Lectures on Higher Gauge Theory – II

John Baez
joint with Toby Bartels, Alissa Crans, Alex Hoffnung,
Aaron Lauda, Chris Rogers, Urs Schreiber,
and Danny Stevenson

Courant Research Center Göttingen
February 6, 2009
Čech Cohomology for Bundles

If G is a topological group and M is a topological space, we can describe a principal G-bundle $P \to M$ using a Čech cocycle. This consists of an open cover $\mathcal{U} = \{U_i\}$ of M together with transition functions

$$g_{ij} : U_i \cap U_j \to G$$

making these triangles commute for all $x \in U_i \cap U_j \cap U_k$:

\[
\begin{array}{c}
\bullet \\
\downarrow \quad \downarrow \\
\bullet \\
\downarrow \quad \downarrow \\
\bullet \\
\end{array}
\]

\[
g_{ij}(x) \quad \quad g_{jk}(x) \quad \quad g_{ik}(x)
\]
Two Čech cocycles define isomorphic bundles iff they are \textit{cohomologous}, meaning there are functions

\[f_i : U_i \rightarrow G \]

making these squares commute for all \(x \in U_i \cap U_j \):

\[
\begin{array}{c}
\bullet \\
g_{ij}(x) \\
\downarrow \quad f_i(x) \quad \downarrow \quad g_{ij}'(x) \\
\bullet \\
\bullet \\
f_j(x) \\
\end{array}
\]
The set of cohomology classes of Čech cocycles is called $\check{H}(\mathcal{U}, G)$. Taking the limit as we refine the open cover, we obtain the (first) Čech cohomology of M with coefficients in G:

$$\check{H}(M, G) = \lim_{\mathcal{U}} \check{H}(\mathcal{U}, G)$$

There is a bijection between $\check{H}(M, G)$ and the set of isomorphism classes of principal G-bundles over M.
A Famous Old Theorem

Here is the result we’d like to categorify:

Thm. Let G be a well-pointed topological group. Let BG, the **classifying space** of G, be the geometric realization of the nerve of G. Then for any paracompact Hausdorff space M, there is a bijection

$$[M, BG] \cong \check{H}(M, G)$$

(A topological group G is **well-pointed** if $1 \in G$ has a neighborhood of which it is a deformation retract.)
Topological 2-Groupoids

So far we’ve generalized this famous old theorem only to ‘strict’ topological 2-groups, where the group laws hold as equations. We can think of these as strict topological 2-groupoids with one object.
Topological 2-Groupoids

So far we’ve generalized this famous old theorem only to ‘strict’ topological 2-groups, where the group laws hold as equations. We can think of these as strict topological 2-groupoids with one object.

Defn. A **strict 2-groupoid** is a strict 2-category where all morphisms and 2-morphisms are strictly invertible.
Topological 2-Groupoids

So far we’ve generalized this famous old theorem only to ‘strict’ topological 2-groups, where the group laws hold as equations. We can think of these as strict topological 2-groupoids with one object.

Defn. A **strict 2-groupoid** is a strict 2-category where all morphisms and 2-morphisms are strictly invertible.

Defn. A **strict topological 2-groupoid** \mathcal{G} is a strict 2-groupoid with:

- a topological space of objects,
- a topological space of morphisms,
- a topological space of 2-morphisms,

such that all the 2-groupoid operations are continuous.
Defn. A strict topological 2-group is a strict topological 2-groupoid with one object.

From this viewpoint, it has one object: \(\bullet \)

together with a space of morphisms: \(\bullet \xrightarrow{g} \bullet \)

and a space of 2-morphisms: \(\bullet \xrightarrow{g} \bullet \xrightarrow{h} \bullet \)

\(\xrightarrow{g'} \)

We'll use this viewpoint henceforth.
The Čech 2-Groupoid

Let $\mathcal{U} = \{U_i\}$ be an open cover of a topological space M.

Defn. The Čech 2-groupoid $\hat{\mathcal{U}}$ is the strict topological 2-groupoid where:

- objects are pairs (x, i) with $x \in U_i$,
- there is a single morphism from (x, i) to (x, j) when $x \in U_i \cap U_j$, and none otherwise,
- there are only identity 2-morphisms.
The Čech 2-Groupoid

Let $\mathcal{U} = \{ U_i \}$ be an open cover of a topological space M.

Defn. The Čech 2-groupoid $\hat{\mathcal{U}}$ is the strict topological 2-groupoid where:

- objects are pairs (x, i) with $x \in U_i$,
- there is a single morphism from (x, i) to (x, j) when $x \in U_i \cap U_j$, and none otherwise,
- there are only identity 2-morphisms.

(This is just a topological groupoid promoted to a 2-groupoid by throwing in identity 2-morphisms.)
Čech Cohomology for 2-Bundles

Defn. A Čech cocycle with coefficients in the strict topological 2-group \mathcal{G} is continuous pseudofunctor $g : \hat{\mathcal{U}} \to \mathcal{G}$.
Čech Cohomology for 2-Bundles

Defn. A Čech cocycle with coefficients in the strict topological 2-group G is continuous pseudofunctor $g : \hat{U} \rightarrow G$.

