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Gauge Theory

Ordinary gauge theory describes how 0-dimensional particles
transform as we move them along 1-dimensional paths. It is
natural to assign a Lie group element to each path:

•
g
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Gauge Theory

Ordinary gauge theory describes how 0-dimensional particles
transform as we move them along 1-dimensional paths. It is
natural to assign a Lie group element to each path:

•
g

%% •

since composition of paths then corresponds to multiplication:

•
g

%% •
g ′

%% •

while reversing the direction of a path corresponds to taking
inverses:

• •
g−1

yy



The associative law makes the holonomy along a triple composite
unambiguous:

•
g

%% •
g ′

%% •
g ′′

%% •

So: the topology dictates the algebra!



Higher Gauge Theory

Higher gauge theory describes the parallel transport not only of
point particles, but also 1-dimensional strings. For this we must
categorify the notion of a group! A ‘2-group’ has objects:

•
g
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Higher Gauge Theory

Higher gauge theory describes the parallel transport not only of
point particles, but also 1-dimensional strings. For this we must
categorify the notion of a group! A ‘2-group’ has objects:

•
g
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and also morphisms:

•
g
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g ′
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We can multiply objects:
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We can multiply objects:
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g
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multiply morphisms:
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and also compose morphisms:

•

g

��g ′ //
f
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g ′′
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Various laws should hold...
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Various laws should hold...
again, the topology dictates the algebra.

Let’s make this precise!

1 In this lecture we’ll categorify the theory of Lie groups and Lie
algebras.

2 Then we’ll categorify principal bundles and their classifying
spaces.

3 Finally we’ll categorify connections and parallel transport.

The resulting mathematics has fascinating relations to string
theory.



2-Groups

A group is a monoid where every element has an inverse.



2-Groups

A group is a monoid where every element has an inverse.

A 2-group is a monoidal category where every object g has a
‘weak inverse’:

g ⊗ ḡ ∼= 1, ḡ ⊗ g ∼= 1

and every morphism f : g → g ′ has an inverse:

ff −1 = 1, f −1f = 1.



A homomorphism between 2-groups is a monoidal functor.

A 2-homomorphism is a monoidal natural transformation.

So, the 2-groups G and G ′ are equivalent if there are
homomorphisms

F : G → G′ F̄ : G′ → G

that are inverses up to 2-isomorphism:

F F̄ ∼= 1, F̄ F ∼= 1.



Theorem. 2-groups are classified up to equivalence by quadruples
consisting of:

a group G ,

an abelian group H,

an action α of G as automorphisms of H,

an element [a] ∈ H3(G ,H).



Theorem. 2-groups are classified up to equivalence by quadruples
consisting of:

a group G ,

an abelian group H,

an action α of G as automorphisms of H,

an element [a] ∈ H3(G ,H).

G is the group of isomorphism classes of objects of G.

H is the group of automorphisms of 1 ∈ G.

The action of G on H is defined like this:

• g // •
1

%%

1
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• g−1
// •

a : G 3 → H comes from the associator, and the pentagon
identity says it’s a cocycle!



Lie 2-Algebras

To categorify the concept of ‘Lie algebra’ we must first treat the
concept of ‘vector space’:

A 2-vector space L is a category for which the set of objects and
the set of morphisms are vector spaces, and all the category
operations are linear.

We can also define linear functors between 2-vector spaces, and
linear natural transformations between these, in the obvious way.



Theorem. The 2-category of 2-vector spaces, linear functors and
linear natural transformations is equivalent to the 2-category of:

2-term chain complexes C1
d−→C0,

chain maps between these,

chain homotopies between these.

The objects of the 2-vector space form the space C0. The
morphisms f : 0→ x form the space C1, and df = x .



A Lie 2-algebra consists of:

a 2-vector space L

equipped with:

a functor called the bracket:

[·, ·] : L× L→ L,

bilinear and skew-symmetric as a function of objects and
morphisms,

a natural isomorphism called the Jacobiator:

Jx ,y ,z : [[x , y ], z ]→ [x , [y , z ]] + [[x , z ], y ],

trilinear and antisymmetric as a function of the objects x , y , z .



