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Higher Gauge Theory

So far we have categorified the theory of:

groups and Lie algebras,

topological groups and principal bundles.

Now let’s do the theory of connections!

For this it helps to work in a convenient category of smooth
spaces. We’ll use Souriau’s ‘diffeological spaces’ — but we’ll call
them ‘smooth spaces’.
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Defn. A smooth space is a set X with, for each open set C , a
collection of functions φ : C → X called plots such that:

If φ : C → X is a plot and f : C ′ → C is a smooth map
between open sets, then φ ◦ f : C ′ → X is a plot.

If iα : Cα → C is an open cover of an open set C by open
subsets Cα, and φ : C → X has the property that φ ◦ iα is a
plot for all α, then φ is a plot.

Every map from a point to X is a plot.



Smooth Spaces

Let an open set be an open subset of Rn for any n.

Defn. A smooth space is a set X with, for each open set C , a
collection of functions φ : C → X called plots such that:

If φ : C → X is a plot and f : C ′ → C is a smooth map
between open sets, then φ ◦ f : C ′ → X is a plot.

If iα : Cα → C is an open cover of an open set C by open
subsets Cα, and φ : C → X has the property that φ ◦ iα is a
plot for all α, then φ is a plot.

Every map from a point to X is a plot.

Defn. Given smooth spaces X ,Y , a map f : X → Y is smooth if
φ ◦ f : C → Y is a plot whenever φ : C → X is a plot.
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Defn. Let C∞ be the category of smooth spaces and smooth
maps.

We can do all the differential-geometric constructions we need in
this category. Let’s explain how this works for connections, and
then categorify the concept of connection.

Let M be a smooth space (e.g. a manifold).

Let G be a smooth group: a smooth space with smooth group
operations (e.g. a Lie group).

Let g be the Lie algebra of G .
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holonomy hol(γ) ∈ G for any path γ : [t0, t1]→ M.
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We would like to compute this holonomy from a g-valued 1-form A
on M, as follows. Solve this differential equation:

d

dt
g(t) = A(γ ′(t)) g(t)

with initial value g(t0) = 1. Then let:

hol(γ) = g(t1).



A connection on the trivial G -bundle over M should give a
holonomy hol(γ) ∈ G for any path γ : [t0, t1]→ M.

We would like to compute this holonomy from a g-valued 1-form A
on M, as follows. Solve this differential equation:

d

dt
g(t) = A(γ ′(t)) g(t)

with initial value g(t0) = 1. Then let:

hol(γ) = g(t1).

We say G is exponentiable if the above differential equation
always has a smooth solution. Any Lie group is exponentiable.
Henceforth assume all our smooth groups are exponentiable!
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The holonomy along a path doesn’t depend on its parametrization.
When we compose paths, their holonomies multiply:

• %% • %% •

When we reverse a path, we get a path with the inverse holonomy:

• •yy



Connections as Functors

The holonomy along a path doesn’t depend on its parametrization.
When we compose paths, their holonomies multiply:

• %% • %% •

When we reverse a path, we get a path with the inverse holonomy:

• •yy

So, let P1(M) be the path groupoid of M:

objects are points x ∈ M: • x

morphisms are thin homotopy classes of smooth paths
γ : [0, 1]→ M such that γ(t) is constant near t = 0, 1:

x •
γ

'' • y



Thm. P1(M) is a smooth groupoid: it has a smooth space of
objects, a smooth space of morphisms, and all the groupoid
operations are smooth.



Thm. P1(M) is a smooth groupoid: it has a smooth space of
objects, a smooth space of morphisms, and all the groupoid
operations are smooth.

Thm. Suppose M is a smooth space and G is a smooth group.
There is a 1-1 correspondence between smooth functors

hol : P1(M)→ G

and g-valued 1-forms A on M.
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Internalization

Now let’s categorify everything in sight and get a theory of
holonomies for paths and surfaces!

The crucial trick is ‘internalization’. Given a familiar gadget x and
a category K , we define an ‘x in K ’ by writing the definition of x
using commutative diagrams and interpreting these in K .

We need examples where K = C∞ is the category of smooth
spaces:

A smooth group is a group in C∞.

A smooth groupoid is a groupoid in C∞.

A smooth strict 2-group is a strict 2-group in C∞.

