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Goal

We’ll describe a (weak) 2-functor

Λ : Span(Gpd)→2Vect

where Span(Gpd) is a 2-category of spans of groupoids

and 2Vect is the 2-category of Kapranov-Voevodsky 2-
vector spaces:

This is analogous to the operation of degroupoidifica-

tion, which in turn generalizes the obvious way to get
vector spaces and linear maps from spans of sets:

by “pulling and pushing” complex functions through the
span. (This construction is ubiquitous!)
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Span(Gpd)

This bicategory has:
• Objects - Groupoids
• Morphisms - Spans:
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• 2-Morphisms: Isomorphism classes of spans of

span maps. A span map f between two spans consists
of a compatible map of the central objects:
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This bicategory has monoidal structure, and duals for
morphisms and 2-morphisms.
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2-Vector Spaces

The 2-category 2Vect has:
• objects : 2-vector spaces
• morphisms : 2-linear maps
• 2-morphisms : natural transformations

Definition: A Kapranov–Voevodsky 2-vector
space is a C-linear finitely semisimple additive category
(one generated by simple objects x, where hom(x, x) ∼=C). A 2-linear map between 2-vector spaces is a C-
linear additive functor.
Theorem:Any 2-vector spaces is equivalent to Vectk

(objects k-tuples of vector spaces, morphisms k-tuples of
linear maps) for some k.

Any 2-linear map T : Vectn →Vectm is naturally iso-
morphic to a map of the form





V1,1 . . . V1,k
... ...

Vl,1 . . . Vl,k








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

 =


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

⊕k
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i=1 Vl,i ⊗ Wi







Any natural transformation can be written as a matrix
of linear maps between the components.
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Example

Given a finite group G, the category Rep(G) has:
• Objects: Representations of G

• Morphisms: Intertwining operators between reps

Theorem:For any finite group G, Rep(G) is a 2-
vector space

Any representation is a direct sum of irreducible reps -
these form a basis for the 2-vector space.

By Schur’s Lemma, if Vj is irreducible,

hom(Vj, Vj) ∼= C · 1

so these are indeed simple objects
We can make a similar construction for groupoids as for

groups. Taking a group G as a one-object groupoid:

Rep(G) ∼= [G,Vect]

where we use the notation [X,Vect] = hom(X,Vect).
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Lemma 1 If X is an essentially finite groupoid, the

functor category Λ(X) = [X,Vect] is a KV 2-vector

space.

Here is an illustration of a Vect-valued functor on X:

Note: If the automorphism groups of (isomorphism classes
of) objects of X are G1, . . . , Gn, then we have

[X,Vect] ∼=
∏

j

Rep(Gj)

So the “basis elements” (simple objects) in [X,Vect]
are labeled by ([x], V ), where [x] is an isomorphism class
of objects of X and V an irreducible rep of Aut(x).
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Theorem:If X and Y are essentially finite groupoids,
a functor f : X→Y gives two 2-linear maps between the
2-vector spaces of Vect-presheaves:

f∗ : Λ(Y)→Λ(X)

namely pullback along f , with f∗F = F ◦ f and

f∗ : Λ(X)→Λ(Y)

called “pushforward along f”. Furthermore, f∗ is the
two-sided (and 2-linear ) adjoint to f∗.

The adjoint map

f∗ : [X,Vect]→[Y,Vect]

gives the induced representation.
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Given a group homomorphism h : G→H , and a rep-
resentation R : G→GL(V ), there is an induced repre-
sentation of H , namely C[H ] ⊗C[G] V :

For a map of groupoids t : X →B, we can push forward
a Vect-presheaf in the same way. If more than one object
is sent to the same b ∈ B, we get a direct sum of all their
contributions. Assuming all groupoids are skeletal, this
is:

t∗(F )(b) =
⊕

t(x)=b

C[Aut(b)] ⊗C[Aut(x)] F (x)

This is a direct sum over the (essential) preimage of
b ∈ B.
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V : 2-Linear Maps for Spans

Given a span of groupoids:
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we can apply the functor [−,Vect] to the whole diagram.
This functor is contravariant, so we get a cospan:

[X,Vect]

