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Čech Cohomology for Bundles

If G is a topological group and M is a topological space, we can
describe a principal G -bundle P → M using a Čech cocycle. This
consists of an open cover U = {Ui} of M together with transition
functions

gij : Ui ∩ Uj → G

making these triangles commute for all x ∈ Ui ∩ Uj ∩ Uk :

•

• •

gij (x)

FF

gjk (x)

��111111111111

gik (x)
//



Two Čech cocycles define isomorphic bundles iff they are
cohomologous, meaning there are functions

fi : Ui → G

making these squares commute for all x ∈ Ui ∩ Uj :

•

•

•

•

fi (x)

��

gij (x)
//

fj (x)

��

g ′ij (x)
//



The set of cohomology classes of Čech cocycles is called Ȟ(U ,G ).
Taking the limit as we refine the open cover, we obtain the (first)
Čech cohomology of M with coefficients in G :

Ȟ(M,G) = lim−→U
Ȟ(U ,G )

There is a bijection between Ȟ(M,G ) and the set of isomorphism
classes of principal G -bundles over M.



A Famous Old Theorem

Here is the result we’d like to categorify:

Thm. Let G be a well-pointed topological group. Let BG , the
classifying space of G , be the geometric realization of the nerve
of G . Then for any paracompact Hausdorff space M, there is a
bijection

[M,BG ] ∼= Ȟ(M,G )

(A topological group G is well-pointed if 1 ∈ G has a
neighborhood of which it is a deformation retract.)
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So far we’ve generalized this famous old theorem only to ‘strict’
topological 2-groups, where the group laws hold as equations. We
can think of these as strict topological 2-groupoids with one object.

Defn. A strict 2-groupoid is a strict 2-category where all
morphisms and 2-morphisms are strictly invertible.

Defn. A strict topological 2-groupoid G is a strict 2-groupoid
with:

a topological space of objects,

a topological space of morphisms,

a topological space of 2-morphisms,

such that all the 2-groupoid operations are continuous.



Defn. A strict topological 2-group is a strict topological
2-groupoid with one object.

From this viewpoint, it has one object: •

together with a space of morphisms: •
g

%% •

and a space of 2-morphisms: •
g

%%

g ′

99h
��

•

We’ll use this viewpoint henceforth.
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Let U = {Ui} be an open cover of a topological space M.

Defn. The Čech 2-groupoid Û is the strict topological
2-groupoid where:

objects are pairs (x , i) with x ∈ Ui ,

there is a single morphism from (x , i) to (x , j) when
x ∈ Ui ∩ Uj , and none otherwise,

there are only identity 2-morphisms.



The Čech 2-Groupoid

Let U = {Ui} be an open cover of a topological space M.

Defn. The Čech 2-groupoid Û is the strict topological
2-groupoid where:

objects are pairs (x , i) with x ∈ Ui ,

there is a single morphism from (x , i) to (x , j) when
x ∈ Ui ∩ Uj , and none otherwise,

there are only identity 2-morphisms.

(This is just a topological groupoid promoted to a 2-groupoid by
throwing in identity 2-morphisms.)
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Čech Cohomology for 2-Bundles

Defn. A Čech cocycle with coefficients in the strict topological
2-group G is continuous pseudofunctor g : Û → G.

Defn. Two Čech cocycles g , g ′ are cohomologous if there is a
continuous pseudonatural isomorphism f : g ⇒ g ′.

Defn. Let Ȟ(U ,G) be the set of cohomology classes of Čech
cocycles. Let the Čech cohomology of M with coefficients in G
be the limit as we refine the cover:

Ȟ(M,G) = lim−→
U

Ȟ(U ,G)
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It sends every object of Û to the one object • ∈ G.
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A Čech cocycle g : Û → G is a recipe for building a principal
G-2-bundle over M using transition functions.

It sends every object of Û to the one object • ∈ G.

It sends each morphism (x , i)→ (x , j) to a morphism
gij (x) : • → • depending continuously on x .

Composition of morphisms is weakly preserved:

•

• •

gij (x)

EE��������������

gjk (x)

��33333333333333

gik (x)
//

hijk (x)

��

for some 2-morphism hijk(x) depending continuously on
x ∈ Ui ∩ Uj ∩ Uk .