We also impose the Jacobiator identity:

[[[w ,x],y ],z]

[[[w ,y ],x],z]+[[w ,[x ,y ]],z] [[[w ,x],z],y ]+[[w ,x],[y ,z]]

[[[w ,y ],z],x]+[[w ,y ],[x,z]]
+[w ,[[x ,y ],z]]+[[w ,z],[x,y]]

[[w ,[x ,z]],y ]
+[[w ,x],[y ,z]]+[[[w ,z],x],y]

[[[w ,z],y ],x]+[[w ,[y ,z]],x]
+[[w ,y ],[x ,z]]+[w ,[[x,y ],z]]

+[[w ,z],[x ,y ]]

[[[w ,z],y ],x]+[[w ,z],[x ,y]]+[[w ,y ],[x,z]]
+[w ,[[x ,z],y ]]+[[w ,[y ,z]],x]

+[w ,[x ,[y ,z]]]

[Jw,x,y ,z]

uukkkkkkkk J[w,x ],y,z

))SSSSSSSS

J[w,y ],x,z +Jw,[x,y ],z

�������

[Jw,y,z ,x]+1
��'''''

[Jw,x,z ,y ]+1

��/////

Jw,[x,z],y +J[w,z],x,y +Jw,x,[y,z]�������

[w ,Jx,y,z ]+1
//

must commute.
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Lie 2-algebras are the same as 2-term L∞-algebras.
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Lie 2-algebras are the same as 2-term L∞-algebras.

We can define homomorphisms between Lie 2-algebras, and
2-homomorphisms between these. The Lie 2-algebras L and L′ are
equivalent if there are homomorphisms

F : L→ L′ F̄ : L′ → L

that are inverses up to 2-isomorphism.



Theorem. Lie 2-algebras are classified up to equivalence by
quadruples consisting of:

a Lie algebra g,

a vector space h,

a representation ρ of g on h,

an element [j ] ∈ H3(g, h).



Theorem. Lie 2-algebras are classified up to equivalence by
quadruples consisting of:

a Lie algebra g,

a vector space h,

a representation ρ of g on h,

an element [j ] ∈ H3(g, h).

This is just like the classification of 2-groups, but with Lie algebra
cohomology replacing group cohomology!

The 3-cocycle j : g⊗3 → h comes from the Jacobiator.



The Lie 2-Algebra gk

Suppose g is a finite-dimensional simple Lie algebra over R. To get
a Lie 2-algebra with g as objects we need:

a vector space h,

a representation ρ of g on h,

an element [j ] ∈ H3(g, h).



The Lie 2-Algebra gk

Suppose g is a finite-dimensional simple Lie algebra over R. To get
a Lie 2-algebra with g as objects we need:

a vector space h,

a representation ρ of g on h,

an element [j ] ∈ H3(g, h).

Suppose ρ is irreducible. To get Lie 2-algebras with nontrivial
Jacobiator, we need H3(g, h) 6= 0. This only happens when h = R
is the trivial representation. Then we have H 3(g,R) = R, with a
nontrivial 3-cocycle given by:

j(x , y , z) = 〈x , [y , z ]〉

Using k ∈ R times this to define the Jacobiator, we get a Lie
2-algebra we call gk .



In short: every simple Lie algebra gives a one-parameter family of
Lie 2-algebras!



Does gk Come From a Lie 2-Group?

There is a 2-group that ‘wants’ to have gk as its Lie 2-algebra. It
has G as its set of objects and U(1) as the endomorphisms of any
object. However, unless k = 0 we cannot make its associator
smooth globally — only locally. Henriques has formalized this
quite nicely.

On the other hand, when k is an integer, gk is equivalent to a Lie
2-algebra that does come from a Lie 2-group:

Theorem. For any k ∈ Z, there is an infinite-dimensional Lie
2-group Stringk G whose Lie 2-algebra is equivalent to gk .



An object of Stringk G is a smooth path in G starting at the
identity. A morphism from f1 to f2 is an equivalence class of pairs
(D, α) consisting of a smooth homotopy D from f1 to f2 together
with α ∈ U(1):

�

�

G

1

f1 f2D
+3



Any two such pairs (D1, α1) and (D2, α2) have a 3-ball B whose
boundary is D1 ∪D2. The pairs are equivalent when

exp

(
2πik

∫

B
ν

)
= α2/α1

where ν is the left-invariant closed 3-form on G with

ν(x , y , z) = 〈[x , y ], z〉

and 〈·, ·〉 is the smallest invariant inner product on g such that ν
gives an integral cohomology class.

There’s an easy way to compose morphisms in Stringk G , and the
resulting category inherits a Lie 2-group structure from the Lie
group structure of G .



Relation to Loop Groups

We can also describe Stringk G using central extensions of the loop
group of G :

Theorem. An object of Stringk G is a smooth path in G starting
at the identity. Given objects f1, f2 ∈ Stringk G , a morphism

̂̀: f1 → f2

is an element ̂̀∈ Ω̂k G with

p(̂̀) = f2/f1 ∈ ΩG

where Ω̂k G is the level-k central extension of the loop group ΩG :

1−→U(1)−→ Ω̂k G
p−→ΩG −→ 1


