F (ψ̄) to a 2-simplex in [X,Y ] whose faces are 1F , ϕF and Fψ, as desired.

Lemma 1.5.42. Let F : X → Y be a quasi-functor between quasi-categories, and suppose that for any objects
x, x′ ∈ X the induced morphism HomX(x, x′) → HomY (F (x), F (x′)) is a homotopy equivalence. Then for
every m > 0 and every morphism σ : ∂∆m → X, the morphism Fill(σ,∆m) → Fill(F (σ),∆m) is surjective
on connected components.

Proof. Fix σ : ∂∆m → X, and let τ be an object of Fill(F (σ),∆m), so that τ is simply a filler of F (σ) to ∆m.
We wish to show that there is a filler of σ so that there is a morphism ∆m ×∆1 → Y where ∆m × {0} = τ ,
∆m × {1} = σ̄, and ∂∆m ×∆1 → Y is the projection onto ∂∆m followed by σ.

First, consider the case where ∂0σ is the degeneracy of say x′; let x be vertex 0 of σ. Therefore, ∂0τ
is the degeneracy of F (x′) and vertex 0 of τ is F (x′). Consider now the (m − 1)-fold zeroth degeneracy of
τ . This (2m − 1)-simplex contains within it a ∆1 × ∆m−1, obtained by sending (i, j) ∈ [1] × [m − 1] to
mi + j, and this subcomplex has as source and target (m − 1)-simplices the (m − 1)-fold degeneracies of
F (x) and F (x′), respectively. Moreover, τ is contained in this. Call τ ′ the corresponding (m− 1)-simplex of
Hom(F (x), F (x′)). As the boundary of τ ′ contains only degeneracies of simplices of σ, there is a morphism
σ′ : ∂∆m−1 → Hom(x, x′) such that the boundary of τ ′ is F (σ′).

Let g : HomY (F (x), F (x′)) → HomX(x, x′) be a homotopy inverse to the map

f : HomX(x, x′) → HomY (F (x), F (x′))

induced from F , and choose ϕ : fg → 1 and ψ : gf → 1 so there is a 2-simplex as in Lemma 1.5.41. Then
g(τ ′) is an (m− 1)-simplex of HomX(x, x′). Notice that the boundary of g(τ ′) is just g(f(σ′)). Using ψ, we
can assemble a morphism

∆1 × ∂∆m−1 ∪ {0} ×∆m−1 → HomX(x, x′)

where the restriction to {0} × ∆m−1 is g(τ ′) and the restriction to {1} × ∂∆m−1 is σ′. This diagram fills
(after say Lemma 1.2.6), and so gives a morphism ∆1 ×∆m−1 → HomX(x, x′).

Composing this last morphism with f , we obtain a morphism

∆1 ×∆m−1 → HomY (F (x), F (x′))

where the restriction to ∆1 × ∂∆m−1 is induced from fψ. Moreover, ϕ induces a morphism ∆1 →
[∆m−1,HomY (F (x), F (x′))] whose source is f(g(τ ′) and whose target is τ ′. These two morphisms in
[∆m−1,HomY (F (x), F (x′))] match at their respective sources, and so make a morphism Λ2

0 × ∆m−1 →
HomY (F (x), F (x′)) (with the morphism induced from ϕ as the first face). Moreover, the restriction of this
to Λ2

0 × ∂∆m−1 matches with fψ along one leg and ϕf along the other, so the 2-simplex we have from
Lemma 1.5.41 allows us to fill this in to ∆2 × ∂∆m−1 in such a way that the zeroth face of the 2-simplex
factors as the projection to ∂∆m−1 followed by F (σ′).

We therefore have a morphism

Λ2
0 ×∆m−1 ∪∆2 × ∂∆m−1 → Hom(F (x), F (x′)).

By Lemma 1.2.6 and the fact that Hom(F (x), F (x′)) is a quasi-groupoid, this morphism fills to a morphism
∆2 × ∆m−1 → Hom(F (x), F (x′)). Consider the zeroth face of the 2-simplex, which is a morphism ∆1 ×
∆m−1 → Hom(F (x, ), F (x′)) whose restriction to ∆1×∂∆m−1 factors as the projection followed by F (σ′), and
where the target of the 1-simplex factors through F . If we look at this as a morphism ∆1×∆m−1× [1] → Y ,
we can restrict it to ∆1 ×∆m → Y (where ∆m → ∆m−1 ×∆1 is such that ∆m → ∆m−1 ×∆1 → Y is τ).
But then the source of this 1-simplex is τ , the target is in the image of F , and ∆1 × ∂∆m clearly factors as
the projection followed by σ.

Now, for the general case, let k be the largest integer such that the target k-simplex of σ is the k-fold
degeneracy of an object. We will prove the statement by induction on m−k, and notice that we have treated
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above the case m− k ≤ 1, so that we may assume m ≥ 2. We start by assembling a partial (m+ 1)-simplex
from σ, calling it µ. The (partial) mth face of µ will be σ, and for 0 ≤ r ≤ m − 1, r 6= 1, the rth face will
be the (m − 1)th degeneracy of the rth face of σ. The (m + 1)th face will be a filling of the first horn in σ.
Notice now that if we succeed in filling the first face of µ, this becomes an inner horn whose filled face will
fill σ.

Mapping this forward to Y , we see that we can fill in the mth face of F (µ) with τ itself, and so this
becomes a Λm+1

1 which we proceed to fill to an (m+1)-simplex τ ′. The first face of τ ′ has a boundary which
is the image of the first face of σ′, and moreover this face of σ′ has a target simplex of dimension k+1 which
is the degeneracy of an object. Therefore, by the induction hypothesis, we can find a filling of the first face
of σ′ and moreover we can find a morphism ∆1 ×∆m → Y connecting the first face of τ ′ with the image of
the first face of σ′ while keeping the boundary constant.

Fill out the rest of σ′, as we now have a Λm+1
m . We can fill out the homotopy above to ∆1 × Λm+1

m ∪
∂∆1×∆m+1 by letting the rth face in the first component be constantly the degeneracy (0 ≤ r < m, r 6= 1),
the first face be as defined above, and the (m+ 1)th face be constantly the image of the (m+ 1)th face of σ′.
The source in the second component is τ ′, the target the image of σ′. This then fills according to Lemma
1.2.6 to ∆1 ×∆m+1, and we extract from this a homotopy from τ to the image of the mth face of σ′ which
is constant along the boundary. We are done.

Lemma 1.5.43. Let S be a simplicial set, X a quasi-category, and f a morphism in [S,X]. Then f is a
quasi-isomorphism if and only if for every 0-simplex s ∈ S, the restriction of f to [s,X] ' X is a quasi-
isomorphism.

Proof. Because there are restriction quasi-functors [S,X] → [s,X] for each point s ∈ S, if f is a quasi-
isomorphism then all restrictions will be quasi-isomorphisms. Conversely, it will be enough to show that f
has left and right inverses. First, we will show that f has a left inverse. Moreover, by induction it is enough
to show this in the case S = ∆m and we already know that f |∂∆m has a left inverse. This means that we
have filled in part of a map ∆m ×∆2 → X, specifically we have an inverse diagram on ∂∆m ×∆2 → X and
have filled in ∆m × ∂1∆2 with the degeneracy of the source of f , and ∆m × ∂2∆2 with f itself. We wind up
with a morphism ∆m × Λ2

0 ∪ ∂∆m ×∆2 → X which we would like to fill to a morphism ∆m ×∆2 → X.
Notice that this is precisely the situation of the key step of the proof of Lemma 1.2.6, and that in that

proof only inner horns were filled until the very last step. We thus can fill everything except possibly the
Λm+2

0 at the end. But this Λm+2
0 is the zeroth horn of the simplex (in the notation of the lemma)

0 1 2 2 · · · 2 2 2
0 0 0 1 · · · m− 2 m− 1 m

,

whose source morphism is the restriction of f to the vertex 0 of ∆m. By assumption, this morphism is a
quasi-isomorphism, and so the horn can be filled.

This completes the (inductive) proof that f has a left inverse, and by symmetry we conclude that f has
a right inverse as well. Thus f is a quasi-isomorphism, as desired.

Theorem 1.5.44. Let F : X → Y be a quasi-functor between quasi-categories. The following are equivalent:

(i) The quasi-functor F is an equivalence.

(ii) There is a quasi-functor G : Y → X such that GF ' 1X in [X,X] and FG ' 1Y in [Y, Y ].

(iii) The quasi-functor F is essentially surjective and for every two objects x, x′ ∈ X, the induced morphism
HomX(x, x′) → HomY (F (x), F (x′)) is a homotopy equivalence.

(iv) The quasi-functor F is essentially surjective and for every m > 0 and every shell σ : ∂∆m → X, the
induced morphism FillX(σ,∆m) → FillY (F (σ),∆m) is surjective on connected components.
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Proof. (i)⇒(ii). Suppose that F is an equivalence. By definition, we may find a quasi-category P and very
surjective morphisms πX : P → X and πY : P → Y as well as a section s : X → P such that F = πY ◦ s.
Let t : Y → P be any section, and let G = πX ◦ t. I claim that FG is quasi-isomorphic to 1X in [X,X], and
FG is quasi-isomorphic to 1Y in [Y, Y ]. By symmetry, it is enough to consider GF .

To show that 1X and GF are quasi-isomorphic, let us first define a quasi-functor ∆1 → [X,X] whose
source and target are 1X and GF . Indeed, we are given a morphism ∂∆1 → X (the vertex 0 goes to 1X ,
vertex 1 to GF ) and moreover we have a good choice of lift of this to [X,P ], namely we lift 1X to s and GF
to t ◦ πY ◦ s. Projecting this to [X,Y ], both morphisms are F , so that we may fill the projected 1-shell with
the degeneracy of F . Because [X,P ] → [X,Y ] is very surjective (by Proposition 1.5.3), this filler lifts, and
so projects to a 1-simplex in [X,X] as desired. A similar procedure produces a 1-simplex where 0 maps to
GF and 1 maps to 1X .

But then we have a ∂∆2 → [X,X] whose zeroth and second faces are these last 1-simplices and whose
first face is 1GF . By construction, we can lift this to a morphism ∂∆2 → [X,P ] whose projection to [X,Y ]
is the boundary of a degenerate 2-simplex. Filling this with the degeneracy, lifting the filler back to [X,P ]
and projecting to [X,X], we obtain a 2-simplex which witnesse that 1X → GF and GF → 1X are inverse
in one direction. A similar argument shows they are inverse on the other side. By Theorem 1.5.24, we are
done with this implication.

(ii)⇒(iii). If y is an object of Y , then F (G(y)) is quasi-isomorphic to y, so that F is indeed essentially
surjective.

Fix quasi-isomorphisms GF → 1X and FG→ 1Y . Let x and x′ be objects in X. Let us first produce a
map g : HomY (F (x), F (x′)) → HomX(x, x′) which will be a homotopy inverse to the map f : HomX(x, x′) →
HomY (F (x), F (x′)) induced from F . Certainly we have an induced map G : HomY (F (x), F (x′)) →
HomX(GF (x), GF (x′)).

The given quasi-isomorphism GF → 1X inductively defines a morphism

∆1 ×GF (HomX(x, x′)) → [∆1, X]

whose target consists only of simplices in HomX(x, x′). But then inductively (as GF (HomX(x, x′)) is a
subcomplex of HomX(GF (x), GF (x′))) we can extend the morphism above to

∆1 ×HomX(GF (x), GF (x′))

in the following manner.
On 0-simplices of HomX(GF (x), GF (x′) whose image is not already defined, consider the ∂∆1 ×∆1 ∪

∆1 × Λ1
0 in X which is the morphisms GF (x) → x and GF (x′) → x′ on the first component and is the

desired 0-simplex of HomX(x, x′) on the other. Recalling that GF → 1 is a quasi-isomorphism, we can fill
this, and we obtain a 0-simplex of Hom(x, x′).

But then given a morphism defined on the k-skeleton of HomX(GF (x), GF (x′)), we may extend it to
an unfilled (k + 1)-simplex in the same fashion, only this time with a

(∂∆k+1 ×∆1)×∆1 ∪ (∆k+1 ×∆1)× Λ1
0 :

the first compoenent is the inductively defined construction, the second the given (k+ 1)-simplex. This is a
diagram of the shape

∂∆k+1 ×∆1 ∪∆k+1 × Λ1
0

in [∆1, X] where all the morphisms {j} ×∆1 are quasi-isomorphisms, and so can be filled. Thus is a map
HomX(GF (x), GF (x′)) → HomX(x, x′) defined. Notice that in addition to this we have a “mapping cone”
∆1 × HomX(GF (x), GF (x′)) → [∆1, X] which extends the mapping cone induced from GF → 1. We let g
the composition of this newly constructed map with G above.

Now consider the composition gf . By construction, gf agrees with GF followed by the map constructed
above. Extend GF → 1 to S∞ → [X,X], and let 1 → GF be the resulting inverse morphism. We inductively
define a morphism ∆2 × HomX(x, x′) → [∆1, X] whose first face will factor through HomX(x, x′) and in
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fact be the desired morphism 1 → gf . We start by letting the map on ∂2∆2 × HomX(x, x′) be induced
from 1 → GF above. Let the map on ∂0∆2 × Hom(x, x′) be induced from the mapping cone defined in the
previous paragraph, so that in fact it is induced from GF → 1 by construction. Therefore, the restriction to
{0} ×HomX(x, x′) is the identity on Hom(x, x′) and the restriction to {2} ×HomX(x, x′) is gf .

To complete the desired filling, recast the data we have as a morphism

Λ2
1 ×∆1 → [HomX(x, x′), X],

so that the restrictions to the two boundary vertices of ∆1 are the constant maps x and x′, respectively. We
can thus use the given 2-simplex witnessing GF → 1 and 1 → GF being inverses to add 2-simplices to this
diagram, specifically extending it to

∆2 × ∂∆1 ∪ Λ2
1 ×∆1 → [HomX(x, x′), X].

But we can fill this according to Lemma 1.2.6, and so we obtain a morphism

∆2 ×HomX(x, x′) → [∆1, X]

whose first face factors through HomX(x, x′). We have produced the desired homotopy 1 → gf .
To finish the implication, we are left with producing a homotopy 1 → fg. According to Lemma 1.5.41,

we may assume that the quasi-isomorphism 1 → FG is such that F applied to this on the right and F
applied to 1 → GF on the left comprise the Λ2

1 of a 2-simplex whose first face is 1F . The construction of g
was by means of a morphism ∆1×HomX(GF (x), GF (x′)) → [∆1, X]; composing with F on one side and G
on the other, we obtain a morphism

∆1 ×HomY (F (x), F (x′)) → [∆1, Y ]

whose restriction to {0} ×HomY (F (x), F (x′) is the morphism

HomY (F (x), F (x′)) → Hom(FGF (x), FGF (x′))

induced from FG, and whose restriction to {1} ×HomY (F (x), F (x′)) is just fg.
Consider this last datum as a 1-simplex in [HomY (F (x), F (x′)), [∆1, Y ]]. The morphism 1 → FG

induces another 1-simplex in this simplicial set whose target is now the induced morphism

HomY (F (x), F (x′)) → Hom(FGF (x), FGF (x′)).

We thus have a Λ2
1 in this simplicial set. Consider it as a morphism

Λ2
1 ×∆1 → [HomY (F (x), F (x′)), Y ];

we can extend this to a morphism from

Λ2
1 ×∆1 ∪∆2 × ∂∆1

by using the 2-simplices F → FGF → F which exist (and fit) by our choice of 1 → FG. Filling this
according to Lemma 1.2.6, we get a morphism

∆2 ×∆1 → [HomY (F (x), F (x′)), Y ]

which is constantly F (x) and F (x′) along ∂1∆2×∂∆1. Therefore, if we consider the corresponding 2-simplex
in [HomY (F (x), F (x′)), [∆1, Y ]], its first face is a 1-morphism in

[HomY (F (x), F (x′)),HomY (F (x), F (x′))]

whose source is 1 and whose target is fg. We are done with this implication.
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(iii)⇒(iv). This just follows from Lemma 1.5.42.
(iv)⇒(i). Let P be the simplicial set whose m-simplices are ordered pairs (x, y) of an m-simplex in X

and an m-simplex in Y together with a quasi-isomorphism F (x) → y in [∆m, Y ]. I claim that the natural
projections P → X and P → Y are very surjective.

Indeed, first we show that the map P → X is very surjective. An m-simplex X in X together with a
lift of its boundary amounts to the data of x together with a morphism ∂∆m ×∆1 ∪∆m × {0} → Y where
the first component is the quasi-isomorphism part of the data of the lift and the second component is just
F (x). We can extend this to ∆m × ∆1 → Y (because of the quasi-isomorphism assumption), and so can
extract ∆m × {1} → Y to be y with the quasi-isomorphism as given by the full extension.

Secondly, we must show that P → Y is very surjective. First off, 0-simplices lift because of essential
surjectivity. For m > 0, an m-simplex y in Y together with a lift of its boundary consists of the data of a
morphism ∂∆m ×∆1 ∪∆m × {1} → Y , which, again because of the quasi-isomorphism condition, we may
fill to a morphism ∆m ×∆1 → Y . Let x′ denote the m-simplex of Y which is the image of ∆m ×{0} in this
morphism. The simplex x′ has a boundary which is in the image of F (as it was a lift to begin with), but
its interior may not be.

By assumption, we know there is a morphism ∆m ×∆1 → Y where ∆m × {0} → Y is in the image of
F , ∆m × {1} → Y is x′, and ∂∆m ×∆1 → Y is constantly the boundary of x′. Attaching this to the quasi-
isomorphism from before, we obtain a morphism ∆m × Λ2

1 → Y . By construction, we can add degeneracies
of the morphism ∂x′ → ∂y to obtain a morphism

∆m × Λ2
1 ∪ ∂∆m ×∆2 → Y,

which then fills according to Lemma 1.2.6. The first face of the resulting morphism ∆2 → [∆m, Y ] will then
agree with the given data along the restriction to [∂∆m, Y ], but also have the property that its source is in
the image of F , say it is F (x). Then (x, y) with the first face examined above is our desired lift.

To finish, we need only show that F factors as a section of P → X followed by the projection to Y .
But we can produce a section X → P by sending an m-simplex x of X to (x, F (x)), with the morphism
F (x) → F (x) being the identity. This section composed with the projection to Y is evidently F , and so the
proof is complete.

Remark 1.5.45. The theorem in particular demonstrates that equivalence of 1-quasi-categories is the same
thing as the ordinary notion of equivalence of categories.

Corollary 1.5.46. Let F : X → Y be an equivalence between quasi-categories, and let P (F ) be the simplicial
set whose m-simplices are ordered triples (ξ, τ, f) where ξ and τ are m-simplices of X and Y respectively, and
f : F (ξ) → τ is a quasi-isomorphism. Then the projections P (F ) → X and P (F ) → Y are very surjective.
Let G : Y → X be a quasi-functor. Then G is quasi-inverse to F if and only if G factors as a section of
P (F ) → Y followed by P (F ) → X.