Finally, the hijk must make these tetrahedra commute for each
x ∈ Ui ∩ Uj ∩ Uk ∩ Ul :

gjk

gjl

gil

gik gkl

gij

hijl

hikl

hjkl
hijk

gil



Finally, the hijk must make these tetrahedra commute for each
x ∈ Ui ∩ Uj ∩ Uk ∩ Ul :

gjk

gjl

gil

gik gkl

gij

hijl

hikl

hjkl
hijk

gil

Bartels has shown we can assume without loss of generality that
gii (x) = 1 and that hijk(x) = 1 whenever two or more of the
indices i , j and k agree. Then we have a normalized cocycle.
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Given Čech cocycles g , g ′ : Û → G, a continuous pseudonatural
isomorphism f : g ⇒ g ′ gives an isomorphism between the
corresponding 2-bundles.

f sends each object (x , i) of Û to a morphism fi (x) : • → •
depending continuously on x .

It sends each morphism (x , i)→ (x , j) of Û to a 2-morphism kij (x)
depending continuously on x and filling in this naturality square:

•

•

•

•

fi (x)

��

gij (x)
//

fj (x)

��

g ′ij (x)
//

kij (x){� ������



Finally, the kij must make these prisms commute:

fkfi

fj

g ′ik

gik

g ′ij

gij

g ′jk

gjk

h′ijk

hijk

kik

kij

kjk



Categorifying That Famous Old Theorem

Thm. Suppose G is a well-pointed strict topological 2-group and
M is a paracompact Hausdorff space admitting good covers. Then
there is a bijection

Ȟ(M,G) ∼= [M,B |NG|]

where the topological group |NG| is the geometric realization of
the nerve of G. So, we call B |NG| the classifying space of G.

(A topological 2-group G is well-pointed if both the topological
groups in its corresponding crossed module are well-pointed. An
open cover is good if each nonempty finite intersection of sets in
the cover is contractible.)



How to Build the Classifying Space

First we think of G as a group in TopGpd and apply the nerve
construction:

N : TopGpd→ Top∆op

to get a group in simplicial spaces, NG.

Then we use geometric realization:

| · | : Top∆op → Top

to get a topological group |NG|.

Then we think of |NG| as a 1-object topological groupoid, and
take the nerve and the geometric realization of this to get our
space B |NG|.



A Corollary:
Bundles vs. 2-Bundles

Cor. There is a 1-1 correspondence between:

equivalence classes of principal G-2-bundles over M

elements of the Čech cohomology Ȟ(M,G)

homotopy classes of maps f : M → B |NG|
elements of the Čech cohomology Ȟ(M, |NG|)
isomorphism classes of principal |NG|-bundles over M.



Example: Abelian Gerbes

The abelian topological group U(1) gives a topological 2-group G
with:

one morphism,

U(1) as the topological group of 2-morphisms.



Example: Abelian Gerbes

The abelian topological group U(1) gives a topological 2-group G
with:

one morphism,

U(1) as the topological group of 2-morphisms.

In this case a principal G-2-bundle is the same as an abelian
U(1)-gerbe. We have

|NG| = BU(1) = K (Z, 2)

so the classifying space of G is

B |NG| = B(BU(1)) = K (Z, 3)

and abelian U(1)-gerbes over M are classified by

[M,K (Z, 2)] ∼= H3(M,Z).



Example: Nonabelian Gerbes

Any topological group G gives a topological 2-group G with:

Aut(G ) as morphisms,

elements g ∈ G as 2-morphisms g : h⇒ gh(·)g−1.



Example: Nonabelian Gerbes

Any topological group G gives a topological 2-group G with:

Aut(G ) as morphisms,

elements g ∈ G as 2-morphisms g : h⇒ gh(·)g−1.

In this case a principal G-2-bundle is the same as an nonabelian
G-gerbe. So, such gerbes are classified by

[M,B |NG|]

which might be called the nonabelian cohomology H 2(M,G ).
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Example: String 2-Bundles

Let G be a simply-connected compact simple Lie group. Then
π3(G ) = Z.

There is a topological group Ĝ called the 3-connected cover of
G , with π3Ĝ = 0 and a continuous homomorphism

p : Ĝ → G

that induces an isomorphism on πn except for n = 3.

When G = Spin(n), Ĝ is called the string group.

In fact, we can build Ĝ from a topological 2-group!
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Last time we saw G gives a topological 2-group Stringk G for each
k ∈ Z.

Let
StringG = String1G

Thm. Ĝ is the geometric realization of the nerve of StringG :

Ĝ ' |NStringG |



The continuous homomorphism

p : |NStringG | → G

gives an algebra homomorphism:

H∗(BG ,R)
p∗−→ H∗(B |NStringG |,R)

Thm. The homomorphism p∗ is onto, with kernel generated by
the ‘2nd Chern class’ c2 ∈ H4(BG ,R).

So, the real characteristic classes of StringG -2-bundles are just like
those of G -bundles, but with c2 set to zero!