Defn. Two Čech cocycles g, g' are **cohomologous** if there is a continuous pseudonatural isomorphism $f : g \Rightarrow g'$.
Čech Cohomology for 2-Bundles

Defn. A Čech cocycle with coefficients in the strict topological 2-group \(G \) is continuous pseudofunctor \(g : \hat{U} \to G \).

Defn. Two Čech cocycles \(g, g' \) are cohomologous if there is a continuous pseudonatural isomorphism \(f : g \Rightarrow g' \).

Defn. Let \(\check{H}(U, G) \) be the set of cohomology classes of Čech cocycles. Let the Čech cohomology of \(M \) with coefficients in \(G \) be the limit as we refine the cover:

\[
\check{H}(M, G) = \lim_{U} \check{H}(U, G)
\]
A Čech cocycle $g: \mathring{U} \to G$ is a recipe for building a principal G-2-bundle over M using transition functions.
A Čech cocycle $g: \hat{U} \to G$ is a recipe for building a principal G-2-bundle over M using transition functions.

It sends every object of \hat{U} to the one object $\bullet \in G$.
A Čech cocycle $g : \hat{U} \to \mathcal{G}$ is a recipe for building a principal \mathcal{G}-2-bundle over M using transition functions.

It sends every object of \hat{U} to the one object $\bullet \in \mathcal{G}$.

It sends each morphism $(x, i) \to (x, j)$ to a morphism $g_{ij}(x) : \bullet \to \bullet$ depending continuously on x.
A Čech cocycle \(g : \hat{U} \to \mathcal{G} \) is a recipe for building a **principal \(\mathcal{G} \)-2-bundle** over \(M \) using transition functions.

It sends every object of \(\hat{U} \) to the one object \(\bullet \in \mathcal{G} \).

It sends each morphism \((x, i) \to (x, j) \) to a morphism \(g_{ij}(x) : \bullet \to \bullet \) depending continuously on \(x \).

Composition of morphisms is weakly preserved:

\[
\begin{array}{c}
\bullet \\
\uparrow g_{ij}(x) \\
\downarrow g_{jk}(x) \\
\bullet \\
\downarrow g_{ik}(x) \\
\bullet \\
\end{array}
\]

for some 2-morphism \(h_{ijk}(x) \) depending continuously on \(x \in U_i \cap U_j \cap U_k \).
Finally, the h_{ijk} must make these tetrahedra commute for each $x \in U_i \cap U_j \cap U_k \cap U_l$:
Finally, the h_{ijk} must make these tetrahedra commute for each $x \in U_i \cap U_j \cap U_k \cap U_l$:

Bartels has shown we can assume without loss of generality that $g_{ii}(x) = 1$ and that $h_{ijk}(x) = 1$ whenever two or more of the indices i, j and k agree. Then we have a **normalized** cocycle.
Given Čech cocycles $g, g': \hat{U} \to G$, a continuous pseudonatural isomorphism $f : g \Rightarrow g'$ gives an isomorphism between the corresponding 2-bundles.
Given Čech cocycles $g, g': \hat{U} \to G$, a continuous pseudonatural isomorphism $f: g \Rightarrow g'$ gives an isomorphism between the corresponding 2-bundles.

f sends each object (x, i) of \hat{U} to a morphism $f_i(x): \bullet \to \bullet$ depending continuously on x.
Given Čech cocycles \(g, g' : \hat{U} \rightarrow \mathcal{G} \), a continuous pseudonatural isomorphism \(f : g \Rightarrow g' \) gives an isomorphism between the corresponding 2-bundles.

\(f \) sends each object \((x, i)\) of \(\hat{U} \) to a morphism \(f_i(x) : \bullet \rightarrow \bullet \) depending continuously on \(x \).

It sends each morphism \((x, i) \rightarrow (x, j)\) of \(\hat{U} \) to a 2-morphism \(k_{ij}(x) \) depending continuously on \(x \) and filling in this naturality square:
Finally, the k_{ij} must make these prisms commute:
Categorifying That Famous Old Theorem

Thm. Suppose \mathcal{G} is a well-pointed strict topological 2-group and M is a paracompact Hausdorff space admitting good covers. Then there is a bijection

$$\check{H}(M, \mathcal{G}) \cong [M, BJ\mathcal{N}\mathcal{G}]$$

where the topological group $|\mathcal{N}\mathcal{G}|$ is the geometric realization of the nerve of \mathcal{G}. So, we call $BJ\mathcal{N}\mathcal{G}$ the **classifying space** of \mathcal{G}.

(A topological 2-group \mathcal{G} is **well-pointed** if both the topological groups in its corresponding crossed module are well-pointed. An open cover is **good** if each nonempty finite intersection of sets in the cover is contractible.)
How to Build the Classifying Space

First we think of \mathcal{G} as a group in TopGpd and apply the nerve construction:

$$N: \text{TopGpd} \to \text{Top}^{\Delta^{\text{op}}}$$

to get a group in simplicial spaces, $N\mathcal{G}$.

Then we use geometric realization:

$$|\cdot|: \text{Top}^{\Delta^{\text{op}}} \to \text{Top}$$

to get a topological group $|N\mathcal{G}|$.