A smooth strict 2-groupoid is a strict 2-groupoid in C∞.
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2-Connections as 2-Functors

The path 2-groupoid P2(M) of a smooth space M has:

as objects, points of M: • x
as morphisms, thin homotopy classes of smooth paths
γ : [0, 1]→ M such that γ(t) is constant in a neighborhood of
t = 0 and t = 1:

x •
γ

'' • y

as 2-morphisms, thin homotopy classes of smooth maps
Σ: [0, 1]2 → M such that Σ(s, t) is independent of s in a
neighborhood of s = 0 and s = 1, and constant in a
neighborhood of t = 0 and t = 1:

x •
γ1

''

γ2

77 • yΣ��



Thm. For any smooth space M, P2(M) is a smooth strict
2-groupoid.



Thm. For any smooth space M, P2(M) is a smooth strict
2-groupoid.

This suggests:

Defn. If G is a smooth strict 2-group, a 2-connection on the
trivial G-2-bundle over a smooth space M is a smooth 2-functor

hol : P2(M)→ G.

x •
γ

))

η

55 • yΣ��
7→ •

hol(γ)

((

hol(η)

66 •hol(Σ)
��



Crossed Modules

A strict 2-group G is determined by (G ,H, t, ρ), where:

the group G consists of all morphisms of G,

the group H consists of all 2-morphisms of G with source 1,

the homomorphism t : H → G sends each 2-morphism in H to
its target:

•
1

%%

t(h)

99h
��

•

ρ is the action of G on H given by:

• g // •
1

%%

t(h)

99h
��

• g−1
// •



This data (G ,H, t, ρ) satisfies some equations making it a crossed
module. Any crossed module determines a unique strict 2-group.
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smooth crossed modules.



This data (G ,H, t, ρ) satisfies some equations making it a crossed
module. Any crossed module determines a unique strict 2-group.

We can internalize this result: smooth 2-groups are the same as
smooth crossed modules.

Differentiating everything in a smooth crossed module, we get an
infinitesimal crossed module (g, h, dt, dρ). This is just another
way of repackaging a strict Lie 2-algebra: a Lie 2-algebra with
trivial Jacobiator.



2-Connections on Trivial 2-Bundles

Thm. Suppose M is a smooth space. Suppose G is a smooth
strict 2-group, let (G ,H, t, ρ) be its smooth crossed module, and
(g, h, dt, dρ) its infinitesimal crossed module.

There is a 1-1 correspondence between 2-connections on the trivial
G-2-bundle over M:

hol : P2(M)→ G
and pairs (A,B) consisting of a g-valued 1-form A and an h-valued
2-form B on M with vanishing fake curvature:

dA + A ∧ A + dt(B) = 0.



2-Connections on Locally Trivial 2-Bundles

Just as a 2-connection on a trivial 2-bundle is a smooth 2-functor

hol : P2(M)→ G,

a 2-connection on a locally trivial 2-bundle is a smooth 2-functor

P2(M,U)

hol

##GGGGGGGGGG
∼

yyrrrrrrrrrr

P2(M) G

where U = {Ui} is an open cover of M, and P2(M,U) is a smooth
2-groupoid ‘weakly equivalent’ to P2(M).



2-Connections on Locally Trivial 2-Bundles

Just as a 2-connection on a trivial 2-bundle is a smooth 2-functor

hol : P2(M)→ G,

a 2-connection on a locally trivial 2-bundle is a smooth 2-functor

P2(M,U)

hol

##GGGGGGGGGG
∼

yyrrrrrrrrrr

P2(M) G

where U = {Ui} is an open cover of M, and P2(M,U) is a smooth
2-groupoid ‘weakly equivalent’ to P2(M).

So, a 2-connection is like a ‘Morita morphism’ or
‘Hilsum–Skandalis map’ from P2(M) to G.



Abusing notation a bit, let U be the disjoint union of the sets Ui ,
and

p : U → M

the map sending x ∈ Ui to x ∈ M. Form the pullback

U ×M U
p1 //

p2

��

U
p

��
U p

// M

This gives a diagram of smooth 2-groupoids

P2(U ×M U)
p1∗ //

p2∗
��

P2(U)

P2(U)



Next, define P2(M,U) to be the weak pushout

P2(U ×M U)
p1∗ //

p2∗
��

P2(U)

��
P2(U) // P2(M,U)

in the semistrict 3-category of:

smooth strict 2-groupoids,

smooth 2-functors,

smooth pseudonatural transformations,

smooth modifications.



