A categorification of Hecke algebras

Alexander E. Hoffnung Joint work with J. Baez and J. Dolan

Department of Mathematics, University of California, Riverside

Nov. 6, 2008

$$\hom(A,B) = (A \times B) / / G$$

- Degroupoidifying this, we get the vector space of intertwiners from the permutation representation corresponding to A to the permutation representation corresponding to B.
- When A = B, the vector space of intertwiners is an algebra.
- The multiplication in this algebra can be groupoidified. I.e., there's a span of groupoids which acts like a "multiplication".
- We use this to groupoidify Hecke algebras. Hecke algebras are *q*-deformed versions of the group algebras of symmetric groups.

$$\hom(A,B) = (A \times B) / / G$$

- Degroupoidifying this, we get the vector space of intertwiners from the permutation representation corresponding to A to the permutation representation corresponding to B.
- When A = B, the vector space of intertwiners is an algebra.
- The multiplication in this algebra can be groupoidified. I.e., there's a span of groupoids which acts like a "multiplication".
- We use this to groupoidify Hecke algebras. Hecke algebras are *q*-deformed versions of the group algebras of symmetric groups.

$$\hom(A,B) = (A \times B) / / G$$

- Degroupoidifying this, we get the vector space of intertwiners from the permutation representation corresponding to A to the permutation representation corresponding to B.
- When A = B, the vector space of intertwiners is an algebra.
- The multiplication in this algebra can be groupoidified. I.e., there's a span of groupoids which acts like a "multiplication".
- We use this to groupoidify Hecke algebras. Hecke algebras are *q*-deformed versions of the group algebras of symmetric groups.

$$\hom(A,B) = (A \times B) / / G$$

- Degroupoidifying this, we get the vector space of intertwiners from the permutation representation corresponding to A to the permutation representation corresponding to B.
- When A = B, the vector space of intertwiners is an algebra.
- The multiplication in this algebra can be groupoidified. I.e., there's a span of groupoids which acts like a "multiplication".
- We use this to groupoidify Hecke algebras. Hecke algebras are *q*-deformed versions of the group algebras of symmetric groups.

$$\hom(A,B) = (A \times B) / / G$$

- Degroupoidifying this, we get the vector space of intertwiners from the permutation representation corresponding to A to the permutation representation corresponding to B.
- When A = B, the vector space of intertwiners is an algebra.
- The multiplication in this algebra can be groupoidified. I.e., there's a span of groupoids which acts like a "multiplication".
- We use this to groupoidify Hecke algebras. Hecke algebras are *q*-deformed versions of the group algebras of symmetric groups.

The action groupoid

Given a *G*-set *S*, i.e. a set with an action of *G*, we can form the **action groupoid** S//G with:

- Objects: elements $s \in S$;
- Morphisms: (g, s): $s \rightarrow gs$.

The action groupoid

Given a *G*-set *S*, i.e. a set with an action of *G*, we can form the **action groupoid** S//G with:

- Objects: elements $s \in S$;
- Morphisms: $(g, s): s \rightarrow gs$.

The action groupoid

Given a *G*-set *S*, i.e. a set with an action of *G*, we can form the **action groupoid** S//G with:

- Objects: elements $s \in S$;
- Morphisms: (g, s): $s \rightarrow gs$.

Hecke algebras

Let *D* be a Dynkin diagram. Denote the set of vertices of *D* by *S* and an edge between *s* and *t* in *S* by *st*. We denote the label on *st* by m_{st} .

Definition

Let *D* be a Dynkin diagram and *q* a nonzero complex number. The **Hecke algebra** corresponding to this data is the associative $\mathbb{Z}[q, q^{-1}]$ -algebra with generators σ_s , for each $s \in S$, and relations:

 $\sigma_s \sigma_t \sigma_s \ldots = \sigma_t \sigma_s \sigma_t \ldots$

where each side has m_{st} factors, and

$$\sigma_s^2 = (q-1)\sigma_s + q$$

for all $s \in S$.

Hecke algebras

Let *D* be a Dynkin diagram. Denote the set of vertices of *D* by *S* and an edge between *s* and *t* in *S* by *st*. We denote the label on *st* by m_{st} .

Definition

Let *D* be a Dynkin diagram and *q* a nonzero complex number. The **Hecke algebra** corresponding to this data is the associative $\mathbb{Z}[q, q^{-1}]$ -algebra with generators σ_s , for each $s \in S$, and relations:

 $\sigma_{s}\sigma_{t}\sigma_{s}\ldots=\sigma_{t}\sigma_{s}\sigma_{t}\ldots$

where each side has m_{st} factors, and

$$\sigma_s^2 = (q-1)\sigma_s + q$$

for all $s \in S$.

Example: The groupoidified Hecke algebra

Let D be a Dynkin diagram and q a prime power.

Then there is a corresponding algebraic group G over \mathbb{F}_q . G has Borel subgroup $B \subset G$ and we can form a finite G-set

$$X=G/B,$$

a flag variety. We call H(D,q) = (X imes X) / / G the "groupoidified Hecke algebra".

Example: The groupoidified Hecke algebra

Let *D* be a Dynkin diagram and *q* a prime power. Then there is a corresponding algebraic group *G* over \mathbb{F}_q . *G* has Borel subgroup $B \subset G$ and we can form a finite *G*-set

$$X=G/B,$$

a flag variety. We call H(D,q) = (X imes X) / / G the "groupoidified Hecke algebra".