Proof. The first statement follows from the proof of (iv)⇒(i) in Theorem 1.5.44. For the second, one direction
is proven in (i)→(ii) of Theorem 1.5.44. For the other direction, if we fix a quasi-isomorphism ϕ : FG→ 1Y ,
we can define the section we want by taking an m-simplex τ of Y to (G(τ), τ, ϕ(τ)) ∈ P (F ).

Remark 1.5.47. Thus the equivalence witnesses P (F ) are particularly nice. Not all equivalence witnesses
are so nice. Consider for example the identity quasi-functor 1X : X → X. That this quasi-functor is an
equivalence is witnessed by the very surjective morphisms X → X and X → X. But the identity quasi-
functor has more quasi-inverses than just itself! In this case, P (1X) is the “path space” consisting of the
quasi-isomorphisms of X.

Corollary 1.5.48. Let F : X → Y and G : Y → X be equivalences of quasi-categories such that F and G
factor through the same simplicial set P very surjective onto both X and Y . Then F and G are quasi-inverse
to one another.

Proof. This follows immediately from the proof of (i)⇒(ii) in Theorem 1.5.44.
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Corollary 1.5.49. Quasi-inverses of equivalences between quasi-categories are equivalences.

Proof. Immediate from (ii) in Theorem 1.5.44.

Corollary 1.5.50. Let F , G, and G′ be quasi-functors between quasi-categories with F : X → Y and
G,G′ : Y → X. Then the following are equivalent:

(i) The quasi-functors G and G′ are respectively left and right quasi-inverses to F .

(ii) The quasi-functor F is an equivalence, G ' G′, and both are quasi-inverse to F .

(iii) The quasi-functor F is an equivalence, G ' G′, and G is a quasi-inverse to F .

Proof. For (i)⇒(ii), we have that
G ' GFG′ ' G′.

Therefore
FG ' FG′ ' 1Y

and
G′F ' GF ' 1X .

Clearly (ii)⇒(iii), and for (iii)⇒(i) we have that

FG′ ' FG ' 1Y .

Corollary 1.5.51. Let F : X → Y be an equivalence of quasi-categories and G be a left (right) quasi-inverse
to F . Then G is a quasi-inverse to F .

Proof. Let G′ be any right (left) quasi-inverse to F and apply the previous corollary.

Corollary 1.5.52. Let F, F ′ : X → Y be two quasi-functors between quasi-categories with F being an
equivalence, and suppose that F ' F ′ in [X,Y ]. Then F ′ is an equivalence.

Proof. Let F have a quasi-inverse G. Then 1X ' GF ' GF ′ and 1Y ' FG ' F ′G, so G is also a
quasi-inverse of F ′, showing that F ′ is an equivalence.

Corollary 1.5.53. Compositions of equivalences between quasi-categories are equivalences.

Proof. Let F : X → Y and F ′ : Y → Z be equivalences of quasi-categories with quasi-inverses F ′ and G′

respectively. Then 1Z ' F ′G′ ' F ′FGG′ and 1X ' GF ' GG′F ′F , so GG′ is a quasi-inverse of F ′F .

Corollary 1.5.54. Let F : X → Y and G : Y → Z be quasi-functors between quasi-categories. If any two
of F , G, and GF are equivalences, then so is the third.

Proof. As we have already treated the case where F and G are equivalences, let F and GF be equivalences,
with H a quasi-inverse of F . Then H is an equivalence, so GFH is an equivalence, but then G ' GFH is
an equivalence as well. The case of G and GF is handled similarly.

Definition 1.5.55. Let X be a quasi-category, and let Y0 be a set of objects in X. The full sub-quasi-
cateogry of X with objects Y0 is the simplicial subset Y of X consisting of all simplices of X whose vertices
lie in Y0.

Definition 1.5.56. Let F : X → Y be a quasi-functor between quasi-categories X and Y . We say that F
is fully faithful if for every x, x′ ∈ X the induced morphisms F : HomX(x, x′) → HomY (F (x), F (x′)) are
homotopy equivalences.

37



Corollary 1.5.57. Let F : X → Y be a quasi-functor between quasi-functors, and let F (X) ⊆ Y denotes
the full sub-quasi-category of Y containing the objects that objects in X map to. Then the following are
equivalent:

(i) The quasi-functor F is fully faithful;

(ii) For any m ≥ 1 and any σ : ∂∆m → X, the induced morphism

FillX(σ,∆m) → FillY (F (σ),∆m)

is surjective on connected components.

(iii) The induced quasi-functor F : X → F (X) is an equivalence.

Proof. To begin, (i)⇒(ii) is a special case of Lemma 1.5.42. Secondly, (ii)⇒(iii) follows from Theorem
1.5.44 and the fact that F is essentially surjective onto F (X). Finally, for (iii)⇒(i), if F : X → F (X) is
an equivalence, then as F (X) is a full sub-quasi-category of Y , HomX(x, x′) → HomF (X)(F (x), F (x′)) =
HomY (F (x), F (x′)) is a homotopy equivalence.

1.6 Limits and Colimits

We will need a good theory of limits (and colimits) in quasi-categories in order to perform many of the
constructions we will want to use.

1.6.1 Terminal and Coterminal Objects

First we will treat terminal and coterminal (initial) objects, later generalizing to limits and colimits of
diagrams.

Definition 1.6.1. Let X be a quasi-category, x ∈ X an object. We say that x is a terminal object if the
natural morphism X/x → X is very surjective, and say that x is initial or coterminal if x\X → X is very
surjective.

The main thing to say about terminal and coterminal objects is that they are unique up to “canonical”
quasi-isomorphism.

Proposition 1.6.2. Let X be a quasi-category, and T the full sub-quasi-category containing all terminal
(resp. coterminal) objects, which is to say T consists of all simplices of X all of whose objects are terminal
(or coterminal). Then T is a loose (−1)-quasi-category. In particular, if X has a terminal (resp. coterminal)
object, then T is a loose (−2)-quasi-category, and every morphism between two terminal (coterminal) objects
is an quasi-isomorphism.

Proof. As the statement for terminal objects is dual to that for coterminal objects, it will be enough to
consider terminal objects. Therefore, suppose that ∂∆m → T is an m-shell in T with m ≥ −1 + 2 = 1. The
target object of this m-shell is a terminal object, say x ∈ X. But then the m-shell consists of the data of an
(m− 1)-shell in X/x together with a filling of its projection to an (m− 1)-shell in X. As X/x→ X is very
surjective, we find that the filler lifts, which is to say the m-shell we started with has a filler. We thus have
shown that T is a loose (−1)-quasi-category.

If X has a terminal object, then T is nonempty, so can fill a 0-shell and is a loose (−2)-quasi-category.
If x→ y is a morphism between terminal objects, then it is a morphism in T , and as T is a quasi-groupoid,
the morphism is an quasi-isomorphism.

Remark 1.6.3. We should say a word or two about the use of “canonical” in this context. In the situation of
a quasi-category, it is too much to hope for a limit (or a terminal object) to be well defined up to canonical
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isomorphism, as two isomorphisms might be related (canonically) without being equal. The next best
possiblity is that the quasi-category of all solutions to a particular problem be (empty or) a “contractible”
quasi-groupoid, but this is just what it means for a quasi-category to be a loose (−1)-quasi-category.

Proposition 1.6.4. Let X be a quasi-category, and let x be an object which is quasi-isomorphic to a terminal
object y. Then x is itself terminal.

Proof. As x is quasi-isomorphic to y, there is a morphism f : x→ y such that X/f → X/x and X/f → X/y
are both very surjective, as well as being the same upon composition with X/x→ X and X/y → X. Given
a monomorphism Σ ↪→ Θ and a morphism Θ → X with a lift Σ → X/x, lift Σ to X/f and project down to
X/y, so that Σ → X/y is in fact a lift of the original Θ → X. But then we can lift Θ → X to X/y, whence
to X/x. Projecting this last back down to X/x, we obtain our desired lift of Θ.

Therefore if X has a terminal object x then the full sub-quasi-category of all terminal objects is the full
sub-quasi-category of all objects quasi-isomorphic to x.

Proposition 1.6.5. Let F : X → Y be an equivalence of quasi-categories. Then for every object x ∈ X,
F (x) is a terminal object if and only if x is.

Proof. Suppose that x ∈ X is terminal, so that X/x→ X is very surjective. We know that we can factor F as
a section s of a very surjective morphism πX : P → X followed by a very surjective morphism πY : P → Y .
If we are given a morphism ∆m → Y and a lift ∂∆m → Y/F (x), this is the same data as a morphism
∂∆m+1 → Y whose target vertex is F (x). We can thus lift this to a morphism ∂∆m+1 → P whose target
vertex is s(x), and then the projection of this to X fills there (as x is terminal), so that the filler lifts and
projects back down to Y , giving the filler we were after.

Conversely, let G be a homotopy inverse to F . If F (x) is terminal, then by what we have already proven
G(F (x)) is also terminal. As x is quasi-isomorphic to G(F (x)), we conclude that x is terminal as well.

1.6.2 Diagram Quasi-Categories

We now lay the groundwork for a theory of limits and colimits in a quasi-category.

Definition 1.6.6. Let X be a quasi-category, D a simplicial set, and ρ : D → X a morphism (a “diagram”).
We define the quasi-category X/ρ to be the fibre product

X/ρ = X ×[D,X] [D,X]/ρ,

where the morphismX → [D,X] is the diagonal, also known as the morphism correpsonding to the projection
X ×D → X.

We intend X/ρ to be interpreted as the quasi-category of objects of X over ρ. There is, however, another
simplicial set which could reasonably be said to represent this idea.

Definition 1.6.7. Let X be a quasi-category, ρ : D → X a diagram in X. We define the simplicial set
(X/ρ)′ to be the simplicial set whose m-simplices are pairs (x, α) where x is an m-simplex of X and α is a
lift of ρ to x\X over x\X → X. The boundary and degeneracy maps are induced by those in X, and thus
we have a natural morphism of simplicial sets (X/ρ)′ → X.

Luckily, these two simplicial sets X/ρ and (X/ρ)′ are actually equivalent to one another.

Proposition 1.6.8. Let X be a quasi-category and ρ : D → X a diagram. Then there is a simplicial set P
which admits very surjective maps P → X/ρ and P → (X/ρ)′, and such that moreover composing these two
morphisms with the corresponding projections to X produces the same projection P → X.
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Proof. Form a simplicial set D∗ whose simplices are defined as follows. For every m-simplex α in D and
integer r ≥ 0, there is a unique (m + r)-simplex αr in D∗ whose first r vertices are ν and whose target
m-simplex is α. For i ≥ r, we take ∂i(αr) = (∂i−rα)r and σi(αr) = (σi−rα)r, and for i < r, we take
∂i(αr) = αr−1 and σiαr = αr+1. We then have a natural inclusion D ↪→ D∗ taking α to α0. One can think
of D∗ as “D together with an initial object.”

For every integer m ≥ 0, we may consider the simplicial set D∗
m obtained by removing from D∗×∆m+1

the vertex (ν,m + 1) and all incident simplices. There are natural inclusions D∗
m−1 ↪→ D∗

m corresponding
to the faces of ∂m+1∆m+1, and natural degeneracy maps D∗

m+1 → D∗
m corresponding to the degeneracies

of ∂m+1∆m+1. Moreover, we have inclusions D∗ × ∆m ↪→ D∗
m and D ↪→ D∗

m, the latter by taking D to
the target vertex of ∆m+1, so that both are compatible (in the obvious way) with boundary and degeneracy
maps. Therefore we may define a simplicial set whose m-simplices are the morphisms D∗

m → X such that
the restriction to D∗ ×∆m factors through the projection D∗ ×∆m → ∆m and such that the restriction to
D is ρ. Call this simplicial set P .

We immediately see that P admits natural projections P → X/ρ and P → (X/rho)′. The first is defined
by composing D ×∆m+1 → D∗

m → X. The second is defined by observing that for every r-simplex τ in D,
there is a unique (m+r+1)-simplex inD∗

m whose target r-simplex is (τ,m+1) and whose first (m+1) vertices
are (ν, i), i = 0, . . . ,m. Mapping this to X via a given m-simplex in P , the m-simplex with only ν’s maps to
an m-simplex x in X, and thus the (m+ r + 1)-simplex as a whole maps to an r-simplex in x\X, which we
take to be the destination of τ in a lift D → x\X. All together, this defines a lift D → x\X which we take
to be the image of the m-simplex in P . It immediately follows that P → X/ρ→ X = P → (X/ρ)′ → X.

We are left only with showing that both maps P → X/ρ and P → (X/ρ)′ are very surjective. Let us
treat P → X/ρ first. Suppose we are given an m-simplex ∆m → X/ρ together with a lift of its boundary
∂∆m → P . This consists of the data of a morphism D ×∆m+1 → X and morphisms D∗

m−1 → X for each
boundary simplex of ∂m+1∆m+1; we also know that all simplices which do not involve the target copy of D
are given to us by virtue of our assumptions (they are degeneracies recoverable from other data). We are
therefore missing precisely all those simplices which contain a vertex involving ν and whose projection to
∆m+1 is all of ∆m+1. Let us hereafter refer to vertex (ν, i) as the “ith top vertex.”

Suppose that a simplex of D∗
m surjects onto ∆m+1 and has vertices

(x0, i0), (x1, i1), . . . , (xr, ir).

Then the sequence i0, i1, . . . , ir must be nondecreasing and comprise all of [m + 1]. Moreover, the xj must
all be ν for all j less than or equal to some k ≤ m (say k = −1 if there are no such), after which point
the xj come exclusively from D. Therefore, for all j ≤ k, xj = ν and ij = j, and for j > k, xj ∈ D and
ij ≤ ij−1 +1. Finally, let h denote the number of vertices over k+1 in ∆m+1. Given a simplex of D∗

m which
surjects onto ∆m+1, we have thus produced a triple (k, r, h), which we shall refer to as its signature.

Given an unfilled simplex with signature (k, r, h), there is a unique index ` such that i` = k and
i`+1 = k + 1, and so we can ask the question of whether or not the simplex is an `th degeneracy when
projected to D∗. Moreover, there is a bijection between simplices with such a degeneracy and of signature
(k, r + 1, h) and simplices without such a degeneracy and of signature (k, r, h) given by omitting vertex `
in one direction (this will not have a degeneracy by our construction of k) and producing `th degeneracy
in the other. We will construct by lexicographic induction on (k, r, h) a filling of all simplices without such
a degeneracy and signature (k, r, h) and all simplices with such a degeneracy and signature (k, r + 1, h) by
filling the horn implicit in the bijection above. The base k = 0 is given.

Indeed, consider a simplex of signature (k, r+ 1, h) which has a degenerate projection as above, and let
` be as above. The zeroth through (k − 1)th faces of the simplex are contained in the data we started with,
and its kth face has signature (k− 1, r+ 1, h), so is already filled. The (k+ 1)th through (`− 1)th faces have
signature (k, r, h) and the degeneracy, so have been filled. The (`+1)th face does not have a degeneracy, but
its signature is (k, r, h − 1), and so is filled. Finally, the jth face for ` + 1 < j ≤ r has the degeneracy and
is of signature (k, r, h − 1) or (k, r, h) and so is filled. As the `th face of the simplex has signature (k, r, h)
and no degeneracy, by construction we have no filled yet and so we may fill this `th (inner) (r + 1)-horn.
Therefore we have filled out our data to proven that P → X/ρ is very surjective.
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We are left with showing that P → (X/ρ)′ is very surjective. Given an m-simplex ∆m → (X/ρ)′ and a
lift of its boundary ∂∆m → P , we have the data of a morphism defined on part of D∗

m taking values in X;
specifically, we are given a morphism defined on all faces D∗

m−1 as well as all faces which contain the vertices
(ν, i) for 0 ≤ i ≤ m followed only by vertices in D × {m + 1} ↪→ D∗

m. The form of our desired filling thus
forces a particular restriction to ∂m+1∆m+1 × D∗, the degeneracy induced from the projection to X. We
conclude that the simplices we are missing are precisely those which surject onto ∆m+1 and which contain
a vertex of the form (x, i), where i ≤ m and x ∈ D.

We will again use an induction on signature, only this time the induction will be downward in k (but
still upward in r and in h), and we use a different bijection. Notice that there is a bijection between unfilled
simplices with ik+1 = k + 1 and simplices with ik+1 = k, by adding (or eliminating, in the other direction)
(ν, k+1) at index (k+1). This is well-defined by how D∗ was constructed from D. Thus do we again find a
collection of horns; for simplicity, we will call the signature of such a horn the triple (k, r, h) corresponding
to the omitted face. We prove by lexicographic induction on (k, r, h) (again, downward in k) that we can
construct a filling of all horns with this signature.

Indeed, the base is clear again (k = m was the datum of the filling in (X/ρ)′). For the induction step,
consider a horn with signature (k, r, h) (so that it is a Λr+1

k+1). The zeroth through kth faces have been filled
by the data we started with. We know that in the horn ik+2 = k + 1. If ik+3 = k + 2, then the (k + 2)th

face is the filled face of a horn with signature (k + 1, r, h′) for some h′, and so has already been filled. If, as
is the other case, ik+3 = k + 1, then the (k + 2)th face is the interior of a filled horn of dimension r − 1 and
the same k-value, and so has been filled already. In any case, the jth faces for j > k+2 are interiors of filled
horns of dimension r − 1 and the same k-value (or in the given data), and so have been filled already. We
conclude that we do indeed have a Λr+1

k+1.
This horn certainly fills, even if k+ 1 = 0, because in this case the morphism from the zeroth vertex to

the first vertex is an identity morphism in X (being as i0 = i1 = 0). Therefore, the induction and the proof
are complete.

Corollary 1.6.9. Let X be a quasi-category and ρ : D → X a diagram. Then (X/ρ)′ is a quasi-category
and there is an equivalence of quasi-categories F : X/ρ→ (X/ρ)′ such that

X/ρ→ (X/ρ)′ → X = X/ρ→ X,

where X/ρ→ X and (X/ρ)′ → X are the structural projections.

Proof. The simplicial set (X/ρ)′ is a quasi-category because it is equivalent to the quasi-cateogry X/ρ. If
P → (X/ρ)′ and P → X/ρ are morphisms as in the statement of the proposition, then as the compositions
with the projections to X are the same, any equivalence F : X/ρ → (X/ρ)′ produced from a section of
P → X/ρ will be what we want.

Of course, we may dualize this entire discussion, defining ρ\X, (ρ\X)′, and proving that these two
quasi-categories are also equivalent to one another.

1.6.3 Limits and Colimits

The preceding discussion motivates the following definition:

Definition 1.6.10. Let X be a quasi-category and ρ : D → X a diagram. We say that an object in X/ρ is
a limit (of the first type) of ρ if it is terminal in X/ρ. At times we will also use the term limit to refer to the
image of this object under the natural quasi-functor X/ρ→ X, and the object itself will then be referred to
as a limit diagram (of the first type). A limit (diagram) of the second type is by definition a terminal object
in (X/ρ)′, and of course here the term limit applies to the underlying object of X as well. We dually define
colimits and colimit diagrams.

We observe that a limit (considered as an object of X) can be just as easily thought of as an object
of X/ρ as it can be thought of as an object of (X/ρ)′. In practice, when (e.g.) we will be looking at
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fibre products in a quasi-category, the presentation as an object of (X/ρ)′ will be a bit more manageable.
Nonetheless, X/ρ is a formally simpler construction, and so should come in handy. Of course, all these
remarks apply to colimits as well.