Defn. Let M be a smooth space with open cover U = {Ui}. Let G
be a smooth strict 2-group. Then a 2-connection on a G-2-bundle
locally trivialized over the sets Ui is a 2-functor

hol : P2(M,U)→ G



What does this amount to, more explicitly?



What does this amount to, more explicitly?

1. For each i a smooth 2-functor:

holi : P2(Ui ) → G

x

γ

&&

η

88Σ
��

y 7→ •
holi (γ)

((

holi (η)

66holi (Σ)
��

•



2. For each i , j a smooth pseudonatural isomorphism:

gij : holi |P(Ui∩Uj ) → holj |P(Ui∩Uj )



2. For each i , j a smooth pseudonatural isomorphism:

gij : holi |P(Ui∩Uj ) → holj |P(Ui∩Uj )

So: for each point x ∈ Ui ∩ Uj , a morphism gij (x) : • → • in G
depending smoothly on x .

For each path γ : x → y in Ui ∩ Uj , a 2-morphism in G:

•

•

•

•

holi (γ)

��

gij (x)
//

holj (γ)

��

gij (x)
//

gij (γ) ;C��� ���

depending smoothly on γ...



... and making this diagram commute for any surface Σ: γ ⇒ η in
Ui ∩ Uj :

holi (γ)
holi (η)holi (Σ)

gij(η)

gij (γ)

gij (x)

gij (y)

holj (γ)
holj (η)holj (Σ)



3. For each i , j , k a smooth modification:

holj

holi holk

gij

EE�������������

gjk

��3333333333333

gik

//

hijk

��



3. For each i , j , k a smooth modification:

holj

holi holk

gij

EE�������������

gjk

��3333333333333

gik

//

hijk

��

So: for each point x ∈ Ui ∩ Uj ∩ Uk , a 2-morphism

hijk (x) : gij (x)gjk (x)⇒ gik (x)

in G, depending smoothly on x ...



... and making this prism commute for any path γ : x → y in
Ui ∩ Uj ∩ Uk :

holk (γ)holi (γ)

gik (y)

gik (x)

gij(y)

gij(x)

gjk(y)

gjk(x)

hijk(y)

hijk(x)

gik (γ)

gij(γ) gjk(γ)
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local data:



But how can we describe a 2-connection in terms of differential
forms?

Thm. Suppose M is a smooth space with open cover {Ui}.
Suppose G is a smooth strict 2-group, let (G ,H, t, ρ) be its smooth
crossed module, and (g, h, dt, dρ) its infinitesimal crossed module.

There is a 1-1 correspondence between 2-connections on
G-2-bundles locally trivialized over the sets Ui , and the following
local data:

1. The holonomy 2-functor holi is specified by a g-valued 1-form
Ai and an h-valued 2-form Bi on Ui , satisfying the fake flatness
condition:

dAi + Ai ∧ Ai + dt(Bi ) = 0



2. The pseudonatural isomorphism holi
gij−→ holj is specified by the

transition function
gij : Ui ∩ Uj → G

together with an h-valued 1-form aij on Ui ∩ Uj , satisfying the
equations:

Ai = gij Aj g
−1
ij + gij dg−1

ij − dt(aij)

Bi = ρ(gij )(Bj ) + daij + aij ∧ aij + dρ(Ai ) ∧ aij



3. For gij ◦ gjk
hijk−→ gik to be a modification, the functions hijk must

satisfy the equations:

gij gjk t(hijk) = gik

hijk hikl = α(gij )(hjkl ) hijl

and

aij + ρ(gij )ajk = hijk aik h−1
ijk + hijk dρ(Ai ) h−1

ijk + hijk dh−1
ijk



3. For gij ◦ gjk
hijk−→ gik to be a modification, the functions hijk must

satisfy the equations:

gij gjk t(hijk) = gik

hijk hikl = α(gij )(hjkl ) hijl

and

aij + ρ(gij )ajk = hijk aik h−1
ijk + hijk dρ(Ai ) h−1

ijk + hijk dh−1
ijk

Punchline. Except for fake flatness, these weird-looking equations
show up already in Breen and Messing’s definition of a connection
on a nonabelian gerbe! A special case appears in the work of
Martins and Picken. Other special cases are also known.

So, these structures are really intrinsic to higher gauge theory.