Λ(A)

s∗
88pppppppppp

Λ(B)

t∗
ffNNNNNNNNNNN

Then we use these to define a 2-linear map correspond-
ing to a span:
Definition: For a span of groupoids X : A→B in

Span(Gpd) define the 2-linear map:

Λ(X) = t∗ ◦ s∗ : Λ(A) −→ Λ(B)
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So then:

Λ(X)(F )(b) =
⊕

t(x)=b

C[Aut(b)] ⊗C[Aut(x)] (F ◦ s)(x)

Picking basis elements ([a], V ) ∈ Λ(A), and ([b],W ) ∈
Λ(B), and using that

C[G] ∼=
⊕

i

Vi ⊗ V ∗
i

where the sum is over irreps of G, Schur’s lemma means
that

Λ(X)([a],V ),([b],W ) = homRep(Aut(b))[t∗ ◦ s∗(V ),W ]

≃
⊕

[x]∈(s,t)−1([a],[b])

homRep(Aut(x))[s
∗(V ), t∗(W )]

by adjointness (a.k.a. Frobenius reciprocity).
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V : 2-Morphisms

Given a span between spans, Y : X1 →X2 for X1, X2 :
A→B:
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we want a natural transformation

Λ(Y ) : Λ(X1)→Λ(X2)

We saw that Λ(Y ) is given as a matrix of linear operators
between corresponding entries of Λ(X1) and Λ(X2):

Λ(Y )[([a],V ),([b],W )] : Λ(X1)[([a],V ),([b],W )]→Λ(X2)[([a],V ),([b],W )]
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This amounts to:

Λ(Y )[([a],V ),([b],W )] :
⊕

[x1]

homRep(Aut(x))[s
∗
1(V ), t∗2(W )]

→
⊕

[x2]

homRep(Aut(x2))[s
∗
2(V ), t∗2(W )]

such that for each block ([x1], [x2]), the corresponding
linear operator behaves as follows: for any intertwiner
f ∈ hom[s∗1(V ), t∗1(W )] we get:

Λ(Y )[([a],V ),([b],W )]|([x1],[x2]) =
| ̂(x1, x2)|

|Aut(x2)|

∑

g∈Aut(x2)

gfg1

where we are using the Baez-Dolan groupoid cardinality

of ̂(x1, x2), the essential preimage of (x1, x2) under (s, t).
Given all this, the main fact is:
Theorem:The process Λ : Span(Gpd)→2Vect is a

weak 2-functor.
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Extension to Smooth Groupoids

What is different for smooth groupoids? First, the 2-
vector space is generally infinite dimensional. There are
different possible approaches to defining infinite-dimensional
2-vector spaces. One would involve:
Definition:If (X,µ) is a measurable space Meas(X)

is the category with:

• Objects: measurable fields of Hilbert spaces on (X,M):
i.e. X-indexed families of Hilbert spaces Hx with a
Hilbert space of measurable sections

• Morphisms: measurable fields of bounded linear maps

between Hilbert spaces, fx : Hx →Kx so that ||f ||
(the operator norm of f) is measurable.

Then Meas is the 2-category of all categories Meas(X),
and we could look for a 2-functor

Λ : Span(Gpd)→Meas

(Another variant would involve defining a 2-category
of 2-Hilbert spaces - which are built on measure spaces,
rather than measurable spaces - using a measure µ to
define an inner product as with ordinary L2(X). Work

in progress.)
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What changes are needed in the infinite dimensional
case?

The category of measurable functors H : G→Meas
amounts to a category of equivariant measurable fields
of Hilbert spaces on the objects (so each Hx carries a
representation of Aut(x).
• For a span S : G→G′, there will be a 2-linear map

given by a direct integral :

(Λ(S)(H))y =

∫ ⊕

HxS([x],V ),([y],W )dµ

Where the S([x],V ),([y],W ) are defined similarly to the
above.

Generally:
• Finite product of Rep(Aut(xi)) 7→ MeasG(G(0))
• Direct sum 7→ direct integral
• Counting measure 7→ measure on object space
• Groupoid cardinality 7→ volume of groupoid (requires
measure and Haar system)

The algebraic part of the construction is the same...
(We leave the rest as an exercise to the speaker.)
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