One should also note that as there is no preferred composition law in a quasi-category, these notions of
limit and colimit are properly seen as notions homotopy limit and homotopy colimit. That the homotopy-
weak notions are forced upon us in this context is one appealing feature of quasi-categories. For example,
the fibre products of stacks that we care about are the “2-fibre products,” which are the homotopy fibre
products in Cat.

We will return to limits and colimits when we discuss adjoint quasi-functors in the next chapter.
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Chapter 2

Fibrations

2.1 Fibrations

Before we can discuss more notions which generalize ordinary category theory, we need the notion of right
fibration.

Definition 2.1.1. Let f : X → Y be a morphism of simplicial sets, and 0 < n ≤ ∞ as usual. We say that
this morphism is a left (resp. right) n-fibration if the morphism

[∆1, X] → X ×S [∆1, S]

is n-very surjective, where the map [∆1, X] → X is induced from the inclusion of the target (resp. source)
object ∆0 ↪→ ∆1, the map [∆1, X] → [∆1, S] is obtained by composition, and the map [∆1, S] → S is
restriction to the target (resp. source). We sometimes omit the n in the case of n = ∞ as usual, and will
also refer to right n-fibrations being fibred in n-quasi-groupoids.

The meaning of the definition of fibred in n-quasi-groupoids is that a morphism in X is to be “essentially
the same thing” as a morphism in S together with a lift of its target to X. Another way of saying this is that
“pullbacks along morphisms in S exist and are canonical.” This should remind the reader of the familiar
notion of a category fibred in groupoids, and in fact we will show that this notion generalizes the familiar
one. Another way to phrase this is that “the space of pullbacks of an object in X along a morphism in S is
contractible.”

The terms right and left fibration are intended to evoke Joyal’s definitions in [Joy02]. We will show in
the next proposition that our notion is in fact the same as his. In fact, his notion of mid fibration is also
expressible in terms similar to the above, only the horn in that context is not Λ1

1 or Λ1
0 but Λ2

1. There seems,
however, to be no so easily expressible notion of “n-fibration.” As Joyal’s definition is relatively easy to
check, the proposition will also serve for us as a computational tool.

Proposition 2.1.2. Let f : X → S be a morphism of simplicial sets. Then f is a (left, right) n-fibration if
and only if for every (left, right) horn τ : Λm

k → X upstairs and every filler σ : ∆m → S of f ◦ τ in S, there
is a lift of σ to a filler of τ , and moreover this lift is unique whenever m > n.

Proof. First, assume that f possesses the horn-filling condition for right n-fibrations described in the propo-
sition statement, and let ∆m → X ×S [∆1, S] be an m-simplex with a lift ∂∆m → [∆1, X] of its boundary
upstairs. We thus have a morphism

∂∆m ×∆1 ∪∆m × Λ1
1 → X

together with a filling of its projection in S to a map ∆m×∆1 → S. But as we may fill del∆m×∆1∪∆m×Λ1
1

to ∆m ×∆1 by a succession of inner horn fillings followed by a filling of a Λm+1
m+1 (by Lemma 1.2.6), we may
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successively lift the filling in S to the desired filling in X. If m ≥ n, then these lifts will all be unique as we
are only filling (m+ 1)-horns.

The same argument applies for left n-fibrations.
Conversely, let Λm

k → X be a horn with 0 < k ≤ m in X and ∆m a filling of this horn in S. Construct
a shape Σ = Λm

k × ∆1 ∪ ∆m × {1} → X by using the morphism Σ → Λm
k which takes (i, ε) to k if ε = 1

and i < k; otherwise map the point to i. This is well-defined because k > 0 and so ∆m × {1} maps to a
degeneracy of a simplex in Λm

k . The morphism Σ → Λm
k admits a section, as we can take Λm

k to Λm
k × {0}.

Moreover, we can fill Σ to Θ = ∆m×∆1 in S by using the given filler of the horn. Therefore, we have a map
Λm

k → [∆1, X] together with a filling of this to ∆m → X ×S [∆1, S]. As [∆1, X] → X ×S [∆1, S] is n-very
surjective, the filler lifts (giving a filler of the horn via the section) and uniquely if m > n. But in this last
case, any other lifted filler of Λm

k in X produces a different lifting in [∆1, X], and so if m > n fillers of Λm
k

over S are unique.
Again, the left n-fibration case is analogous.

Notice that after this last proposition it is automatic that if a simplicial set X is fibred in n-quasi-
groupoids over an n-quasi-category S, then X is itself an n-quasi-category (this of course remains true if S
is an m-quasi-category for m ≤ n). Moreover, the condition of being fibred in n-quasi-groupoids is stable
under pullback of simplicial sets (by a proof similar to the proof of stability of n-very-surjective maps, using
the condition in Proposition 2.1.2).

We will want a loosening of the above notion of fibration for certain purposes.

Definition 2.1.3. Let X → S be a right (left) fibration. We say that this morphism is a loose right (left)
n-fibration if for every k ≥ n + 2 and every ∆k → S with a lift of its boundary ∂∆k → X, there is an
extension of this lift across the interior of the k-simplex. We will also refer to loose right n-fibrations as
morphisms fibred in loose n-quasi-groupoids.

Proposition 2.1.4. Let X → S be a (loose) right n-fibration such that S is a (loose) n-quasi-category (
resp. n-quasi-groupoid). Then X is a (loose) n-quasi-category (resp. n-quasi-groupoid). Similarly for left
fibrations.

Proof. As usual, we treat right fibrations and observe that the same arguments work for left fibrations.
First let us treat the n-quasi-category case. If Λm

k → X is an inner horn, we may project it down to
S and fill it there to ∆m → S; this filler lifts to a filler of the horn in X as X → S is a right fibration. If
m > n and there are two fillers of an m-horn in X, these two must map to a single filler in S as S is an
n-quasi-category. But as X → S is a right n-fibration, this filler can lift to only one filler in X, so that the
two fillers in X that we started with must have been equal all along.

For the n-quasi-groupoid case, notice that the same arguments as above can be made for right horns,
so that right m-horns fill in X and uniquely if m > n, and moreover by the above argument X is an
n-quasi-category. But then by Proposition 2.1.2 X must be an n-quasi-groupoid, as we wanted.

Finally, the loose cases are treated by observing that the definition of loose right n-fibration permits a
similar argument, only this time lifting fillers of k-shells for k ≥ n+ 2.

In particular, the fibre over a 0-simplex of S is always a (loose) n-quasi-groupoid (as ∆0 is a 0-
quasi-groupoid and a loose (−2)-quasi-groupoid), somewhat justifying the term “fibred in (loose) n-quasi-
groupoids.”

Proposition 2.1.5. Let X → S be a right (left) fibration. Then X → S is a loose right (left) n-fibration if
and only if the morphism

[∆n+2, X] → [∂∆n+2, X]×[∂∆n+2,S] [∆n+2, S]

is very surjective.

Proof. We may as well prove this only for the case of a right fibration.
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First consider the case n = −2. Then we are to prove that X → S is very surjective (i.e. fibred in loose
(−2)-quasi-groupoids, by definition) if and only if

X = [∆0, X] → [∂∆0, X]×[∂∆0,S] [∆0, S] = ∗ ×∗ S = S,

is very surjective, which is tautological. For the remainder of the proof, assume n > −2.
If X → S is a loose right n-fibration, then a morphism

∆k → [∂∆n+2, X]×[∂∆n+2,S] [∆n+2, S]

with a lift of its boundary to [∆n+2, X] is a morphism

∆n+2 × ∂∆k ∪ ∂∆n+2 ×∆k → X

together with a filling of this morphism to ∆n+2×∆k in S. But all the missing simplices here in the lift are
of dimension n+ 2 and higher, and so can be lifted by the definition of loose right n-fibration.

Conversely, let k ≥ n+2 and let ∆k → S be a morphism with a lift of its boundary upstairs ∂∆k → X.
Form a shape

Σ = ∆k−n−2 × ∂∆n+2 ∪ ∂∆k−n−2 ×∆n+2,

so that there is a projection map Σ → ∂∆k given by taking a vertex (i, j) to the vertex i+ j of ∂∆k if i = 0
or j = n+ 2, and taking (i, j) to i+ j + 1 otherwise. As Σ contains no nondegenerate k-simplices, this map
is in fact well-defined. We thus produce a morphism Σ → X ′ with a filling to ∆k−n−2 ×∆n+2 → ∆k in the
base.

According to the fact of the assumed very surjectivity of

[∆n+2, X] → [∂∆n+2, X]×[∂∆n+2,S] [∆n+2, S],

we can lift the filler in S to a morphism ∆k−n−2 ×∆n+2 → X. If k = n+ 2, this filler is precisely the filler
we are looking for.

Otherwise, let X ′ = X ×S ∆k, so that X ′ is a right fibration over a category and so is a quasi-category
itself. Moreover, the morphism ∆k−n−2 ×∆n+2 → X clearly factors through X ′. Consider the k-simplex in
∆k−n−2 ×∆n+2 with vertices

(0, 0), (0, 1), . . . , (0, n+ 2), (1, n+ 2), . . . , (k − n− 2, n+ 2).

By assumption, this simplex agrees with the ∂∆k we started with except possibly at the (n + 2)th face. I
claim that nonetheless this (n+ 2)th face is equivalent in the quasi-category X ′ to the (n+ 2)th face of ∂∆k

(in the sense of Lemma 1.5.7).
To see the equivalence, note that the (k − 1)-simplex in question has vertices

(0, 0), (0, 1), . . . , (0, n+ 1), (1, n+ 2), . . . , (k − n− 2, n+ 2).

As 1 + (n+ 1) + 1 = 1 + (n+ 2), the k-simplex with vertices

(0, 0), (0, 1), . . . , (0, n), (0, n+ 1), (1, n+ 1), (1, n+ 2), . . . , (k − n− 2, n+ 2)

has degenerate jth faces for j 6= n+2, n+3 in the appropriate way to witness that the face we are interested
in is equivalent to the face with vertices

(0, 0), (0, 1), . . . , (0, n), (0, n+ 1), (1, n+ 1), (2, n+ 2), . . . , (k − n− 2, n+ 2).

Continuing inductively in the obvious fashion, we can show that for each i with 0 ≤ i < k−n− 2, the above
simplices are equivalent to the simplex with vertices

(0, 0), (0, 1), . . . , (0, n), (0, n+ 1), (1, n+ 1), . . . , (i, n+ 1), (i+ 1, n+ 2), . . . , (k − n− 2, n+ 2).
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But then using the k-simplex with vertices

(0, 0), (0, 1), . . . , (0, n), (0, n+ 1), (1, n+ 1), . . . , (k − n− 3, n+ 1), (k − n− 2, n+ 1), (k − n− 2, n+ 2),

all of whose faces save the (k− 1)th and kth are degeneracies in the appropriate way, we see that the simplex
in question is equivalent to the simplex with vertices

(0, 0), (0, 1), . . . , (0, n), (0, n+ 1), (1, n+ 1), . . . , (k − n− 3, n+ 1), (k − n− 2, n+ 1).

As this last simplex is contained in Σ and maps to the (n + 2)th face of our original shell, we have proven
the claim.

But now by Lemma 1.5.8, we conclude that there is a k-simplex in X ′ whose boundary is the the given
k-shell. But this k-simplex must map to ∆k downstairs, and so composing with the projection X ′ → X
we obtain a filler of the original k-shell which lives over the k-simplex in S that we started with. We are
done.

Proposition 2.1.6. Let X → S be fibred in (loose) n-quasi-groupoids and Σ a simplicial set. Then [Σ, X] →
[Σ, S] and Σ×X → Σ× S are fibred in (loose) n-quasi-groupoids. Similarly for left fibrations.

Proof. As usual, we treat only the right fibration situation. For the case of being fibred in n-quasi-groupoids,
we need to check that

[∆1, [Σ, X]] → [∆1, [Σ, S]]×[Σ,S] [Σ, X]

is n-very surjective. But by formal nonsense, this morphism is just the induced morphism

[Σ, [∆1, X]] → [Σ, [∆1, S]×S X],

so what we want follows from Proposition 1.5.3. Similarly,

[∆1,Σ×X] → [∆1,Σ× S]×Σ×S (Σ×X)

is formally the same morphism as

[∆1,Σ]× [∆1, X] → [∆1,Σ]×
(
[∆1, S]×S X

)
,

which is also immediately very surjective.
Being fibred in loose n-quasi-groupoids is also expressible by an axiom of this form (by the previous

proposition) and so the same formal argument finishes the proof.

Proposition 2.1.7. Let X → S and Y → S be morphisms of simplicial sets such that Y → S is fibred in
(loose) n-quasi-groupoids, and let [X,Y ]S denote the fibre product

[X,Y ]S = [X,Y ]×[X,S] 1

where 1 → [X,S] represents the morphism X → S. Then [X,Y ]S is a (loose) n-quasi-groupoid.

Proof. By the preceding proposition, [X,Y ] → [X,S] is fibred in (loose) n-quasi-groupoids, so taking the
fibre over the object 1 → [X,S] we obtain that [X,Y ]S is a (loose) n-quasi-groupoid.

Remark 2.1.8. A special case of the last proposition which one should keep in mind is that where X → S
is also fibred in (loose) n-quasi-groupoids, so that Hom objects between simplicial sets fibred in (loose)
n-quasi-groupoids are actually themselves (loose) n-quasi-groupoids. In the sequel, we will compare this to
an “internal” Hom.

We will usually only use the notion of right fibration in the case where the base S is an ordinary
category. The more general definition is nonetheless pedagogically useful in the proof of the main theorem
of this section.
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2.2 The Quasi-Categories nFib/S and LnFib/S

Definition 2.2.1. Let S be a simplicial set. Define the (large) simplicial set nFib/S by letting the m-
simplices be the simplicial sets fibred in n-quasi-groupoids over (∆m)op×S (the op is to account for the fact
that the quasi-groupoid-valued “functors” corresponding to fibred categories are contravariant), together
with simplicial sets isomorphic to pullbacks under all nonidentity morphisms ∆k → ∆m. Boundary and
degeneracy maps are given by rearranging (or truncating) the data in the obvious fashion. As usual, let
Fib/S denote ∞Fib/S.

Similarly define LnFib/S by replacing the words “fibred in n-quasi-groupoids” with “fibred in loose
n-quasi-groupoids.”

The choice of pullbacks, while a bit ugly, seems necessary unless we want to regard the sets of simplices
of nFib/S and LnFib not as sets but as groupoids (or categories). This sort of concern will fade into the
background once we begin to regard nFib/S and LnFib/S not as simplicial sets so much as quasi-categories.

To prove the main theorem about nFib/S and LnFib/S, we need a few lemmas.

Lemma 2.2.2. Let S and T be simplicial sets, n an integer. Then there is are isomorphisms of (large)
simplicial sets [Sop, nFib/T ] → nFib/(S × T ) and [Sop,LnFib/T ] → LnFib/(S × T ).

Proof. This follows immediately upon observing that an m-simplex of [Sop, nFib/T ] is just a morphism
∆m × Sop → nFib/T . But an r-simplex in nFib/T is by definition a right n-fibration X → T × (∆r)op, so
a morphism ∆m × Sop → nFib/T is literally the same thing as a right n-fibration X → (∆m)op × S × T ,
which of course is the same thing as an m-simplex of nFib/(S × T ). A similar argument holds for the loose
case.

Remark 2.2.3. After this lemma, it makes sense to identify nFib/(S×T ) and LnFib/(S×T ) with [Sop,Fib/T ]
and [Sop,LnFib/T ] respectively, and we will do so freely. In particular, take note of the case of T being a
point, so that e.g. nFib/S = [S, nFib/∗].

Lemma 2.2.4. Suppose X → S is a right fibration. Then X → S is fibred in loose n-quasi-groupoids if and
only if all fibres over 0-simplices in S are loose n-quasi-groupoids.

Proof. One direction follows from the fact that loose right n-fibrations are stable under fibre product.
For the other direction, assume that all fibres of X over 0-simplices in S are loose n-quasi-groupoids.

Let m ≥ n+ 2 and let ∂∆m → X be an m-shell together with a filling ∆m → S in S. We may as well pull
back along this filler and assume from here on that S = ∆m. We will prove by descending induction on r
that any m-shell in X the image of which in S is contained in an m-simplex whose source r-simplex is the
degeneracy of 0 can be filled in X (over this simplex).

If r = m, this follows from the fact that fibres over 0-simplices in S are loose n-quasi-groupoids.
Assuming the induction hypothesis, let ∂∆m → X be an m-shell in X the source (m− r)-simplex of whose
image in S is the degeneracy of 0. Make this shell a part of the (r + 1)th face of an (m+ 1)-simplex. First,
pull back a 1-simplex from the (m + 1)th vertex to the (r + 1)th vertex over the 1-simplex from 0 to the
image of the target 0-simplex of the shell. Now, inducting on the size of S ( [m] − {r + 1} we fill in the
simplex with vertices S ∪ {r + 1,m+ 1} as this will have a Λ|S|+1

|S|+1 already filled in and then we can use the
fact that X → S is a right fibration.

But now we are left with a Λm+1
r+1,m+1 together with the (m − 1)-simplex with vertices [m] − {r + 1}

(which was in our original data). Consider the (m + 1)th face of this, which is an m-shell whose source
(r + 1)-simplex maps to the degeneracy of 0 in S, and so fills by the induction hypothesis. We are left,
finally, with a Λm+1

r+1 which of course fills as X → S is a right fibration. The induction, whence the proof of
the proposition, is complete.

Lemma 2.2.5. Let Z → S be fibred in loose n-quasi-groupoids over an n-quasi-category S. Then Πn(Z) =
πn(Z) → S is fibred in n-quasi-groupoids.
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Proof. As Z → πn(Z) is very surjective, a right horn in πn(Z) will lift to Z, and so the data of a filler of the
horn in S will give a filler of the horn in Z, which projects down toa filler of the horn in πn(Z). Therefore,
πn(Z) is a right fibration.

For the uniqueness condition, let Λm
k → πn(Z) be a right horn in πn(Z) with m > n, together with a

filler of its image in S to ∆m. If k < m, then the filler exists and is unique in πn(Z) so that because fillers
of such horns are unique in S, the filler is a lift, and so the unique lift.

If k = m, suppose that we have two fillings of a single horn Λm
m → Z. I claim that these two fillings

have the same mth face. If m > n+1, the mth faces have the same n-skeleton, and so must be equal because
πn(Z) is an n-quasi-category. If m = n + 1, we can form a Λm+1

m+1 by letting its zeroth face be one filler,
its first face the other, and its jth face for 1 < j ≤ m be the zeroth degeneracy of the (j − 1)th face of the
horn (or either filler). This horn projects into the zeroth degeneracy of the filler in S, and so the filler lifts.
Extracting the (m+1)th face of the filled horn upstairs, we see that the two fillers have equivalent mth faces.
As these faces have dimension n, they must be equal in πn(Z), proving the claim.

But now both fillers have the same boundary, which is of dimension at least n. As πn(Z) is an n-quasi-
category, the two fillers themselves must therefore be equal. We are done.