Example: The groupoidified Hecke algebra

Let *D* be a Dynkin diagram and *q* a prime power. Then there is a corresponding algebraic group *G* over \mathbb{F}_q . *G* has Borel subgroup $B \subset G$ and we can form a finite *G*-set

$$X=G/B,$$

a flag variety. We call $H(D,q) = (X \times X)//G$ the "groupoidified Hecke algebra".

Example: The groupoidified Hecke algebra

Let *D* be a Dynkin diagram and *q* a prime power. Then there is a corresponding algebraic group *G* over \mathbb{F}_q . *G* has Borel subgroup $B \subset G$ and we can form a finite *G*-set

$$X=G/B,$$

a flag variety. We call H(D,q) = (X imes X) / / G the "groupoidified Hecke algebra".

Theorem

Degroupoidifying H(D,q) yields the Hecke algebra associated to the Dynkin diagram D with parameter q.

The idea Example of the example

Example of the example

Consider the Dynkin diagram A_2 :

X = G/B is the set of complete flags in \mathbb{F}^3_a , i.e.,

$$dimV_i = i$$
.

Example of the example

Consider the Dynkin diagram A_2 :

We fix a prime power q. We have $G = SL(3, \mathbb{F}_q)$ and B is the upper triangular matrices.

X = G/B is the set of complete flags in \mathbb{F}_{a}^{3} , i.e.,

 $\{V_1 \subset V_2\}$

and

$$dimV_i = i$$
.

Example of the example

Consider the Dynkin diagram A_2 :

We fix a prime power q. We have $G = SL(3, \mathbb{F}_q)$ and B is the upper triangular matrices.

X = G/B is the set of complete flags in \mathbb{F}_q^3 , i.e.,

 $\{V_1 \subset V_2\}$

and

$$dimV_i = i$$
.

Projective perspective

In the projective space $\mathbb{F}_q P^2$, the flags are just a chosen point lying on a chosen line.

The vertices of our Dynkin diagram represent "figures" and the edges represent "incidence relations".

• ----- •

point —— line

Projective perspective

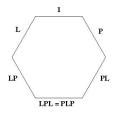
In the projective space $\mathbb{F}_q P^2$, the flags are just a chosen point lying on a chosen line.

The vertices of our Dynkin diagram represent "figures" and the edges represent "incidence relations".

point —— line

The Coxeter group

The Coxeter group of A_2 has two generators:

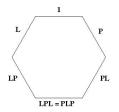


The elements of this group correspond to the possible incidence relations between pairs of flags.

$$P^2 = (q-1)P + q1$$
 $L^2 = (q-1)L + q1$

The Coxeter group

The Coxeter group of A_2 has two generators:

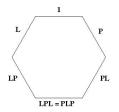


The elements of this group correspond to the possible incidence relations between pairs of flags.

$$P^2 = (q-1)P + q1$$
 $L^2 = (q-1)L + q1$

The Coxeter group

The Coxeter group of A_2 has two generators:

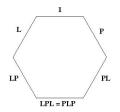


The elements of this group correspond to the possible incidence relations between pairs of flags.

$$P^{2} = (q-1)P + q1$$
 $L^{2} = (q-1)L + q1$

The Coxeter group

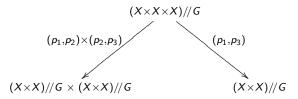
The Coxeter group of A_2 has two generators:



The elements of this group correspond to the possible incidence relations between pairs of flags.

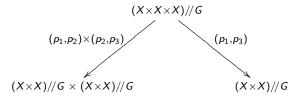
$$P^2 = (q-1)P + q1$$
 $L^2 = (q-1)L + q1$

Groupoidified multiplication



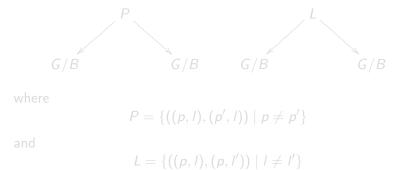
The product of incidence relations will be a linear combination of incidence relations.

Groupoidified multiplication



The product of incidence relations will be a linear combination of incidence relations.

There is one nice span from G/B to G/B for each dot in our Dynkin diagram:



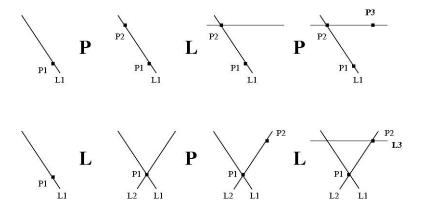
There is one nice span from G/B to G/B for each dot in our Dynkin diagram:

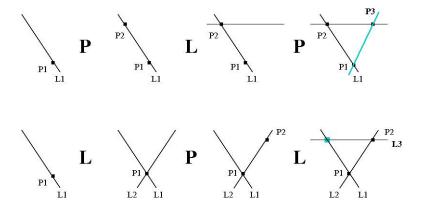
where

$${\sf P} = \{((p,l),(p',l)) \mid p
eq p'\}$$

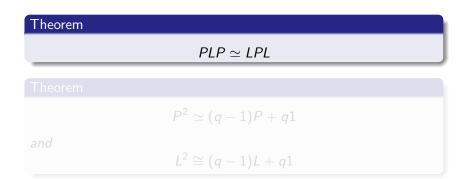
and

$$L = \{((p, l), (p, l')) \mid l \neq l'\}$$





Groupoidified Hecke relations



Groupoidified Hecke relations