Then we think of $|N\mathcal{G}|$ as a 1-object topological groupoid, and take the nerve and the geometric realization of this to get our space $B|N\mathcal{G}|$.
A Corollary: Bundles vs. 2-Bundles

Cor. There is a 1-1 correspondence between:

- equivalence classes of principal \(G \)-2-bundles over \(M \)
- elements of the Čech cohomology \(\check{H}(M, G) \)
- homotopy classes of maps \(f : M \to B|NG| \)
- elements of the Čech cohomology \(\check{H}(M, |NG|) \)
- isomorphism classes of principal \(|NG| \)-bundles over \(M \).
Example: Abelian Gerbes

The abelian topological group $\mathbb{U}(1)$ gives a topological 2-group G with:

- one morphism,
- $\mathbb{U}(1)$ as the topological group of 2-morphisms.
Example: Abelian Gerbes

The abelian topological group $\mathbb{U}(1)$ gives a topological 2-group \mathcal{G} with:

- one morphism,
- $\mathbb{U}(1)$ as the topological group of 2-morphisms.

In this case a principal \mathcal{G}-2-bundle is the same as an abelian $\mathbb{U}(1)$-gerbe. We have

$$|\mathcal{N}\mathcal{G}| = B\mathbb{U}(1) = K(\mathbb{Z}, 2)$$

so the classifying space of \mathcal{G} is

$$B|\mathcal{N}\mathcal{G}| = B(B\mathbb{U}(1)) = K(\mathbb{Z}, 3)$$

and abelian $\mathbb{U}(1)$-gerbes over M are classified by

$$[M, K(\mathbb{Z}, 2)] \cong H^3(M, \mathbb{Z}).$$
Example: Nonabelian Gerbes

Any topological group G gives a topological 2-group \mathcal{G} with:

- $\text{Aut}(G)$ as morphisms,
- elements $g \in G$ as 2-morphisms $g : h \Rightarrow gh(\cdot)g^{-1}$.
Example: Nonabelian Gerbes

Any topological group G gives a topological 2-group \mathcal{G} with:

- $\text{Aut}(G)$ as morphisms,
- elements $g \in G$ as 2-morphisms $g : h \Rightarrow gh(\cdot)g^{-1}$.

In this case a principal \mathcal{G}-2-bundle is the same as an nonabelian G-gerbe. So, such gerbes are classified by

$$[M, B|NG]$$

which might be called the nonabelian cohomology $H^2(M, G)$.
Example: String 2-Bundles

Let G be a simply-connected compact simple Lie group. Then
$\pi_3(G) = \mathbb{Z}$.
Example: String 2-Bundles

Let G be a simply-connected compact simple Lie group. Then $\pi_3(G) = \mathbb{Z}$.

There is a topological group \hat{G} called the 3-connected cover of G, with $\pi_3\hat{G} = 0$ and a continuous homomorphism

$$p: \hat{G} \rightarrow G$$

that induces an isomorphism on π_n except for $n = 3$.
Example: String 2-Bundles

Let G be a simply-connected compact simple Lie group. Then $\pi_3(G) = \mathbb{Z}$.

There is a topological group \hat{G} called the 3-connected cover of G, with $\pi_3\hat{G} = 0$ and a continuous homomorphism

$$p: \hat{G} \rightarrow G$$

that induces an isomorphism on π_n except for $n = 3$.

When $G = \text{Spin}(n)$, \hat{G} is called the string group.
Example: String 2-Bundles

Let G be a simply-connected compact simple Lie group. Then $\pi_3(G) = \mathbb{Z}$.

There is a topological group \hat{G} called the 3-connected cover of G, with $\pi_3 \hat{G} = 0$ and a continuous homomorphism

$$p: \hat{G} \to G$$

that induces an isomorphism on π_n except for $n = 3$.

When $G = \text{Spin}(n)$, \hat{G} is called the string group.

In fact, we can build \hat{G} from a topological 2-group!
Last time we saw G gives a topological 2-group $\text{String}_k G$ for each $k \in \mathbb{Z}$.
Last time we saw G gives a topological 2-group $\text{String}_k G$ for each $k \in \mathbb{Z}$.

Let

$$\text{String}G = \text{String}_1 G$$
Last time we saw G gives a topological 2-group $\text{String}_k G$ for each $k \in \mathbb{Z}$.

Let

$$\text{String} G = \text{String}_1 G$$

Thm. \hat{G} is the geometric realization of the nerve of $\text{String} G$:

$$\hat{G} \simeq |N\text{String} G|$$
The continuous homomorphism

\[p: |N\text{String}G| \to G \]

gives an algebra homomorphism:

\[H^*(BG, \mathbb{R}) \xrightarrow{p^*} H^*(B|N\text{String}G|, \mathbb{R}) \]

Thm. The homomorphism \(p^* \) is onto, with kernel generated by the ‘2nd Chern class’ \(c_2 \in H^4(BG, \mathbb{R}) \).

So, the real characteristic classes of String\(G \)-2-bundles are just like those of \(G \)-bundles, but with \(c_2 \) set to zero!