Lemma 2.2.6. Let X → S be fibred in loose n-quasi-groupoids over an arbitrary simplicial set S. Then
there is a right n-fibration πn(X/S) → S which is initial in the full subcategory of X\SSets/S consisting of
the right n-fibrations.

Proof. We define an equivalence relation on m-simplices of X by saying that two m-simplices are equivalent
if and only if they lie over the same m-simplex in S and are equivalent in the sense of πn for quasi-categories.
This is clearly an equivalence relation, and we define πn(X/S) to be the simplicial set obtained by taking the
quotient of the m-simplices of X by this relation; there is of course a natural map πn(X/S) → S, and it is
easy to see that for any m-simplex ∆m → S we have a natural isomorphism πn(X/S)×S ∆m ' πn(X×S ∆m).
But πn(X ×S ∆m) is fibred in n-quasi-groupoids over ∆m by Lemma 2.2.5, and so πn(X/S) ×S ∆m is as
well. But then if Λm

k → πn(X/S) is a right horn with a filling to ∆m → S downstairs, any lift of this filler
will factor uniquely through πn(X/S)×S ∆m, and so this filler will lift and uniquely if m > n, which shows
that πn(X/S) → S is a right n-fibration.

But then if Y → S is any other right n-fibration over S and under X, then for any ∆m → S the map
∆m ×S X → ∆m ×S Y factors uniquely through πn(X/S) ×S ∆m = πn(X ×S ∆m) over ∆m, which shows
that X → Y factors through πn(X/S), as desired.

While it won’t be of use to us just yet, we will put here a relativization of the Πn functors from the last
chapter.

Proposition 2.2.7. Let X → S be a right fibration. Then there is a right n-fibration Πn(X/S) → S which
is initial in the full subcategory of X\SSets/S consisting of the right n-fibrations.

Proof. Let Xn
0 = X. Given Xn

i , form a simplicial set Xn
i+1 together with a morphism Xn

i+1 → S by
inductively adjoining an m-simplex whenever m ≥ n+ 2 and there is an m-shell ∂∆m → Xn

i together with
a filling ∆m → S downstairs which cannot be lifted. Taking Xn to be the union of the Xn

i , we see that Xn

is fibred in loose n-quasi-groupoids over S as right horns Λq
p → Xn with fillers ∆q → S can be filled by a

lift as long as q ≤ n+ 2 (as we added no new q-horns), and if q > n+ 2 then we can fill the missing face by
lifting the (q − 1)-shell filler downstairs, and then fill the interior similarly.

Let Πn(X/S) = πn(Xn/S). Any right n-fibration Y over S with a map from X over S will admit a
unique extension to Xn → Y over S as fillers downstairs of q-shells upstairs in Y for q ≥ n+ 2 lift uniquely
in Y . Therefore, we get a unique map Πn(X/S) → Y , as desired.

Lemma 2.2.8. Let Y be a simplicial set fibred in (resp. loose) n-quasi-groupoids over the inner horn Λm
k .

Then there is a simplicial set Z fibred in (resp. loose) n-quasi-groupoids over ∆m whose restriction to Λm
k

is Y .
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Proof. We define simplicial sets and morphisms Zr → ∆m inductively so that Y is the fibre over Λm
k . Let

Z−1 = Y . To form Zr, we consider all unfilled inner d-horns α in Zr−1 whose “tip” (the vertex whose opposite
face is omitted) lies over the vertex k of ∆m. We add simplices s(α) and t(α) to Zr−1 of dimensions d and
d− 1, respectively, so that s(α) agrees with α along its jth horn, ∂js(α) = t(α), and for any i 0 ≤ i ≤ d− 1,
∂it(α) = ∂i∂jα; these simplices clearly have uniquely defined places to map in ∆m.

Let Z be the union of all the Zr, so that Z agrees with Y along Λm
k . First we show that Z → ∆m is a

right fibration. For this it will be enough to show (as ∆m is a 1-quasi-category) that every right horn in Z
whose projection fills in ∆m can be filled in Z. Notice that by construction, every inner horn whose tip is
over k can be filled.

Let β be a right horn in Z whose projection to ∆m can be filled. We will prove the statement by
induction on the number of vertices of β which are not over k.

Suppose (as the base of the induction) that β has at most m − 1 vertices not over k. Then the image
of β is contained in Λm

k , so that β is in Y and can be filled by the original hypothesis.
Now for the induction step, assume the statement is true for all right horns with fewer non-k vertices

than β, and that β has at least m non-k vertices. If the image of β in ∆m does not contain some vertex
i 6= k, then the image of β is contained in ∂i∆m and is thus fillable in Y ; we may thus assume that the filling
of the image of β contains ∂k∆m. Let β be a Λq

p. If vertex p of β lies over k ∈ ∆m, then β is an inner horn
whose tip is over k, and so is fillable by construction; we may thus assume that p does not lie over k.

Extend [q] to a linearly ordered set U = [q] ∪ {v} where v lies over k. We think of beta as being a
subcomplex of ∆U , where by ∆U we mean the standard (q + 1)-simplex whose vertices are indexed by U .

We will fill out all of ∆U in four steps, a fortiori filling its face v, which fills β as we originally wanted.
In the following, we identify subsets S of U with simplices of ∆U ; note that the simplices we have already
filled are those simplices S ⊆ U − {v} such that S 6⊇ U − {v, p}.

Step 1. We first fill all unfilled S ⊆ U such that S 6⊇ U − {v, p, q}. If v 6∈ S, then as S 6⊇ U − {v, p} the
simplex S has already been filled; we conclude that v ∈ S. There is thus a bijection between such simplices
which contain q and those which do not. We fill in ΛS

q by induction on |S| over all S 3 q. We can do this
because all such are right horns with fewer vertices not over k than [q], so we can fill them by the induction
hypothesis on β.

Step 2. Now, fill in all unfilled S ⊆ U such that S 6⊇ U − {v, p} (this step is vacuous if p = q). Again,
this forces v ∈ S; also, all such must have S ⊇ U − {v, p, q} by step 1. We conclude that there are only
two such (if p < q), namely U − {p, q} and U − {q}. Thus we are tasked with filling ΛU−{q}

p . As p > 0 and
0 ∈ U − {q}, this is a right horn. As U − {q} has fewer vertices not over k than [q] we may fill it by the
induction hypothesis on β.

Step 3. Fill in all unfilled S ⊆ U such that S 6⊇ U − {v}. As S ⊇ U − {v, p} by step 2, there are only
two such, namely U − {v, p} and U − {p}, and filling these is the same as filling ΛU−{p}

v . But this is a right
horn, and U − {p} has fewer vertices not over k than [q]. We can thus fill it and proceed.

Step 4. Finally, we fill in the two remaining simplices, U − {v} and U . But our previous work gives us
the inner horn ΛU

v with v over k. We can fill this by the original construction.
This concludes the proof that Z → ∆m is a right fibration.
Now let us consider the case where Y → Λm

k is fibred in loose n-quasi-groupoids. The same Z as
constructed above has all fibres over 0-simplices in ∆m being loose n-quasi-groupoids, and so Z itself is
fibred in loose n-quasi-groupoids by Lemma 2.2.4, finishing the argument in this case.

Finally, suppose that Y → Λm
k is fibred in n-quasi-groupoids. We know already that Z → ∆m is fibred

in loose n-quasi-groupoids. Let Z ′ = πn(Z), so that as πn(Y ) = Y , the restriction of Z ′ to Λm
k is still

Y . But then by Lemma 2.2.6 (using that ∆m is an n-quasi-category), the simplicial set Z ′ is fibred in
n-quasi-groupoids over ∆m. We are done.

Lemma 2.2.9. Let Y be fibred in (loose) n-quasi-groupoids over ∂∆m for some m ≥ n + 3. Then there is
a simplicial set Z fibred in (loose) n-quasi-groupoids over ∆m whose restriction to ∂∆m is Y .

Proof. First let us consider the loose case. Let Z0 = Y and let Zi be obtained from Zi−1 by adding one new
r-simplex for every unfilled r-shell in Zi−1 whose image in ∆m is filled by a degeneracy of ∆m. Clearly this
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leaves the fibre over ∂∆m unchanged, so we may let Z be the union of these, and its fibre over ∂∆m will be
Y .

I claim that Z is fibred in loose n-quasi-groupoids over ∆m. Indeed, let ∂∆q → Z be a q-shell in Z
together with a filler to ∆q → ∆m downstairs, with q ≥ n + 2. If ∆q → ∆m is surjective, then the shell
fills by construction. If ∆q → ∆m is not surjective then it factors through ∂∆m so that the q-shell factors
through Y and the filler lifts by assumption on Y .

Now let Λq
p → Z be a right horn together with a filler of its image ∆q → ∆m. If q < m, then ∆q → ∆m

factors through (some face of) ∂∆m, and so the horn filler lifts by assumption on Y . If q ≥ m ≥ n+ 3, the
missing face of the horn has dimension at least n+ 2 and fills as we can lift fillers of shells of dimension at
least n+ 2. But then what remains is a shell of dimension q > n+ 2, and so this shell filler lifts as well. We
are done with the loose case.

For the case of being fibred in n-quasi-groupoids, let Z ′ = πn(Z), so that Z ′ is fibred in n-quasi-groupoids
over ∆m, and agrees with Y when restricted to ∂∆m. We are done.

Theorem 2.2.10. Let S be a simplicial set. Then nFib/S and LnFib/S are (large) loose (n + 1)-quasi-
categories.

Proof. First, notice that from Lemmas 2.2.8 and 2.2.9 it follows immediately that nFib/∗ and LnFib/∗
are loose (n + 1)-quasi-categories. But then nFib/S = [S, nFib/∗] and LnFib/S = [S,LnFib/∗] are loose
(n+ 1)-quasi-categories as well.

One corollary of this theorem is that nFib/∗ and LnFib/∗ are loose (n+1)-quasi-categories. Considering
that these quasi-category have as objects all (loose) n-quasi-groupoids (a (loose) right n-fibration over a point
is a (loose) n-quasi-groupoid), it makes sense to give these quasi-categories special names. In fact, for us this
quasi-category will serve an analogous purpose to the category of sets in sheaf theory as well as the weak
2-category of groupoids in the classical theory of stacks.

Definition 2.2.11. The quasi-categories nQGpd and LnQGpd are defined to be the loose (n + 1)-quasi-
categories nFib/∗ and LnFib/∗ of (resp. loose) right n-fibrations over a point.

2.3 Morphisms in nFib/S and LnFib/S

We now have two competing notions of morphism between simplicial sets X and Y fibred over S. We can
look at the “external” quasi-groupoid [X,Y ]S of morphisms over S, and we can also look at the “internal”
quasi-groupoid HomFib/S(X,Y ). These two quasi-groupoids are in fact homotopy equivalent to one another
in a natural way, as we will show in §2.3.2.

2.3.1 Equivalence of Right Fibrations

Our first step is to establish a natural notion of equivalence of right fibrations (in Theorem 2.3.4), analyzing
certain Hom spaces occurring in right fibrations along the way.

Lemma 2.3.1. Let X → ∆1 be a right fibration (so that X is a quasi-category), let x and y be objects of

X over 0 and 1 respectively, and let z
f // y be a 1-simplex over 0 // 1 . Consider {0} ∪ ∂0∆2 as a

subcomplex of ∆2 and let σ : {0}∪∂0∆2 → X be defined by taking {0} to x and ∂0∆2 to f . Then the natural
morphisms of simplicial sets

Fill(σ,∆2)

&&NNNNNNNNNNN

xxppppppppppp

Hom(x, y) Hom(x, z)
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(corresponding to the first and second faces of ∆2) are very surjective. In particular, there is a homotopy
equivalence of quasi-groupoids HomX(x, y) → HomX(x, z).

Proof. To show very surjectivity of Fill(σ,∆2) → Hom(x, z), notice that an m-shell of Fill(σ,∆2) together
with a filler of its image in Hom(x, z) amounts to a morphism

(Λ2
1 ×∆m) ∪ (∆2 × ∂∆m) // X,

as ∂0∆2 ×∆m → X is forced by the fact that the filler ought to land in the Fill space. But this shape can
be filled by inner horn fillings by Lemma 1.2.6, and so as we have a filler in ∆1 (the appropriate degeneracy
of the nondegenerate 1-simplex in ∆1), we can lift the filler to fill the shape in X, giving a morphism
∆m ×∆2 → X agreeing with σ on ∆m × ({0} ∪ ∂0∆2), i.e. an m-simplex in Fill(σ,∆2), as we wanted.

For very surjectivity of Fill(σ,∆2) → Hom(x, y), we proceed similarly, only this time the partially filled
shape will be a morphism

(Λ2
2 ×∆m) ∪ (∆2 × ∂∆m) // X.

As this shape can be filled by a succession of inner horn fillers followed by a filling of a right horn (again
by Lemma 1.2.6), we can lift the given filler in ∆1 to X, obtaining the m-simplex in Fill(σ,∆2) that we
want.

Lemma 2.3.2. Let X → ∆1 and Y → ∆1 be right fibrations (so that X and Y are quasi-categories), and
let F : X → Y be a morphism over ∆1. If the restrictions of F to the fibres of X and Y over 0 and 1 are
homotopy equivalences of quasi-groupoids, then F is an equivalence of quasi-categories.

Proof. By Theorem 1.5.44, it will be enough to show that F is essentially surjective and a homotopy equiv-
alence on Hom spaces. Essential surjectivity is immediate as F is essentially surjective on fibres over objects
in ∆1, and every object in X lies in one such fibre.

Now let x and x′ be objects in X. We will argue that

HomX(x, x′) // HomY (F (x), F (x′))

is a homotopy equivalence, completing the proof.
If both x and x′ lie over the same 0-simplex ε in ∆1, then all 1-simplices from one to the other will lie

over the degeneracy of ε, from which it follows that

HomX(x, x′) = HomXε
(x, x′)

and HomY (F (x), F (x′)) = HomYε
(F (x), F (x′)). But then as Xε

// Yε is a homotopy equivalence,

HomXε
(x, x′) // HomYε

(F (x), F (x′))

is a homotopy equivalence (by say Theorem 1.5.44), whence

HomX(x, x′) // HomY (F (x), F (x′))

is a homotopy equivalence as well.
If x lies over 1 and x′ lies over 0, then HomX(x, x′) = HomY (x, x′) = ∅ and the statement is vacuous.

Finally, suppose that x lies over 0 and x′ lies over 1. Let x′′
f // x′ lie over 0 // 1 , and define

the corresponding σ : {0} ∪ ∂0∆2 → X as in Lemma 2.3.1. Then we have a commutative diagram

HomX(x, x′′)

��

FillX(σ,∆2)oo //

��

HomX(x, x′)

��
HomY (F (x), F (x′′)) FillY (F (σ),∆2)oo // HomY (F (x), F (x′))
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with all horizontal arrows homotopy equivalences (in fact, very surjective maps) by Lemma 2.3.1. Since
the leftmost vertical arrow is also a homotopy equivalence, we conclude that the rightmost is a homotopy
equivalence, as desired.

Definition 2.3.3. Let X and Y be right fibrations over a simplicial set S, and let F : X → Y be a morphism
of simplicial sets over S (i.e. such that

X
F //

��@
@@

@@
@@

Y

����
��

��
�

S

commutes). Then we say that F is an equivalence of right fibrations over S if there is a simplicial set P
and very surjective morphisms P → X and P → Y such that F factors as a section of P → X followed by
P → Y and such that

P

~~~~
~~

~~
~

��@
@@

@@
@@

X

  @
@@

@@
@@

@ Y

��~~
~~

~~
~

S

commutes.

Theorem 2.3.4. Let X and Y be right fibrations over a simplicial set S, and let F : X → Y be a morphism
of simplicial sets over S. Then the following are equivalent:

(i) The morphism F is an equivalence of right fibrations over S.

(ii) There is a morphism G : Y → X over S and 1-simplices 1X → GF and 1Y → FG in the quasi-
groupoids [X,X]S and [Y, Y ]S (so that the 1-simplices are quasi-isomorphisms).

(iii) The morphism F induces homotopy equivalences on all fibres over 0-simplices in S.

Proof. That (i)⇒(ii) follows by the same argument as in Theorem 1.5.44, after we notice that [X,P ]S is
very surjective onto both [X,Y ]S and [X,X]S (and symmetrically for Y ), since all three are obtained by
changing base along the morphism 1 → [X,S] corresponding to the projection X → S.

For (ii)⇒(iii), notice that for a 0-simplex s of S, we have restricted morphisms Fs : Xs → Ys and
Gs : Ys → Xs, and moreover as the homotopies 1X → GF and 1Y → FG are in [X,X]S and [Y, Y ]S
respectively, they also restrict to homotopies 1Xs → GsFs and 1Ys → FsGs, completing the proof that F is
a homotopy equivalence on fibres.

To show that (iii)⇒(i), note that by Lemma 2.3.2 we have that for any 1-simplex f : ∆1 → S, the
restriction to fibre products Ff : Xf → Yf is an equivalence of quasi-categories. It follows from this that for
any 0-simplices x and x′ in X lying over the source and target of a 1-simplex f in S, the induced morphism

HomXf
(x, x′) → HomYf

(F (x), F (x′))

is a homotopy equivalence.
Consider now a morphism ξ : ∆r → S. The fibres Xξ and Yξ are quasi-categories, and I claim that

Fξ : Xξ → Yξ is an equivalence of quasi-categories. Indeed, Fξ is essentially surjective because every object
of Yξ lies in a fibre over a 0-simplex s of S, and the morphism Xs → Ys is a homotopy equivalence (so
essentially surjective).

Let x and x′ be objects of Xξ, and consider the quasi-groupoid HomXξ
(x, x′). If x and x′ map to vertices

i and j of ∆r, then as there is a unique morphism i → j in ∆r corresponding to a 1-simplex f in S, the
induced morphism

HomXf
(x, x′) → HomXξ

(x, x′)
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is in fact an isomorphism of simplicial sets. After similar remarks for Y , we conclude that we have a
commutative diagram

HomXf
(x, x′) ∼ //

��

HomXξ
(x, x′)

��
HomYf

(F (x), F (x′)) ∼ // HomYξ
(F (x), F (x′))

demonstrating that
HomXξ

(x, x′) → HomYξ
(F (x), F (x′))

is a homotopy equivalence, whence by Theorem 1.5.44 that Fξ is an equivalence of quasi-categories.
For every ξ as in the previous paragraph, define the simplicial set Pξ as in the proof of Theorem 1.5.44 to

have m-simplices which are ordered triples (σ, τ, ϕ) where σ is an m-simplex of Xξ, τ is an m-simplex of Yξ,
and ϕ : Fξ(σ) → τ is a quasi-isomorphism. As these quasi-isomorphisms must map to quasi-isomorphisms in
[∆m,∆r] and the only quasi-isomorphisms in this 1-quasi-category are the identities, we see that the diagram

Pξ

~~}}
}}

}}
}}

  @
@@

@@
@@

@

Xξ

!!B
BB

BB
BB

B
Yξ

~~}}
}}

}}
}}

∆r

commutes.
Moreover, if ξ is an r-simplex of S factoring through an s-simplex ζ of S, then it is clear that the natural

morphism Pξ → Pζ is a morphism of simplicial sets such that

Pξ

~~}}
}}

}}
}}

}}
}}

}}
}}

}}
}

��

��@
@@

@@
@@

@@
@@

@@
@@

@@
@@

Pζ

~~}}
}}

}}
}}

  @
@@

@@
@@

@

Xξ //

!!C
CC

CC
CC

CC
CC

CC
CC

CC
CC

Xζ

!!B
BB

BB
BB

B
Yζ

~~||
||

||
||

Yξoo

~~||
||

||
||

||
||

||
||

||
|

∆s

∆r

OO

commutes, and that these morphisms Pξ → Pζ are compatible with one another in the obvious sense.
Therefore, we can define P to be the colimit of the Pξ. We end up with a simplicial set P with morphisms
P → X and P → Y such that

P

~~~~
~~

~~
~

��@
@@

@@
@@

X

  @
@@

@@
@@

@ Y

��~~
~~

~~
~

S
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commutes.
I claim that P → X and P → Y are very surjective. Indeed, given the data of an m-simplex in X and

a lift of its boundary to P , we can map the simplex down to an m-simplex ξ of S, and then pulling back
along ξ, the m-simplex of X and the lift of its boundary to P restrict to an m-simplex of Xξ and a lift of its
boundary to Pξ. As Pξ → Xξ is very surjective, the interior can be lifted and then mapped back to P , as
desired. Similar remarks hold for Y , and so we are done.

