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The idea
Example
Example of the example

Given a finite group G , for any pair of finite G -sets A and B,
we have a groupoid

hom(A,B) = (A× B)//G

Degroupoidifying this, we get the vector space of intertwiners
from the permutation representation corresponding to A to
the permutation representation corresponding to B.

When A = B, the vector space of intertwiners is an algebra.

The multiplication in this algebra can be groupoidified. I.e.,
there’s a span of groupoids which acts like a “multiplication”.

We use this to groupoidify Hecke algebras. Hecke algebras are
q-deformed versions of the group algebras of symmetric
groups.
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The idea
Example
Example of the example

The action groupoid

Given a G -set S , i.e. a set with an action of G , we can form the
action groupoid S//G with:

Objects: elements s ∈ S ;

Morphisms: (g , s) : s → gs.

Alexander E. Hoffnung Joint work with J. Baez and J. Dolan A categorification of Hecke algebras



The idea
Example
Example of the example

The action groupoid

Given a G -set S , i.e. a set with an action of G , we can form the
action groupoid S//G with:

Objects: elements s ∈ S ;

Morphisms: (g , s) : s → gs.

Alexander E. Hoffnung Joint work with J. Baez and J. Dolan A categorification of Hecke algebras



The idea
Example
Example of the example

The action groupoid

Given a G -set S , i.e. a set with an action of G , we can form the
action groupoid S//G with:

Objects: elements s ∈ S ;

Morphisms: (g , s) : s → gs.

Alexander E. Hoffnung Joint work with J. Baez and J. Dolan A categorification of Hecke algebras



The idea
Example
Example of the example

Hecke algebras

Let D be a Dynkin diagram. Denote the set of vertices of D by S
and an edge between s and t in S by st. We denote the label on st
by mst .

Definition

Let D be a Dynkin diagram and q a nonzero complex number.
The Hecke algebra corresponding to this data is the associative
Z[q, q−1]-algebra with generators σs , for each s ∈ S , and relations:

σsσtσs . . . = σtσsσt . . .

where each side has mst factors, and

σ2
s = (q − 1)σs + q

for all s ∈ S .
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The idea
Example
Example of the example

Example: The groupoidified Hecke algebra

Let D be a Dynkin diagram and q a prime power.
Then there is a corresponding algebraic group G over Fq.
G has Borel subgroup B ⊂ G and we can form a finite G -set

X = G/B,

a flag variety.
We call H(D, q) = (X × X )//G the “groupoidified Hecke algebra”.

Alexander E. Hoffnung Joint work with J. Baez and J. Dolan A categorification of Hecke algebras



The idea
Example
Example of the example

Example: The groupoidified Hecke algebra

Let D be a Dynkin diagram and q a prime power.
Then there is a corresponding algebraic group G over Fq.
G has Borel subgroup B ⊂ G and we can form a finite G -set

X = G/B,

a flag variety.
We call H(D, q) = (X × X )//G the “groupoidified Hecke algebra”.

Alexander E. Hoffnung Joint work with J. Baez and J. Dolan A categorification of Hecke algebras



The idea
Example
Example of the example

Example: The groupoidified Hecke algebra

Let D be a Dynkin diagram and q a prime power.
Then there is a corresponding algebraic group G over Fq.
G has Borel subgroup B ⊂ G and we can form a finite G -set

X = G/B,

a flag variety.
We call H(D, q) = (X × X )//G the “groupoidified Hecke algebra”.

Alexander E. Hoffnung Joint work with J. Baez and J. Dolan A categorification of Hecke algebras



The idea
Example
Example of the example

Example: The groupoidified Hecke algebra

Let D be a Dynkin diagram and q a prime power.
Then there is a corresponding algebraic group G over Fq.
G has Borel subgroup B ⊂ G and we can form a finite G -set

X = G/B,

a flag variety.
We call H(D, q) = (X × X )//G the “groupoidified Hecke algebra”.

Alexander E. Hoffnung Joint work with J. Baez and J. Dolan A categorification of Hecke algebras



The idea
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Theorem

Degroupoidifying H(D, q) yields the Hecke algebra associated to
the Dynkin diagram D with parameter q.
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Example of the example

Consider the Dynkin diagram A2:

• •

We fix a prime power q. We have G = SL(3,Fq) and B is the
upper triangular matrices.
X = G/B is the set of complete flags in F3

q, i.e.,

{V1 ⊂ V2}

and
dimVi = i .
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The idea
Example
Example of the example

Projective perspective

In the projective space FqP
2, the flags are just a chosen point

lying on a chosen line.
The vertices of our Dynkin diagram represent “figures” and the
edges represent “incidence relations”.

• •

point line
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The idea
Example
Example of the example

The Coxeter group

The Coxeter group of A2 has two generators:

The elements of this group correspond to the possible incidence
relations between pairs of flags.
The multiplication in our groupoidified Hecke algebra will be a
deformed version of this multiplication.

P2 = (q − 1)P + q1 L2 = (q − 1)L + q1
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Groupoidified multiplication

(X×X×X )//G

(X×X )//G × (X×X )//G (X×X )//G

(p1,p2)×(p2,p3)

||yyyyyyyyyyyyyy

(p1,p3)

""EEEEEEEEEEEEEE

The product of incidence relations will be a linear combination of
incidence relations.
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Example
Example of the example

There is one nice span from G/B to G/B for each dot in our
Dynkin diagram:

P

}}{{
{{

{{
{{

!!CC
CC

CC
CC

L

}}||
||

||
||

!!CC
CC

CC
CC

G/B G/B G/B G/B

where
P = {((p, l), (p′, l)) | p 6= p′}

and
L = {((p, l), (p, l ′)) | l 6= l ′}
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Groupoidified Hecke relations

Theorem

PLP ' LPL

Theorem

P2 ' (q − 1)P + q1

and
L2 ∼= (q − 1)L + q1
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