Remark 2.3.5. Note that for formal reasons the corollaries following Theorem 1.5.44 have corresponding
versions here.

Remark 2.3.6. This theorem gives one sense in which a simplicial set fibred in quasi-groupoids acts as a
quasi-groupoid-valued pseudo-functor: To check that a morphism of right fibrations is an equivalence, it is
enough to check the equivalence fibrewise. Note that it is not enough that fibres be homotopy equivalent
to one another only; there must be a map delivering the homotopy equivalence. This corresponds to the
“natural” part of a natural isomorphism of functors.

2.3.2 Relating the Two Notions of Morphism

Lemma 2.3.7. Let X be a right fibration over S, and suppose Λm
k → X is a right horn with a filler ∆m → S

downstairs. Then the filled faces of any two lifts of this filler are equivalent (in the sense of Lemma 1.5.7)

Proof. Form a morphism Λm+1
k+1 → X whose jth face for j < k is the (k − 1)th degeneracy of the jth face of

the horn, whose kth face is one filler, whose(k+ 1)th face is the other, and whose jth face for j > k+ 1 is the
kth degeneracy of the (j − 1)th face of the horn. Then this is a right horn with a filler downstairs (which is
the kth degeneracy of the original filler) and so fills, providing for the equivalence we were looking for.

Definition 2.3.8. Let X0, . . . , Xs be simplicial sets, and fi : Xi−1 → Xi morphisms of simplicial sets.
Define the simplicial set C(f1, . . . , fs) to have m-simplices which are ordered 2s+ 1-tuples

(r0, . . . , rs−1, α0, . . . , αs)

such that −1 ≤ r0 ≤ r1 ≤ · · · ≤ rs−1 ≤ rs := m, for all i, αi is an ri-simplex of Xi, and for all i < s, fi+1(αi)
is the target ri-simplex of αi+1. Here for notational simplicity every simplicial set is defined to have a unique
(−1)-simplex (think of this simplex as empty). Define

∂j(r0, . . . , rs−1, α0, . . . , αs) = (r′0, . . . , r
′
s−1, α

′
0, . . . , α

′
s−1, ∂jαs),

where r′i = ri − 1 and α′i = ∂j+ri−mαi if j ≥ m− ri and otherwise r′i = ri and α′i = αi; define degeneracies
similarly. This clearly comprises a simplicial set.

Notice that C(f1, . . . , fs) comes with a natural map to (∆s)op, namely that which takes an m-simplex
(ordered (2s+ 1)-tuple (r0, . . . , rs−1, α0, . . . , αs)) to the nonincreasing sequence of elements of [s] consisting
of ri − ri−1 instances of i (where we define r−1 = −1 and rs = m). It is immediate that the fibre of this
morphism over i is Xi. We will henceforth think of C(f1, . . . , fs) as a simplicial set together with a morphism

C(f1, . . . , fs) → (∆s)op.

Notice moreover that there are natural maps ∂i : C(g1, . . . , gs−1) → C(f1, . . . , fs), where (g1, . . . , gs−1)
is obtained from (f1, . . . , fs) by either omitting f1 (this is ∂0) omitting fs (this is ∂s), or by composing fi

with fi+1 (this is ∂i). In fact, these maps are easily seen to be simply the pullbacks

C(g1, . . . , gs−1)
∂i //

��

C(f1, . . . , fs)

��
(∆s−1)op

∂i // (∆s)op.
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Finally, note that if f : X → Y is a morphism, there is a natural map X × (∆1)op → C(f) given by
taking an m-simplex (ξ, ε) (where ε is a nonincreasing sequence of (m− r) 1’s and (r+ 1) 0’s) to (r, α, f(ξ)),
where α is the target r-simplex of ξ.

Proposition 2.3.9. Suppose X0, . . . , Xs are right n-fibrations over S and fi : Xi−1 → Xi are morphisms
over S. Then C(f1, . . . , fs) has a natural map to S and is a right n-fibration over S × (∆s)op.

Proof. Define a map to S by taking an m-simplex (r0, . . . , rs−1, α0, . . . , αs) to the image of αs under Xs → S;
it follows that the image of αi is the target ri-simplex of this simplex.

Now, let Λm
k → C(f1 . . . , fs) be a right horn together with a filler downstairs ∆m → S × (∆s)op. Let

i be the greatest element of [s] occurring in the projection of the filler to (∆s)op. The horn has αj filled
in for all j < i because rj < ri and so αj , being as it is the target rj-simplex of the horn, is already filled.
The horn in C(f1, . . . , fs) only defines a right horn in Xi (i.e. not our desired αi), but we can fill it over S
(uniquely if m > n) as Xi is a right n-fibration; call this filler αi. Finally, this filler extends uniquely to a
filler of the horn in C(f1, . . . , fs), as we are forced to define αj = fj(fj−1(· · · fi+1(αi) · · · )) for each j > i.
We are done.

Remark 2.3.10. Let FS denote the full subcategory of SSets/S consisting of the right fibrations over S. Then
the preceding proposition, together with the remarks which precede it, establish that C actually defines a
canonical quasi-functor

C : FS
// Fib/S,

because to define a quasi-functor on (the nerve of) a category we need only tell to which s-simplex we
send a given chain of composable morphisms (f1, . . . , fs) (and check that these assignments are compatible).
Theorem 2.3.12 below gives a sense in which this quasi-functor is “an equivalence of simplicially enriched
categories.” Of course, Fib/S is not a category, so this statement should be taken “in quotes only.”

Let X0, . . . Xs be right n-fibrations over a simplicial set S, and let fi be an m-simplex in [Xi−1, Xi]
op
S ,

so that we may think of fi as a morphism f : Xi−1 × (∆m)op → Xi × (∆m)op over S × (∆m)op. Then
C(f1, . . . , fs) is a right n-fibration over S × (∆m)op × (∆s)op, and so can be identified with a morphism

C(f1, . . . , fs) : ∆m ×∆s → nFib/S

whose restriction to ∆m × {i} is constantly Xi for all i. Therefore, C(f1, . . . , fs) identifies an m-simplex
in HomnFib/S(X0, . . . , Xs). As this mapping (f1, . . . , fn) 7→ C(f1, . . . , fn) clearly respects boundaries and
degeneracies, we conclude that we have a morphism of simplicial sets

C : [X0, X1]
op
S × · · · × [Xs−1, Xs]

op
S

// HomnFib/S(X0, X1, . . . , Xs).

Notice moreover that this morphism is a monomorphism, as for example we may recover fi(α) for an r-
simplex α by looking at the unique simplex of C(f1, . . . , fs) of the form

(0, . . . , 0, r, r, . . . , ∅, . . . , ∅, α, . . .),

where of course the r’s begin at index i and α is at the term for simplices in Xi. Here fi(α) is simply the
term following α.

Definition 2.3.11. Let X0, . . . , Xs be right fibrations over S, fi : Xi−1 → Xi morphisms over S, and Z
an s-simplex with ith object Xi in Fib/S, i.e. a right fibration over S × (∆s)op with given isomorphisms
Z|i ' Xi. We define an embedding of (f1, . . . , fs) into Z to be a morphism

ϕ : C(f1 . . . , fs) → Z

over S × (∆s)op compatible with the given isomorphisms over each i ∈ [s].
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Theorem 2.3.12. Let X0 . . . , Xs be right n-fibrations over S. Define the simplicial set P (X0, . . . , Xs) to
have m-simplices which are ordered (s + 2)-tuples (f1, . . . , fs, Z, ϕ) of m-simplices fi in [Xi−1, Xi]

op
S , an

m-simplex Z in HomnFib/S(X0, . . . , Xs), and a morphism ϕ : C(f1, . . . , fs) → Z over S × (∆m)op × (∆s)op

respecting the given fibres Xi × (∆m)op over i. Then the natural projections

P (X0, . . . , Xs)

))SSSSSSSSSSSSSSS

ttiiiiiiiiiiiiiiiii

[X0, X1]
op
S × · · · × [Xs−1, Xs]

op
S

HomnFib/S(X0, . . . , Xs)

are both very surjective. In particular, the morphism of quasi-groupoids

C : [X0, X1]
op
S × · · · × [Xs−1, Xs]

op
S

// HomnFib/S(X0, . . . , Xs)

defined above is a homotopy equivalence.

Proof. Notice that C being a homotopy equivalence follows from the fact that we have a canonical section

[X0, X1]
op
S × · · · × [Xs−1, Xs]

op
S → P (X0, . . . , Xs)

given by taking an m-simplex (f1, . . . , fs) where fi : Xi−1 × (∆m)op → Xi to

(f1, . . . , fs, C(f1, . . . , fs), 1C(f1,...,fs)),

and this section clearly factorizes C. It remains to prove the very surjectivity statements.
First we treat the morphism

P (X0, . . . , Xs) // [X0, X1]
op
S × · · · × [Xs−1, Xs]

op
S .

Given an m-simplex (f1, . . . , fs) of [X0, X1]
op
S × · · · × [Xs−1, Xs]

op
S and a lifting of its boundary to a right

n-fibration Z ′ over S × (∂∆m)op × (∆s)op together with a morphism C(f ′1, . . . , f
′
s) → Z ′, where

f ′i = fi|Xi−1×(∂∆m)op,

we will fill in Z ′ to a right n-fibration Z admitting an extension of the given morphism to a morphism
C(f1, . . . , fs) → Z.

If m = 0, Z ′ = ∅ and we may simply take Z = C(f1, . . . , fs). We thus assume that m > 0.
Let p : Z ′ → C(f ′1, . . . , f

′
s) be a quasi-inverse to the given morphism (which exists by Theorem 2.3.4

and the fact that the morphism is in fact an isomorphism on fibres over 0-simplices). Define a simplicial set
Y to have q-simplices which are ordered pairs (α, β) where α is a q-simplex of C(f1, . . . , fs) and β is a lift
of the simplices of α not lying over the interior of (∆m)op to Z ′ along p (so that the lift is compatible with
shared boundaries). Then evidently Z ′ = Y ×∆m ∂∆m.

I claim that Y is a right fibration over S × (∆m)op × (∆s)op. Indeed, let Λq
p → Y be a right horn with

a filling ∆q → S × (∆m)op × (∆s)op. If the filling lies over (∂∆m)op, then the horn is contained in Z ′ and
can be filled there. If the interior of the horn lies over the interior of (∆m)op, then we fill the image of the
horn in C(f1, . . . , fs). If the kth face of the filler does not lie over (∂∆m)op, then we need find no new lifting
data.

Otherwise, the filler we just lifted will have a kth face which lives in C(f ′1, . . . , f
′
s) and comes equipped

with a lift of its boundary to Z ′ along p. Taking fibres over this kth face (as a morphism ∆q−1 → S ×
(∆m)op × (∆s)op), we see that as p restricted to these fibres is an equivalence of quasi-categories, it must
be surjective on connected components of Fill spaces (by Theorem 1.5.44), and so the lift of the boundary
must have a filler in Z ′ mapping into the connected component of the kth face we just found. We conclude
that this kth face is equivalent (in the sense of Lemma 1.5.7) to a (q − 1)-simplex in the image of p, and so
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(working in the fibre over ∆q of C(f1, . . . , fs)) we may replace the filler of the horn with another which has
this (q − 1)-simplex as its kth face (and this filler will map where we want it to because we are working in
the fibre). We thus obtain a filler lift in C(f1, . . . , fs) together with a lift of its kth face to Z ′, as desired.

As Y has fibres over 0-simplices which are n-quasi-groupoids, we can let Z = πn(Y/S×(∆m)op×(∆s)op),
so that Z ′ is still the fibre of Z over (∂∆m)op, and now Z is a right n-fibration. We have in addition a
commutative diagram of simplicial sets

C(f ′1, . . . , f
′
s)

��

Z ′p
oo

��
C(f1, . . . , fs) Z,

q
oo

where q is the projection Z → C(f1, . . . , fs).
Let P ′ be a simplicial set with very surjective maps onto C(f ′1, . . . , f

′
s) and Z ′ such that the given

C(f ′1, . . . , f
′
s) → Z ′ as well as p factor as sections of the respecitve very surjective maps composed with the

other (we know that such exists by the construction of p). By performing the same construction on P ′ as
we did on Z ′, we obtain a simplicial set P which is very surjective onto both Z and C(f1, . . . , fs), and which
comes equipped with a morphism P ′ → P compatible with all the projections, so producing a commutative
diagram:

C(f ′1, . . . , f
′
s)

��

P ′oo //

��

Z ′

��
C(f1, . . . , fs) P //oo Z.

Let i′ : C(f ′1, . . . , f
′
s) → P ′ be the section which gives rise to the map C(f ′1, . . . , f

′
s) → Z ′, so that we

can compose to produce a morphism C(f ′1, . . . , f
′
s) → P . Using the facts that P → C(f1, . . . , fs) is very

surjective and C(f ′1, . . . , f
′
s) → C(f1, . . . , fs) is a monomorphism, we can find a lift C(f1, . . . , fs) → P making

the diagram
C(f ′1, . . . , f

′
s) //

��

P

��
C(f1, . . . , fs)

66nnnnnnnnnnnnnn
C(f1, . . . , fs)

commute, which by construction is a section of P → C(f1, . . . , fs). But then if we compose this section
with the projection P → Z, we clearly obtain a map C(f1, . . . , fs) → Z which extends the given map
C(f ′1, . . . , f

′
s) → Z ′, as we wanted.

Now we treat the morphism

P (X0, . . . , Xs) // HomnFib/S(X0, . . . , Xs) ,

which will complete the proof. Given an m-simplex of HomnFib/S(X0, . . . , Xs) together with a lift of its
boundary upstairs, we have a right n-fibration Z over S × (∆m)op × (∆s)op and morphisms f ′i : Xi−1 ×
(∂∆m)op → Xi×(∂∆m)op over S×(∂∆m)op together with a morphism C(f ′1, . . . , f

′
s) → Z over S×(∆m)op×

(∆s)op. We wish to extend the f ′i to morphisms fi : Xi−1 × (∆m)op → Xi × (∆m)op over S × (∆m)op such
that C(f ′1, . . . , f

′
s) → Z extends to C(f1, . . . , fs) → Z.

Our plan of attack will be to build up the simplicial sets Xi × (∆m)op from Xi × (∂∆m)op simplex by
simplex, extending the morphisms f ′i as appropriate, so as to allow the desired extension of the map to Z.

More precisely, suppose we are given morphisms gi : Yi−1 → Yi where the Yi are simplicial sets with
Xi×(∂∆m)op ⊆ Yi ⊆ Xi×(∆m)op and we are given also an extension of C(f ′1, . . . , f

′
s) → Z to C(g1, . . . , gs) →

Z. Let j be least so that Yi = Xi for all i > j. Let ξ be a q-simplex of Xj such that ξ is not contained in Yj

but ∂ξ is so contained. We will show that we can extend gj+1 to hj+1 defined on Yj ∪ ξ (with no hypothesis
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here if j = s) so that if hi = gi for i 6= j + 1, we can extend the given map to a map C(h1, . . . , hs) → Z. We
base the induction on the case Yi = Xi × (∂∆m)op for all i with gi = f ′i , and then clearly this inductive step
will give the desired extension.

First we will define hj+1 (if necessary, i.e. if j < s). Indeed, as ∂ξ is in Yj , this boundary defines a
morphism

∂∆q × (∆1)op // C(gj+1) // C(g1, . . . , gs) // Z.

Defining the map ∆q × {0} → Z to be ξ : ∆q → Xj ↪→ Z itself, we obtain a shape

∆q × {0} ∪ ∂∆q × (∆1)op → Z

which can be filled in S × (∆m)op × (∆s)op by the map defined by

ξ : ∆q // Xj // S × (∆m)op

and the morphism (∆1)op → (∆s)op giving the 1-simplex from j + 1 to j. As the shape above can be
filled by right horns (by Lemma 1.2.6), we can lift the filler downstairs and obtain a full-blown morphism
∆q × (∆1)op → Z. We define hj+1(ξ) to be the q-simplex ∆q × {1} → Z, which of course factors through
Yj+1 = Xj+1. Notice moreover that by construction hj+1(ξ) lies over the same q-simplex in S × (∆m)op as
ξ, so that hj+1 is a morphism over S × (∆m)op.

We now form an extension of C(g1, . . . , gs) → Z to C(h1, . . . , hs). The nondegenerate k-simplices
(r0, . . . , rs−1, α0, . . . , αs) which we must fill are characterized by the criterion that αj is a (possibly nullary)
degeneracy of ξ. We map ξ ∈ Xj ⊂ C(h1, . . . , hs) to ξ ∈ Xj ⊂ Z (as we must).

First let us treat the case of unmapped nondegenerate k-simplices (r0, . . . , rs−1, α0, . . . , αs) for which
rj = k. As we have already filled in the unique nondegenerate k-simplex of this sort with rj−1 = −1, we
know that rj−1 ≥ 0. Moreover, k > rj−1 as no simplex in Yj−1 maps to (any degeneracy of) ξ under hj .
Say a k-simplex as above is of degenerate type if αj is an (k − rj−1 − 1)th degeneracy, and of nondegenerate
type otherwise (a simplex of degenerate type is not necessarily degenerate as a simplex).

I claim that every k-simplex of degenerate type has a (k − rj−1 − 1)th face which is of nondegenerate
type, and every (k − 1)-simplex of nondegenerate type is an (k − rj−1 − 1)th face of a unique k-simplex of
degenerate type. Indeed, suppose that a k-simplex of degenerate type has an (k − rj−1 − 1)th face which is
of degenerate type; then we would have αj being an (k− rj−1)th degeneracy as well. This would imply that
the simplex as a whole was a (k − rj−1)th degeneracy, contradicting our assumption that the simplex was
nondegenerate.

Conversely, given a (k − 1)-simplex (r′0, . . . , r
′
s−1, α

′
0, . . . , α

′
s) of nondegenerate type, any k-simplex of

degenerate type whose (k− rj−1−1)th face is this simplex must have αj = σk−rj−1−1α
′
j , with all αi = α′i for

i < j; this clearly forces only one k-simplex of degenerate type, and this simplex will actually work because
there are nonempty simplices over indices less than j. Thus the claim is proven.

It is clear that in a k-simplex like what we are considering, αj cannot be an ith degeneracy for any
i < k− rj−1− 1, for then the whole simplex would be degenerate. Therefore the ith boundaries for any such
i must lie in C(g1, . . . , gs).

By induction on k ≥ 1, we now simultanously fill in the map on all k-simplices of degenerate type and
all (k−1)-simplices of nondegenerate type by filling in the map on corresponding pairs of such. For the base
case k = 1, there is nothing to do, as here αj must be the zeroth degeneracy of a 0-simplex which must be
ξ, and ξ cannot be mapped to by any 0-simplex in Yj−1.

For the induction step, consider an unmapped k-simplex of degenerate type; its (k − rj−1)th boundary
will also be unmapped by construction. Its ith faces for i < k − rj−1 − 1 will already be mapped as they lie
in C(g1, . . . , gs), and its ith faces for i > k − rj−1 − 1 are (k − 1)-simplices of degenerate type, and so also
have already been mapped. We conclude that we have already mapped the Λk

k−rj−1−1 of the k-simplex of
degenerate type in question. But k > rj−1 + 1 (otherwise αj−1 would map to a degeneracy of ξ) and we
have a filler in S × (∆m)op × (∆s)op (namely that given by the k-simplex in C(h1, . . . , hs)), and so we can
lift that right horn filler to fill the horn and extend the map. Thus we complete this case.
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If j = s, this case is in fact everything and so we are done. We thus take j < s for the remainder of the
proof.

Consider the map ∆q×(∆1)op → Z produced above. Let εt denote the (q+1)-tuple of (q−t) 1’s followed
by t + 1 0’s. I claim that for all t < q, the image of the q-simplex (∆q, εt) under this map is equivalent (in
the sense of Lemma 1.5.7) to the image of the q-simplex

βt = (r0, . . . , rs−1, α0, . . . , αs) ∈ C(g1, . . . , gs),

where rj−1 = −1, rj = t, rj+1 = q, αj is the target t-simplex of ξ, and αj+1 is hj+1(ξ). Indeed, we induct
on t.

For t = −1 both images are h(ξ). Given the statement for t − 1, we look at the image of the (q + 1)-
simplex (σq−t∆q, σq−t−1εt). All faces of this simplex arise from the morphism C(g1, . . . , gs) → Z except
for its (q − t)th and (q − t + 1)th faces. As the latter is equivalent to the image of βt−1 by the induction
hypothesis, we may replace this (q+1)-simplex with one whose (q−t+1)th face also arises from the morphism
C(g1, . . . , gs) → Z.

But then the (q−t)th horn of this new simplex can be filled so that the filled face is the image of (∆q, εt).
Moreover, consider the (q + 1)-simplex (r0, . . . , rs−1, α0, . . . , αs) of C(g1, . . . , gs) where rj−1 = −1, rj = t,
rj+1 = q+1, αj is the target t-simplex of ξ, and αj+1 = σq−thj+1(ξ). The image of this (q+1)-simplex also
fills the horn in question, and in this case the missing face is the image of βt. By Lemma 2.3.7, we obtain
that the image of βt is equivalent to the image of (∆q, εt), as desired.

But now, applying the claim in the case t = q − 1, we see that the image of βq−1 is equivalent to the
image of (∆q, εq−1). We conclude that there is a (q+1)-simplex in Z which shares all its faces with the image
of (σ0∆q, ε′), where ε′ is the (q+ 2)-tuple consisting of one 1 followed by (q+ 1) 0’s, except for its first face,
which is the image of βq−1. Finally, map the (q + 1)-simplex (r0, . . . , rs−1, α0, . . . , αs) of C(h1, . . . , hs) with
rj−1 = −1, rj+1 = q + 1, αj = ξ, and αj+1 = σ0ξ to this (q + 1)-simplex we have found. By construction, it
agrees with all preceding data.

We now imitate the construction following the mapping of ξ to map all unmapped k-simplices with
rj = k − 1, rj+1 = k, and αj+1 a zeroth degeneracy. Again, a k-simplex of (non)degenerate type will be a
k-simplex as above with αj (not) a (k− rj−1− 2)th degeneracy. These fall into pairs as before, and the same
induction will fill in all such simplices.

To fill in what remains of C(h1, . . . , hs), we once more define classes of simplices of degenerate and
nondegenerate type, only this time the terms shall refer to whether or not αj+1 is a (rj+1 − rj − 1)th

degeneracy (in the usual notation). Again, degenerate and nondegenerate simplices are in bijection with
one another by means of taking the (rj+1 − rj − 1)th face, and for similar reasons. Here notice that the
simplices we filled in above correspond under this bijection (the two inductions we performed were in fact
on the simplices of nondegenerate and degenerate type in the new sense). Thus the bijection is exact on the
unmapped simplices. We prove by induction first on the dimension k of a degenerate simplex, then on the
dimension rj of αj , that we can fill in the degenerate k-simplices and nondegenerate (k − 1)-simplices (in
corresponding pairs, as above).

The base of induction on k is established by observing that every simplex of degenerate type of dimension
less than or equal to q + 1 is already filled in (we know rj < rj+1 ≤ q + 1, and so in order for αj to be a
degeneracy of ξ, it must be in fact ξ, and then αj+1 = σ0hj+1(ξ) and we are in the second inductive filling
performed above). The base of induction on rj is established by noting that if rj < q, then the simplex must
already be filled (again because αj is not a degeneracy of ξ).

But then given a k-simplex of degenerate type, its ith faces for i < k − rj − 1 are (k − 1)-simplices
of degenerate type, so filled, and its ith faces for i > k − rj − 1 have lesser rj (so that even if they are
nondegenerate at least rj drops), and so are filled as well. We thus have a Λk

k−rj−1 in Z over a filled
k-simplex in S × (∆m)op × (∆s)op. But k > rj + 1 because otherwise rj+1 = rj + 1 as

rj + 1 = k ≥ rj+1 > rj ,

and then αj+1 = σ0hj+1(αj) so that we are covered by the second induction above. Thus this is a right
horn, and the filler can be lifted, completing the induction and the proof.
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Corollary 2.3.13. Let X and Y be two right n-fibrations over S, and let f, g : X → Y over S. Then f ' g
in [X,Y ]S if and only if C(f) ' C(g) in HomnFib/S(X,Y )

Proof. Immediate.

Corollary 2.3.14. Let X, Y , and Z be right n-fibrations over S, and let f : X → Y , g : Y → Z, and
h : X → Z be morphisms over S. Then gf ' h in [X,Z]S if and only if there is a 2-simplex in nFib/S with
zeroth, first and second faces C(g), C(h), and C(f) respectively.

Proof. By the preceding corollary, we need only show that C(gf) ' C(h) if and only if there is a 2-simplex as
in the corollary statement. But C(gf) is the first face of the 2-simplex C(f, g) in nFib/S. If C(gf) ' C(h),
then there is a 2-simplex with zeroth and first faces C(gf) and C(h) respectively, with the second face
degenerate. We then can form an inner 3-horn whose second face is this 2-simplex, and whose zeroth face is
C(f, g) and third face is the zeroth degeneracy of C(f). Filling this, we obtain the desired 2-simplex.

Conversely, use the same 3-simplex, only this time the horn will have the zeroth, first and third faces
filled so that we can conclude that the second face also fills, whence C(gf) ' C(h), as desired.

Corollary 2.3.15. Let f : X → Y be a morphism of right n-fibrations over S. Then f is an equivalence of
right fibrations if and only if C(f) is a quasi-isomorphism.

Proof. By Theorem 2.3.4, f is an equivalence if and only if there is a morphism g : Y → X over S with
gf ' 1X in [X,X]S and fg ' 1Y in [Y, Y ]S . By the preceding corollary, this happens if and only if there is
a morphism g : Y → X over S such that there are two 2-simplices with sides C(g), 1X , and C(f) and C(f),
1Y , and C(g), respectively. But this happens if and only if there is a g : Y → X with C(g) a quasi-inverse
to C(f). By Theorem 2.3.12, any quasi-inverse Z to C(f) is quasi-isomorphic to some C(g) which is then
also a quasi-inverse to C(f), so we are done.

Remark 2.3.16. After this corollary, we will use the terms “equivalence” and “quasi-isomorphism” inter-
changeably when referring to morphisms of right fibrations.

Proposition 2.3.17. Let S be a simplicial set and n ≥ −2 an integer. Then the quasi-category LnFib/S is
a full sub-quasi-category of Fib/S.

Proof. An m-simplex of Fib/S is a right fibration X → S × (∆m)op. If the 0-simplices of this m-simplex
are contained in LnFib/S, then certainly the fibre of X over each object in S × (∆m)op is a loose n-quasi-
groupoid. But then X itself is fibred on loose n-quasi-groupoids by Lemma 2.2.4, and so the m-simplex in
question is contained in LnFib/X, as desired.

Corollary 2.3.18. The inclusion quasi-functor nFib/S → LnFib/S is an equivalence of quasi-categories,
and it has a quasi-inverse given by πn.

Proof. The inclusion quasi-functor is essentially surjective, as a loose right n-fibration X over S is clearly
equivalent (i.e. quasi-isomorphic) to πn(X/S). The inclusion functor also induces homotopy equivalences on
Hom spaces, as for any two right n-fibrations X and Y we have a commutative diagram

[X,Y ]S
C//

C ''OOOOOOOOOOOO
HomnFib/S(X,Y )

��
HomFib/S(X,Y )

two of whose arrows are homotopy equivalences by Theorem 2.3.12. We conclude that the inclusion quasi-
functor is an equivalence of quasi-categories.

To see that πn is quasi-inverse to the inclusion quasi-functor, note that πn is actually a section of the
inclusion quasi-functor, and so as it is a left quasi-inverse, it must be a quasi-inverse.
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Remark 2.3.19. What these last two corollaries show is that no information is lost by considering a right
n-fibration to be in Fib/S as opposed to nFib/S, and in fact nFib/S is equivalent to the natural full
sub-quasi-category LnFib/S.

2.4 Existence of Limits in nFib/S and LnFib/S

In this section we prove that the quasi-categories nFib/S and LnFib/S have all limits, and in fact that these
limits are given quite explicitly.

2.4.1 Slice Quasi-Categories as Right Fibrations

We first prove an easy proposition putting slice quasi-categories into the context we have so far developed
in this chapter.

Proposition 2.4.1. Let X be a (resp. loose) n-quasi-category, x ∈ X an object. Then the quasi-functor
X/x→ X is a (resp. loose) right (n− 1)-fibration.

Proof. Let Λm
k → X/x be a right horn; it is straightforward to see that this is the same data as a morphism

Λm+1
k,m+1 → X whose target is x. Filling in the projection of this horn in X/x to X is the same thing as

assigning an (m+ 1)th face to this last Λm+1
k,m+1. We conclude that a Λm

k upstairs with a filler downstairs is
the same thing as a Λm+1

k in X. As this is an inner horn, it can be filled.
If X is an n-quasi-category and m + 1 > n, then this inner horn can be filled uniquely. We conclude

that in this case X/x→ X is a right (n− 1)-fibration.
Moreover, an m-shell upstairs together with a filler downstairs is the same thing as an (m+ 1)-shell in

X. Therefore, if X is a loose n-quasi-category, then X/x is a loose right (n− 1)-fibration.

Definition 2.4.2. Let X be a quasi-category, x, y ∈ X objects. Define the quasi-groupoid Hom`
X(x, y) to

be the fibre over x in the right fibration X/y → X.

It is immediate that if X is a (resp. loose) n-quasi-category that Hom`
X(x, y) is a (resp. loose) n-quasi-

groupoid. In fact, in the case of a 2-quasi-category X this Hom`
X is the same as the groupoid Hom′

X defined
in §1.3. There is a natural quasi-functor α : Hom`

X(x, y) → HomX(x, y), defined by taking an (m + 1)-
simplex τ with target object y and source m-simplex the m-fold degeneracy of x to the ∆1 ×∆m inside the
(2m+ 1)-simplex σm

m+1τ (the prism is defined by mapping (i, j) to (m+ 1)i+ j).

Proposition 2.4.3. The quasi-functor α is a homotopy equivalence.

Proof. Let Σm be the subposet of ∆1 ×∆m+1 which omits (0,m+ 1). We fix embeddings ∆1 ×∆m → Σm

and ∆m+1 → Σm where the first takes (i, j) to (i, j) and the second takes i to (0, i) if i ≤ m and i to
(1,m+1) otherwise. There are m+1 (m+2)-simplices in Σm, and so we define ξi to be the (m+2)-simplex
with vertices

(0, 0, . . . , (0, i), (1, i), . . . , (1,m), (1,m+ 1).

Moreover, we identify δi, 0 ≤ i ≤ m+ 1, to be the (m+ 1)-simplex with vertices

(0, 0), . . . , (0, i− 1), (1, i), . . . , (1,m+ 1),

so that δi is the only m-simplex shared by ξi and ξi−1 (for i ≥ 1), and the (m+ 1)-simplex identified above
is δm+1. Notice also that δi is the ith face of both ξi−1 and ξi.

We now define a simplicial set P (x, y) whose m-simplices are morphisms Σm → X with {0}×∆m being
the m-fold degeneracy of x and {1}×∆m+1 (i.e. δ0) being the (m+1)-fold degeneracy of y. The ith boundary
map is defined to be the ith boundary map on ∆1 ×∆m+1 (which clearly restricts to Σm); degeneracies are
defined similarly.
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We then clearly have projections P (x, y) → HomX(x, y) and P (x, y) → Hom`
X(x, y) given by composing

with ∆1×∆m → Σm and ∆m+1 → Σm respectively. Moreover, α factors as a section of the second projection
followed by the first.

We claim that these two projections are very surjective. Indeed, for the first, anm-simplex in HomX(x, y)
with a lift of its boundary upstairs has all simplices of Σm forced except for the δi for i ≥ 1 and the ξi for
i ≥ 0 (δ0 is fixed because we need it to be the degeneracy of y). But then ξ0 has its first horn filled in, so we
can fill in the horn in X, which will fill in the second horn of ξ1, and so on, until at the last stage we fill in
the (m+ 1)th horn of ξm, which fills in Σm.

For the other projection, consider an m-simplex in Hom`
X(x, y) with a lift of its boundary upstairs.

Given that {0} ×∆m and {1} ×∆m+1 must be degeneracies of x and y, respectively, we conclude that of
∆1 ×∆m → Σm we have filled in ∂∆1 ×∆m ∪∆1 × ∂∆m. By Lemma 1.2.5, we can fill this in to only omit
the (m + 1)-simplex with vertices (0, 0), (1, 0), . . . , (m, 0). But now it is apparent that we have filled in all
simplices of Σm except for this last (m+ 1)-simplex, δi for 1 ≤ i ≤ m, and ξi for 0 ≤ i ≤ m. We thus have
filled in the mth horn of ξm, so can fill it in X, which gives us the (m− 1)th horn of ξm−1, and so forth, until
we are left with only ξ0 and the remaining (m + 1)-simplex above. But this data comprises the (m + 2)th

horn of ξ0. As the target 1-simplex of ξ0 is the degeneracy on x (a quasi-isomorphism), we can fill this horn
as well, completing the proof.

2.4.2 (Projective) Diagrams as Right Fibrations

Proposition 2.4.4. Let X be a quasi-category, ρ : D → X a diagram. Then X/ρ → X and (X/ρ)′ → X
are quasi-isomorphic right fibrations over X.

Proof. To see that X/ρ is a right fibration, notice that [D,X]/ρ is a right fibration over [D,X], and X/ρ
is obtained by pulling this back along the diagonal X → [D,X]. For the rest, we notice that (according to
Proposition 1.6.8) there is a simplicial set P over X with very surjective morphisms to X/ρ over X and to
(X/ρ)′ over X, whence (X/ρ)′ is also a right fibration over X and is quasi-isomorphic to X/ρ by Theorem
2.3.4.

Lemma 2.4.5. Let f : X → Y be a quasi-functor between quasi-categories, and suppose that f is an
equivalence and a right fibration. Then f is very surjective.

Proof. Let ∂∆m → X be an m-shell with a filler ∆m → Y in Y . As f is an equivalence, we know that there
is a filler ξ of the m-shell whose image under f is homotopic (or if m = 0, quasi-isomorphic) to the given
filler. Let this be witnessed by an (m + 1)-simplex in Y whose zeroth face is f(ξ), whose first face is the
given filler in Y , and whose rth face for 1 < r ≤ m+ 1 is the zeroth degeneracy of the (r− 1)th face of either
filler. Then the first horn of this (m+ 1)-simplex can be lifted to X by lifting the zeroth face to the filler we
just found and the rth face for 1 < r ≤ m + 1 to the zeroth degeneracy of the (r − 1)th face of the m-shell
we started with. As f is a right fibration, we can lift the filler of this Λm+1

1 , and the first face of the lift is
the lift we wanted to begin with.

Lemma 2.4.6. Let f : X → Y be a morphism of right fibrations over S which is a right fibration and a
quasi-isomorphism. Then f is very surjective.

Proof. It is clearly enough to check this for S = ∆r (after pulling X and Y back along ∆r → S). But in
this case we know that X → Y is a right fibration and an equivalence of quasi-categories, so the previous
lemma applies.

Proposition 2.4.7. Let X be a quasi-category, ρ : D → X a diagram, and x ∈ X/ρ an object. Then x
is a limit of ρ if and only if there is a quasi-isomorphism X/x → X/ρ. The limit is given by x/ρ (i.e. a
morphism x→ ρ in [D,X]) if and only if there is such a quasi-isomorphism taking 1x to x/ρ.

Proof. Notice that for any x/ρ ∈ X/ρ, the morphism (X/ρ)/(x/ρ) → X/x is very surjective. This is because
([D,X]/ρ)/(x/ρ) = [D,X]/(x/ρ) (where here x/ρ refers to the 1-simplex in [D,X] from the diagonal of x
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to ρ), we already know that [D,X]/(x/ρ) → [D,X]/x is very surjective, and (X/ρ)/(x/ρ) is obtained from
[D,X]/(x/ρ) by pulling back along X/x→ [D,X]/x.

First suppose that x is a limit of ρ, say by means of a lift of x to x/ρ ∈ X/ρ. Then (X/ρ)/(x/ρ) → X/ρ
is very surjective, so by the previous paragraph (and the fact that both of these very surjective maps are
over X) we obtain a quasi-isomorphism X/x→ X/ρ. Clearly we may choose this quasi-isomorphism to take
1x to x/ρ.

Conversely, if X/x → X/ρ is a quasi-isomorphism, let x/ρ be the image of 1x under this map. Then
(X/ρ)/(x/ρ) → X/x is very surjective, and (X/ρ)/(x/ρ) → X/ρ is (at least) a right fibration. I claim that
this latter morphism is a quasi-isomorphism. To wit, I will produce a section X/x → (X/ρ)/(x/ρ) whose
composition with the projection will yield the quasi-isomorphism we started with; as very surjective maps
are also quasi-isomorphisms, that the projection is a quasi-isomorphism will follow.

Indeed, we induct on the dimension of simplices in X/x; filling in pairs of k-simplices and (k + 1)-
simplices, the second of which is obtained from the first by taking the (k+1)th degeneracy of the underlying
(k + 1)-simplex in X. Indeed, the base of induction is given by 1x which already has been mapped to x/ρ
and can be lifted to 1x/ρ. For the induction step, given all such pairs of lesser dimension, we will have a
Λk+1

k+1 already filled in. This right horn projects from (X/ρ)/(x/ρ) to X/ρ, and fills downstairs according to
what we wish the (k + 1)-simplex to map to. We can lift this upstairs according as (X/ρ)/(x/ρ) → X/ρ is
a right fibration, and this will define the destination of the two simplices in question. Thus the induction,
and the claim, is proven.

But now we can apply the preceding lemma to conclude that (X/ρ)/(x/ρ) → X/ρ is very surjective,
and so x/ρ is a limit of ρ as desired.

Remark 2.4.8. We might say that a limit of ρ exists if and only if the right fibration X/ρ is representable
by an object of X.

2.4.3 Construction of Limits of Right Fibrations

Definition 2.4.9. Let D and S be simplicial sets, and let ρ : D → Fib/S be a diagram, corresponding to a
right fibration Z over Dop × S. We define L(ρ) to be the fibre product

L(ρ) //

��

[Dop, Z]

��
S // [Dop, Dop × S],

where the morphism S → [Dop, Dop×S] is the adjoint to the identity map Dop×S → Dop×S. We think of
L(ρ) as being equipped with a morphism Dop ×L(ρ) → Z over Dop × S given by the commutative diagram

Dop × L(ρ) //

��

Dop × [Dop, Z] //

��

Z

��
Dop × S // Dop × [Dop, Dop × S] // Dop × S,

where here the morphism Dop × [Dop, Dop × S] → Dop × S is the evaluation map.

Observe that L(ρ) is automatically a right fibration over S. Notice also that the diagonal Fib/S →
Fib/(Dop × S) simply takes (an m-simplex) X to Dop ×X.

Lemma 2.4.10. Let D and S be simplicial sets, and let ρ : D → Fib/S be a diagram corresponding to a
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right fibration Z over Dop × S. Let L′ be a right fibration over S, and let α be the composition morphism

[L′, L(ρ)]S

α

��
[Dop × L′, Z]Dop×S

given by composing with Dop × L(ρ) → Z. Then α is an isomorphism of simplicial sets.

Proof. An m-simplex ∆m×Dop×L′ → Z in [Dop×L′, Z]Dop×S is the same thing as a morphism ∆m×L′ →
[Dop, Z] making the following diagram commute:

∆m × L′ //

��

[Dop, Z]

��
S // [Dop, S].

But such a morphism making the diagram commute is the same thing as a morphism ∆m × L′ → L over
S.

Lemma 2.4.11. Let X be a quasi-category, Σ = {0} ∪ ∂0∆2 ⊆ ∆2, and σ : Σ → X a morphism taking 0 to
x and 1 to y. Then the morphism

FillX(σ,∆2) → HomX(x, y)

is very surjective.

Proof. Given an m-simplex ∆m×∆1 → X downstairs and a lift of its boundary upstairs to ∂∆m×∆2 → X,
we wish to fill in this last shape so that it is an m-simplex in FillX(σ,∆2).

To do this, note that of the ∆m × ∆2 we seek, ∂∆m × ∆2 → X is forced by the boundary lift,
∆m × ∂0∆2 → X is forced by σ, and ∆m × ∂2∆2 → X is forced by the filler downstairs; all else we are free
to fill in. But then we have a map

∂∆m ×∆2 ∪∆m × Λ2
1 → X,

and so this can be filled by virtue of Lemma 1.2.6.

Proposition 2.4.12. Let D and S be simplicial sets, and let ρ : D → Fib/S be a diagram corresponding to
a right fibration Z over Dop × S. Then L(ρ), with its attendant morphism L(ρ)×Dop → Z over S ×Dop,
is a limit of ρ.

Proof. The morphism L(ρ) × Dop → Z gives an object L(ρ)/ρ in (Fib/S)/ρ, and so we may assemble a
diagram

((Fib/S)/ρ)/(L(ρ)/ρ)

uukkkkkkkkkkkkkk

��
(Fib/S)/L(ρ) (Fib/S)/ρ

where the left arrow is very surjective and the right arrow is a right fibration. We will be done (according
to Proposition 2.4.7) if we can prove that

((Fib/S)/ρ)/(L(ρ)/ρ) // (Fib/S)/ρ

is a quasi-isomorphism.
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It will be enough to show this on fibres over a right fibration L′ over S, which is to say we would like
to show that

[((Fib/S)/ρ)/(L(ρ)/ρ)]L′ // Hom`
Fib/(S×Dop)(L

′ ×Dop, Z)

is a quasi-isomorphism. Let Σ = {0} ∪ ∂0∆2 ⊂ ∆2, and let σ : Σ → Fib/(S ×Dop) assign 0 to the diagonal
of L′ and ∂0∆2 to the diagonal of the morphism L(ρ) → Z. Let F fit in the fibre product diagram

F //

��

FillFib/(S×Dop)(σ,∆
2)

��
HomFib/S(L′, L(ρ)) // HomFib/(S×Dop)(L′ ×Dop, L(ρ)×Dop),

so that F parametrizes 2-simplices in Fib/(S ×Dop) whose target morphism is L(ρ) → Z and whose source
morphism is the diagonal of some L′ → L(ρ). As

FillFib/(S×Dop)(σ,∆
2) → HomFib/(S×Dop)(L′, L(ρ))

is very surjective (by Lemma 2.4.11), we see that F → HomFib/S(L′, L(ρ)) is also very surjective.
I claim that we have a commutative diagram

Hom`
Fib/S(L′, L(ρ))

��

[((Fib/S)/ρ)/(L(ρ)/ρ)]L′oo //

��

Hom`
Fib/(S×Dop)(L

′ ×Dop, Z)

��
HomFib/S(L′, L(ρ)) Foo // HomFib/(S×Dop)(L

′ ×Dop, Z)

[L′, L(ρ)]S

C

OO

[L′ ×Dop, Z]S×Dop .

C

OO

Indeed, we see immediately that [((Fib/S)/ρ)/(L(ρ)/ρ)]L′ is the simplicial set whose m-simplices are (m+2)-
simplices in Fib/(S×Dop) whose source (m+1)-simplex is the diagonal of anm-simplex in Hom`

Fib/S(L′, L(ρ)
and whose target morphism is L(ρ) → Z. By applying σm

m+1σ
m
m+2 and pulling back along the morphism

∆2 ×∆m → ∆3m+2 defined by (i, j) 7→ (m+ 1)i+ j, we visibly obtain a morphism

[((Fib/S)/ρ)/(L(ρ)/ρ)]L′ → F

which makes the diagram commute.
Next, consider the morphism

[L′, L(ρ)]S // HomFib/(S×Dop)(L
′ ×Dop, L(ρ)×Dop, Z)

defined by taking an m-simplex f : ∆m × L′ → ∆m × L(ρ) to the image under C of the ordered pair of
the diagonal of f and the given morphism L(ρ) → Z. This visibly factors through F , so that we obtain
a morphism [L′, L(ρ)]S → F . Notice that a similar interpretation (using the universal property of L(ρ))
gives us this same morphism as [L′, Z]S×Dop → F . Moreover, this morphism is an equivalence by the
commutativity of the following diagram:

HomFib/S(L′, L(ρ)) Foo

[L′, L(ρ)]S

OO 88ppppppppppppp
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But now we have a commutative diagram

Hom`
Fib/S(L′, L(ρ))

��

[((Fib/S)/ρ)/(L(ρ)/ρ)]L′oo //

��

Hom`
Fib/(S×Dop)(L

′ ×Dop, Z)

��
HomFib/S(L′, L(ρ)) Foo // HomFib/(S×Dop)(L

′ ×Dop, Z)

[L′, L(ρ)]S

44iiiiiiiiiiiiiiiiiiii
C

OO

[L′ ×Dop, Z]S×Dop .

kkVVVVVVVVVVVVVVVVVVVVVVVV
C

OO

We conclude that F → HomFib/(S×Dop)(L
′ ×Dop, Z) is a quasi-isomorphism, whence

[((Fib/S)/ρ)/(L(ρ)/ρ)]L′ → Hom`
Fib/(S×Dop)(L

′ ×Dop, Z)

is an quasi-isomorphism, and the proof is complete.

This immediately gives us:

Theorem 2.4.13. Let S be a simplicial set. Then nFib/S and LnFib/S have all limits, and limits are given
by the L(ρ) construction above.

Proof. We have proven this for n = ∞. If ρ : D → LnFib/S is a diagram, then L(ρ) is a loose right
n-fibration by construction, and the statement follows formally from the fact LnFib/S is a full subcategory
of Fib/S. Similarly, if ρ : D → nFib/S is a diagram, then L(ρ) is a right n-fibration, and the fact that
nFib/S → Fib/S is fully faithful gives us the result (again, formally).

2.5 Yoneda Lemmas

We are now in a position to produce Yoneda-type results for quasi-categories, where one should keep in
mind the interpretation that a right fibration is a kind of presheaf in quasi-groupoids over the base. First
we will develop some theory of slice quasi-categories in the context of right fibrations, then apply it to prove
a first Yoneda Lemma. Then for a loose n-quasi-category X we will define a natural Yoneda quasi-functor
X → L(n− 1)Fib/X and show that it is fully faithful (a second Yoneda Lemma).

2.5.1 First Yoneda Lemma

If X is an n-quasi-category, x ∈ X an object, the results of the previous section establish X/x as being a
right (n − 1)-fibration over X with fibres equivalent to HomX(x, y). We will thus want to think of X/x as
the Yoneda image of x in (n− 1)Fib/X.

Let x ∈ X be an object, F a right fibration over X and choose an m-simplex in [X/x, F ]X . This m-
simplex can be seen as a morphism ∆m×X/x→ F . Consider the image of the m-simplex of ∆m×X/x which
is the nondegenerate m-simplex of ∆m in the first factor and σm+1

0 x in the second. This is an m-simplex in
F over σm

0 x ∈ X, and so is literally an m-simplex in Fx, the fibre of F over x. We obtain a morphism of
simplicial sets

ϕ : [X/x,X/y]X // Fx.

The following proposition ought to recall [MA71] I.1.4.

Proposition 2.5.1. Let X be a quasi-category, x ∈ X an object, and F a right fibration over X. Then the
morphism

ϕ : [X/x, F ]X // Fx

is very surjective.
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Proof. We suppose we are given an m-simplex in Fx together with a lift of the boundary of this simplex to
[X/x, F ]X . Stated another way, we begin with a partially defined morphism X/x×∆m → F over X, defined
on the union of X/x× ∂∆m and (σm+1

0 x, 1[m]), where of course σm+1
0 x (an (m+ 1)-simplex in X) refers to

the m-simplex in X/x, and 1[m] : [m] → [m] refers to the unique nondegenerate m-simplex of ∆m.
We inductively fill in the unmapped k-simplices (ξ, τ) of X/x×∆m, where here we consider ξ to be an

(m + 1)-simplex in X (with target x), and consider τ to be an order-preserving map τ : [k] → [m]. Let i
be the least index such that ξ is equal to σk+1−i

i applied to its source i-simplex (and make this definition
for all simplices degenerate and nondegenerate). Similarly to the proof of Theorem 2.3.12, we say that a
nondegenerate (ξ, τ) is of degenerate type if τ(i− 1) = τ(i) (where here τ(−1) := −1, τ(k+1) := m+1) and
of nondegenerate type otherwise. Notice that if (a nondegenerate) (ξ, τ) is of degenerate type then 1 ≤ i ≤ k
as τ(k + 1) = m+ 1 > τ(k) and τ(−1) = −1 < τ(0).

Notice that if (ξ, τ) is (nondegenerate and) of degenerate type, then the i-value of (∂iξ, ∂iτ) is still i.
This is because certainly ∂iξ is σk−i

i applied to the source i-simplex of ∂iξ, and if ∂iξ were also σ
k−(i−1)
i−1

applied to its source (i− 1)-simplex, then ξ = σi(∂iξ) would also be σk+1−(i−1)
i−1 applied to its source (i− 1)-

simplex. I claim that there is a bijection here between unmapped (k + 1)-simplices of degenerate type and
unmapped k-simplices of nondegenerate type given by taking (ξ, τ) to ∂i(ξ, τ) in one direction, and taking
(ξ, τ) to (σiξ, σi−1τ) in the other. By the preceding remarks, this bijection will preserve the indices i.

First we show that the maps are well-defined. If ∂i(ξ, τ) were of degenerate type, then ∂iτ(i) = ∂iτ(i−1),
and then τ(i + 1) = τ(i − 1) = τ(i), so that (ξ, τ) would be an ith degeneracy, a contradiction. Moreover,
(∂iξ, ∂iτ) cannot be degenerate. Suppose say (∂iξ, ∂iτ) = σr(ν, η). We know that ξ = σi(∂iξ) and τ =
σi−1(∂iτ), so that if r ≤ i − 1 then (ξ, τ) = σr(σi−1ν, σi−2η) and if r ≥ i then (ξ, τ) = σr(σiν, σi−1η), in
either case a contradiction.

For the other direction, notice that (σiξ, σi−1τ) is a fortiori of degenerate type. If it were degenerate,
say equal to σr(ν, η), then σrν = σiξ and σrη = σi−1τ . If r 6= i−1, i, then (ξ, τ) would be an rth or (r−1)th

degeneracy according as r < i − 1 or r > i respectively. If r = i − 1, then σi−1ν = σiξ, so ξ would be an
(i−1)th degeneracy and so would be equal to σk+1−(i−1)

i−1 applied to its source (i−1)-simplex, a contradiction.
If r = i, then σiη = σi−1τ and so

τ(i− 1) = σi−1τ(i) = σiη(i) = σiη(i+ 1) = σi−1τ(i+ 1) = τ(i),

showing that (ξ, τ) is of degenerate type, a contradiction.
Now that the two maps are well-defined, we need only show they are inverse to one another. But by our

work above, if (ξ, τ) is of degenerate type then ξ = σi(∂iξ) and τ = σi−1(∂iτ); the other direction follows
immediately from the fact that ∂iσi = ∂iσi−1 = 1[k]. The claim is proved.

Now finally we extend our partial map X/x × ∆m → F to a full map. We inductively fill in the k-
simplices of degenerate type and the (k−1)-simplices of nondegenerate type, inducting within each dimension
on the index i defined above. Notice that we have filled in all k-simplices for k < m, so we begin at k = m.
We have also filled in all (degenerate and nondegenerate) simplices with i = 0, as these are either defined by
the boundary lifting or equal to or degeneracies of the simplex (σk+1

0 x, 1[k]) we started with.
Now, given a (k + 1)-simplex (ξ, τ) of degenerate type in X/x×∆m with index i, let us look at its rth

boundary. If r < i, then the i-value of this boundary is decremented by 1, and so we have filled in the map
here. If r > i, then the i-value remains the same but ∂rτ(i) = ∂rτ(i − 1), so this boundary is a k-simplex
of degenerate type, and we’ve filled in the map here as well. We conclude that the ith boundary is the only
missing face, so that we have defined the map on precisely the ith horn of (ξ, τ) in X/x×∆m. But then the
image in F is also defined on an ith horn in F , in other words a Λk+1

i,k+1 in X. But the (k+ 1)th face is forced
by the fact that the morphism should be over X (so that this face must be ∂k+1ξ), and so we actually have
a Λk+1

i in X. As 0 < i < k+ 1, this is in fact an inner horn, so we fill it in X and define the images of (ξ, τ)
and ∂i(ξ, τ) accordingly. We thus complete the induction, and the proof.

Keeping in mind Theorem 2.3.12, we obtain the following form of the Yoneda Lemma.

Corollary 2.5.2. (First Yoneda Lemma) Let X be a quasi-category and x, y ∈ X objects. Then there is a

67



natural morphism
ϕ : [X/x,X/y]X // Hom`

X(x, y)

which is very surjective.

Proof. We apply the preceding proposition in the case F = X/y, recalling that the fibre of X/y over x is by
definition Hom`(x, y).

2.5.2 The Yoneda Quasi-functor

Definition 2.5.3. Let X be a quasi-category. Define a simplicial set YX to have m-simplices which consist
simply of the (2m + 1)-simplices of X. The rth boundary map takes a (2m + 1)-simplex ξ to ∂r∂2m+1−rξ,
and the rth degeneracy takes ξ to σrσ2m+1−rξ.

It is straightforward to check that YX is in fact a simplicial set. Moreover, YX has natural projections
to X and Xop given by taking ξ ∈ X2m+1 to its source and target m-simplices, respectively.

Proposition 2.5.4. Let X be an n-quasi-category. Then

YX

��
X ×Xop

is a right n-fibration. If X is a category, then YX → X ×Xop is in fact a right 0-fibration.

Proof. Consider a right horn Λm
k → YX together with a filling of its projection to X ×Xop. We thus have

part of a (2m+ 1)-simplex X, specifically we have the source and target m-simplices as well as all (2m− 1)-
simplices ∂r∂2m+1−rξ, 0 ≤ r ≤ m, r 6= k of our desired (2m+ 1)-simplex ξ. As m ≥ 1, we observe that this
gives us all 0-simplices of ξ.

First, we fill in the (m+ 1)-simplices with vertices {0, 1, . . . ,m, 2m+ 1− k} and {k,m+ 1, . . . , 2m+ 1}.
The first has a Λm+1

k filled, the second a Λm+1
m+1−k, and so both can be filled in X as 0 < k ≤ m. These fillers

are unique if m > n− 1.
Now, let us consider the remaining unmapped simplices. These naturally fall into quadruples consisting

of all possibilities of containing or not containing k and 2m + 1 − k. Notice moreover that any unfilled
simplex which contains neither k nor 2m + 1 − k must nonetheless contain either r or 2m + 1 − r for any
r 6= k (otherwise it would be contained in ∂r∂2m+1−rξ), and so its dimension must be at least (m− 1), but
also at least 1 as all 0-simplices have already been defined.

We inductively fill such quadruples, inducting on the dimension s of the simplex containing both k and
2m+ 1− k. Indeed, we have already filled all such quadruples for s ≤ m. For an s-simplex containing k and
2m + 1 − k (at indices i and j respectively, say), its pth faces for p 6= i, j have been filled by the induction
hypothesis (as they all contain both k and 2m+ 1− k and are of lesser dimension) and so we are left with a
Λs

i,j (with the four omitted simplices being the quadruple we are looking at).
I claim that [s]− {i, j} is nonconsecutive in [s]. Indeed, if it were consecutive then {i, j} would have to

be {0, 1}, {s− 1, s} or {0, s}. The first case is ruled out because if k and 2m+1−k are the first two vertices
of our s-simplex, then as r or 2m + 1 − r must be present for each r 6= k we must have k = m and the
s-simplex having vertices {m, . . . , 2m+1}, but we filled this above. The second case is treated similarly. For
the third case, notice that as k 6= 0, either 0 or 2m must be a vertex in our s-simplex, so k and 2m+ 1− k
cannot be the first and last vertices. This shows the claim.

But then by Lemma 1.2.2, we can fill the Λs
i,j , and uniquely so if s − 2 ≥ n. We observed above that

s− 2 ≥ m− 1 and s− 2 ≥ 1, so these fillers are unique if m > n or n = 1. We conclude that our lift of the
horn filler exists in any case and is unique if m > n or n = 1. Therefore if X is a category then YX is a right
0-fibration, and if X is an n-quasi-category then YX is a right n-fibration, as we wanted.
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Remark 2.5.5. Since YX is an object in Fib/(X×Xop), we can think of it as a quasi-functor YX : X → Fib/X.
In this guise, we say that YX is the Yoneda quasi-functor.

We now analyze the fibres of YX . For objects x, y ∈ X, there is a morphism ρ : Hom`
X(x, y) → YX(x, y)

given by taking an m-simplex in Hom`
X(x, y) represented by an (m + 1)-simplex ξ in X to the m-simplex

σm
m+1ξ of YX .

Proposition 2.5.6. The morphism of quasi-groupoids ρ : Hom`
X(x, y) → YX(x, y) is a homotopy equiva-

lence.

Proof. Define a simplicial set P to have m-simplices which are (2m+2)-simplices of X, with the rth boundary
map being ∂r∂2m+2−r and the rth degeneracy map being σrσ2m+2−r, and such that the source m-simplex is
the degeneracy of x and the target (m+1)-simplex is the degeneracy of y. Then P has natural projections to
Hom`

X(x, y) and to YX(x, y) (given by taking the source (m+1)-simplex and the (m+1)th face, respectively),
and ρ factors as a section of the first (applying σm+1

m+1 to an m-simplex) followed by the second. We need
only show that these two projections are very surjective.

To wit, first consider P → YX(x, y). An m-simplex of YX(x, y) together with a lift of its boundary to
P consists of the data of the simplices ∂r∂2m+2−rξ, 0 ≤ r ≤ m and ∂m+1ξ of the (2m+2)-simplex ξ we wish
to fill, along with its target (m+ 1)-simplex (the degeneracy of y; the source m-simplex is accounted for by
the filling downstairs). Notice that the simplices which remain to be filled are precisely those which contain
m+ 1, have at least one of r and 2m+ 2− r for each r ∈ [m], and are not the target (m+ 1)-simplex.

We induct on the size |S| of a subset S ⊆ [m] to fill in the simplex ξ(S) with vertices S∪{m+1, . . . , 2m+
1}; the case S = ∅ is treated by our assumed filling of the target (m+ 1)-simplex with the degeneracy of y.
For the induction step, suppose |S| > 0 and set S′ = {2m+ 2− s|s ∈ S}; I claim that what is filled of ξ(S)
is precisely Λm+1+|S|

S′ . This is because a simplex of ξ(S) is unfilled if and only if it is not contained in any
ξ(S′′) with S′′ ⊂ S, it is contains either r or 2m+2− r for all r, and it contains m+1. Thus such a simplex
must contain all of S and must contain all of {m+ 1, . . . , 2m+ 1} − S′, which is to say that it must contain
the complement of S′. Conversely, the complement of S′ is clearly not filled at any preceding stage.

To proceed, we notice that the target 1-simplex of our Λm+1+|S|
S′ is 1y, and so as S∪{m+1, . . . , 2m+1}−S′

is not an initial consecutive segment in S ∪ {m + 1, . . . , 2m + 1}, we may apply Lemma 1.2.2 and the fact
that 1y is a quasi-isomorphism to fill this shape by means of right horn fillings. The induction, and this half
of the argument, is complete.

Now consider P → Hom`
X(x, y). An m-simplex of Hom`

X(x, y) together with a lift of its boundary
upstairs consists of the data of the simplices ∂r∂2m+2−rξ, 0 ≤ r ≤ m and the source and target (m + 1)-
simplices, which are the filler downstairs and the degeneracy of y respectively. The simplices which remain
to be filled are precisely those which contain at least one of r and 2m+ 2− r for each r ∈ [m] and which are
not contained in the source or target (m + 1)-simplices. Such simplices fall into a bijection between those
which contain m+ 1 and those which do not, given by removing m+ 1.

Therefore we induct on the dimension k of a simplex containing m + 1. The base of the induction is
given by the fact that all simplices of dimension less than m + 1 and containing m + 1 have been filled.
At the inductive step, we have a k-horn as omitting any vertex but m + 1 gives a face of dimension k − 1
containing m+1, so already filled. The only way we would not be able to fill this is if this were not an inner
k-horn. But then the vertices of the simplex would have to be {0, . . . ,m + 1} or {m + 1, . . . , 2m + 1}, and
thus already filled. This completes the induction, and the proof.

Remark 2.5.7. This last proposition somewhat justifies the terminology “Yoneda quasi-functor.” In the next
subsection we will give the terminology better justification.

Corollary 2.5.8. Let X be a loose n-quasi-category. Then YX is a loose right (n−1)-fibration over X×Xop.

Proof. Let x, y ∈ X be objects. Because X is a loose n-quasi-category, Hom`
X(x, y) is a loose (n− 1)-quasi-

groupoid, so YX(x, y) is a loose (n−1)-quasi-groupoid. But then all the fibres of YX are loose (n−1)-quasi-
groupoids, so by Lemma 2.2.4, YX is a loose right (n− 1)-fibration over X ×Xop, as desired.
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Corollary 2.5.9. Let X be an n-quasi-category. Then YX is a right n-fibration and a loose right (n − 1)-
fibration over X ×Xop.

Proof. Immediate.

Corollary 2.5.10. Define a quasi-functor X → X×Xop which is the identity on X and constantly an object
y ∈ Xop (i.e. an object in X) on Xop. Then the pullback of YX along this morphism is quasi-isomorphic to
X/y as a right fibration over X, with the quasi-isomorphism given by taking an m-simplex in X/y, considered
as an (m+ 1)-simplex in X, to its image under σm

m+1.

Proof. We need only check this statement on fibres, by Theorem 2.3.4. But fibrewise this is the morphism
ρ, and ρ is a homotopy equivalence by the proposition.

Corollary 2.5.11. The Yoneda quasi-functor YX : X → L(n − 1)Fib/X takes an object y ∈ X to a right
fibration over X quasi-isomorphic to X/y, and in fact there is a natural quasi-isomorphism θ : X/y → YX(y).

Proof. Immediate.

Lemma 2.5.12. Let X ↪→ Y be a monomorphism of quasi-categories which is an equivalence. Then this
map has a very surjective left (strict) inverse Y → X.

Proof. Let P → X and P → Y witness that the given monomorphism is an equivalence, so that we also have
a section X → P through which the mono factors. Define a section Y → P by first using the given section
X → P on X ⊆ Y and then extending to all of Y . I claim that the composition of this with the projection
to X is the morphism we are looking for.

By construction it is a left inverse. Given an m-simplex of X with a lift of its boundary to Y , we can
map this boundary up to P (by means of the section from the previous paragraph), lift the filler from X, and
map the filler back down to Y . As Y → P was a section, this gives a lift of the filler from X, as desired.

Proposition 2.5.13. Let x ∈ X be an object, F a right fibration over X. Define a morphism

[YX(x), F ]X // Fx

by taking an m-simplex f : ∆m × YX(x) → F to f(σ2m+1x). Then this morphism is very surjective.

Proof. The morphism we are interested in factorizes as

[YX(x), F ]X // [X/x, F ]X // Fx.

The second morphism here is very surjective by Proposition 2.5.1; therefore we need only show that the first
is also very surjective.

Consider the morphism θ : X/x → YX(x) from Corollary 2.5.11; this is visibly a monomorphism.
Suppose we are given an m-simplex g : ∆m×X/x→ F together with a lift to a morphism ∂∆m×YX(x) → F ,
so that we wish to extend a morphism

∆m ×X/x ∪ ∂∆m × YX(x) → F

to all of ∆m × YX(x).
Now, in the usual way we define pairs of unmapped r-simplices of ∆m × YX(x) of degenerate and

nondegenerate type. For an r-simplex ξ of YX(x), define i(ξ) to be the smallest i such that ξ is σr−i
i applied

to its source i-simplex. Notice that for xi /∈ X/x, i(ξ) > 0. We then define an unmapped r-simplex (τ, ξ) of
∆m × YX(x) to be of degenerate type if τ(i(ξ) − 1) = τ(i(ξ)), and to be of nondegenerate type otherwise.
The correspondence is defined by taking a simplex (τ, ξ) of degenerate type to its i(ξ)th boundary and taking
a simplex (τ, ξ) of nondegenerate type to (σi(ξ)−1τ, σi(ξ)ξ). Notice that these operations fix i(ξ). I claim that
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they define a bijection between nondegenerate simplices of degenerate type and nondegenerate simplices of
nondegenerate type.

Indeed, if (τ, ξ) is nondegenerate of degenerate type, then τ(i(ξ)) + 1 = t(i(ξ) + 1) (as τ : [r] → [m]
is surjective) and so (τ, ξ) = (σi(ξ)−1∂i(ξ)τ, σi(ξ)∂i(ξ)ξ). Then if (∂i(ξ)τ, ∂i(ξ)ξ) = σk(τ ′, ξ′), then (τ, ξ) is
σk(σi(ξ)−1τ

′, σi(ξ)ξ
′) if k < i(ξ), σk(σi(ξ)τ

′, σi(ξ)ξ
′) if k = i(ξ), σk+1(σi(ξ)τ

′, σi(ξ)ξ
′) if k = i(ξ) + 1, and

σk+1(σi(ξ)τ
′, σi(ξ)+1ξ

′) if k > i(ξ) + 1, contradicting nondegeneracy of (τ, ξ). Finally, (∂i(ξ)τ, ∂i(ξ)ξ) is of
nondegenerate type because if it were of degenerate type, then τ(ξ) = τ(i(ξ)−1) = τ(i(ξ)+1) = τ(i(ξ))+1,
a contradiction.

Conversely, if (τ, ξ) is nondegenerate of nondegenerate type, suppose that (σi(ξ)−1τ, σi(ξ)ξ) is degenerate,
say equal to (σkτ

′, σkξ
′). If k < i(ξ)− 1 then (τ, ξ) is a kth degeneracy; if k > i(ξ) then (τ, ξ) is a (k − 1)th

degeneracy. If k = i(ξ) − 1 then ξ is of the form σ
r+1−i(ξ)
i(ξ)−1 ξ′′, contradicting minimality of i(ξ). Lastly, if

k = i(ξ), then τ(i(ξ)− 1) = τ(i(ξ)), contradicting that (τ, ξ) was of nondegenerate type.
But then (σi(ξ)−1τ, σi(ξ)ξ) is evidently of degenerate type with i(ξ)th boundary (τ, ξ), and we have our

bijection. Notice that an r-simplex (τ, ξ) of nondegenerate type with ξ (as a (2r + 1)-simplex in X) the
r-fold degeneracy of its source (r+1)-simplex (i.e., an r-simplex in the image of θ) also has its corresponding
(r + 1)-simplex of degenerate type in the image of θ. In addition, surjectivity of τ is preserved by the
correspondence, so the unmapped simplices really do fall into pairs here.

Inducting on the dimension r of an r-simplex (τ, ξ) of degenerate type, after that on i(ξ), we fill in
the map on this simplex and its i(ξ)th boundary. As usual, this works because the kth boundaries for
k 6= i(ξ), i(ξ) − 1 are of degenerate type and lesser dimension, and the (i(ξ) − 1)th face can have i-value at
most i(ξ)−1; at this stage we will thus have defined a morphism from a Λr

i(ξ) to F (a right horn as i(ξ) > 0),
and we can extend it because the filler in X is given by the image of ξ, so we can lift the filler in F → X.
We are done.

Corollary 2.5.14. Let X be a quasi-category, and let x and y be objects in X. Then the natural morphism
[YX(x),YX(y)]X → YX(x, y) is very surjective.

Proof. Immediate upon observing that YX(x, y) is the fibre of YX(y) over x.

2.5.3 Second Yoneda Lemma

Our main objective here is to prove that the Yoneda quasi-functor YX : X → Fib/X is fully faithful.

Theorem 2.5.15. (Second Yoneda Lemma) Let X be a quasi-category. Then

YX : X // Fib/X

is fully faithful.

Proof. We check criterion (ii) from Lemma 1.5.57. Let m ≥ 1, σ : ∂∆m → X, and fix an m-simplex in
Fib/X, which is to say a right fibration Z → X × (∆m)op, whose restriction to X × (∂∆m)op is YX(σ).
We will show that we can extend σ to an m-simplex ξ in X such that there is a morphism YX(ξ) → Z
over X × (∆m)op which fixes YX(σ). This will be enough because this morphism will give rise to (via C)
a 1-simplex in Fib/[∆m)op ×X], i.e. a prism ∆1 ×∆m → Fib/X, such that its restriction to ∆1 × ∂∆m is
constantly YX(σ), its target {1} ×∆m → Fib/X is Z, and its source {0} ×∆m → Fib/X is in the image of
YX .

The bulk of the work comes in producing the m-simplex ξ. For all non-target faces ∂iσ (0 < i ≤ m),
let ηi be the (m − 1)-simplex in YX(∂iσ) corresponding to the (2m − 1)-simplex of X σm

0 ∂iσ. Then ηi

maps to σm−1
0 x in X (where x is the source object of σ) and to the ith boundary of (∆m)op in the other

factor. As the (m − 1)-simplices ηi clearly patch together, we obtain a right horn Λm
m → Z with a natural

filler downstairs, namely (σm
0 x, 1[m]). Lifting this horn filler to an m-simplex η′ in Z, the filled face is an

(m − 1)-simplex χ′ of YX(∂0σ), i.e. a (2m − 1)-simplex of X, whose source (m − 1)-simplex is σm−1
0 x and

whose target (m− 1)-simplex is ∂0σ.
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We have shown that the morphism θ : Xop/x → YXop(x) is a quasi-isomorphism. Pulling back along
(∂0σ)op : (∆m−1)op → Xop, we obtain in particular that χ′ is homotopic to a simplex χ in YX(∂0σ) (over
the identity of {x}× (∆m−1)op) which, as a (2m− 1)-simplex in X, is σm−1

0 applied to an m-simplex ξ. We
may then replace η′ with another filler η whose filled face is χ = σm−1

0 ξ.
I claim that ∂ξ = σ. Indeed, the target face of ξ is ∂0σ by construction. If m = 1, the first face (source

object) is just x as it comes from the degeneracy we filled in downstairs. If m > 1, let 0 < i ≤ m and let
j 6= m− i have 0 ≤ j ≤ m− 1. Then the ith face of ξ is the same as the (m− 1)-simplex of χ = σm−1

0 ξ with
vertices

j,m, . . . ,m+ i− 2,m+ i, . . . , 2m− 1,

and this coincides with the (m− 1)-simplex in the (2m− 1)-simplex ηi with vertices j,m+ 1, . . . , 2m− 1 if
j < m− i, and j − 1,m+ 1, . . . , 2m− 1 otherwise. As ηi = σm

0 ∂iσ, this last is simply ∂iσ.
To finish, we produce the desired extension

YX(σ) //

��

Z

YX(ξ)

<<z
z

z
z

z
,

starting by sending the m-simplex σm+1
0 ξ of YX(ξ) to η (by our work above, this is compatible with the map

already defined on YX(σ)).
We follow the usual pattern for this sort of proof. Let α be an unmapped nondegenerate r-simplex

of YX(ξ), and let iα be the minimal i such that α as a (2r + 1)-simplex of X is σr+1−i
i applied to an

(r + i)-simplex. Notice that as α is unmapped, it cannot be σm+1
0 ξ (or any boundary thereof) and so as

α is nondegenerate and its target r-simplex is a degeneracy of ξ, iα must be positive. We say that α is of
degenerate type if α is of the form σ2r+1−iαβ, and say that α is of nondegenerate type otherwise.

To an α of degenerate type we associate its ithα boundary in YX(ξ) (an operation which fixes iα), and to
an α of nondegenerate type we associate σiασ2r+2−iαα (in X). The claim, as usual, is that this establishes
a bijection.

Indeed, first let α be of degenerate type, so that it is clear that α = σiα
σ2r−iα

∂iα
∂2r+1−iα

α. If
∂iα∂2r+1−iαα were degenerate, say equal to σkσ2r−3−kβ, then we have

α = σiασ2r−iασkσ2r−3−kβ =


σkσ2r−1−kσiα−1σ2r−iα−1β k < iα − 1
σiα−1σ2r−iασiα−1σ2r−iα−2β k = iα − 1
σiα+1σ2r−iα−2σiασ2r−iα−2β k = iα
σk+1σ2r−2−kσiασ2r−2−iαβ k > iα

.

As all of these are degenerate r-simplices of YX(ξ), we obtain our contradiction. If ∂iα∂2r+1−iαα were of
degenerate type, then it would be of the form σ2r−1−iαβ, and then we would have

α = σiασ2r−iασ2r−1−iαβ = σiασ2r−1−iασ2r−1−iαβ,

so that α would be degenerate, again a contradiction.
For the other direction, let α be of nondegenerate type. Suppose that

σiασ2r+2−iαα = σkσ2r+1−kβ.

If k < iα − 1, then there would be a β′ with α = σkσ2r−1−kβ
′, and α would be degenerate. If k = iα − 1,

then α would be of the form σr−iα
iα−1γ contradicting the minimality of iα. If k = iα, then α would be of

the form σ2r+1−iαγ, and would be of degenerate type. Finally, if k > iα, then there would be a β′ with
α = σk−1σ2r−kβ

′, and α would be degenerate. We conclude that σiασ2r+2−iαα is nondegenerate. It is visibly
of degenerate type.
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But then as these operations are clearly inverse to one another, we have our bijection. The bijection takes
unmapped simplices to unmapped simplices because neither operation will alter surjectivity onto (∆m)op,
and the operation is not defined when iα = 0, i.e. when we are considering (a degeneracy of) the one simplex
we mapped above.

We now induct on the dimension r of an unmapped nondegenerate r-simplex α of degenerate type, as
well as on iα, filling both it and its corresponding (r− 1)-simplex of nondegenerate type. All simplices with
r < m have been mapped already (they lie over (∂∆m)op), and iα = 0 has been covered by our base case.
But now for an arbitrary α, all faces except the (iα− 1)th and ithα are of degenerate type of lesser dimension,
so have been filled. The (iα − 1)th face might be of nondegenerate type, but it has lesser i-value and so is
also filled already. We are left with a Λr

iα
in Z, and the filler downstairs is forced by the image of α. Lifting

the filler, we complete the induction, the map extension, and the proof.

Corollary 2.5.16. Let X be a quasi-category. If X is an n-quasi-category, then

YX : X // nFib/X

is fully faithful. If X is a loose n-quasi-category, then

YX : X // L(n− 1)Fib/X

is fully faithful.

Proof. Immediate.
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