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There is a systematic process (first described by James Dolan)
called Degroupoidification which turns:

Groupoids =⇒ Vector Spaces

“Spans” of Groupoids =⇒ Linear Operators

Groupoidification is an attempt to reverse this process. As with
any categorification process, this “reverse” direction is not
systematic.
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Why groupoids and “spans” of groupoids?

We use groupoids because they give us a way of categorifying
the positive real numbers.

We use “spans” because the give us a way to describe the
matrix of a linear operator.
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A little bit of category theory.

There are actually two categories we are working in:

Grpd- the category of groupoids as objects and functors as
morphisms

Span- the category of groupoids as objects and ‘spans’ of
groupoids as morphisms
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What is a span?

Definition

Given groupoids X and Y , a span from X to Y is defined as

S
q
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where S is another groupoid and p : S → X and q : S → Y are
functors
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We can compose two spans using the “weak pullback” over the
matching legs of the spans.

Definition

Given two functors f : S → Y and g : T → Y , we define the weak
pullback as:
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where TS is the groupoid whose objects are triples (s, t, α) where
α : f (s)→ g(t).
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Where do the positive real numbers come from?

Definition

Given a groupoid X , we define the cardinality of X to be:

|X | =
∑
[x]

1

|Aut x |

where x ranges over all isomorphism classes in X

When this sum converges, we call the groupoid tame, and we can
obtain any positive real number. This gives us access to a field to
define a vector space over.
Example - Let E be the groupoid of finite sets and bijections.
Then:

|E | =
∑
n

1

|Sn|
=

∑
n

1

n!
= e
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Definition

Given a groupoid X we define the degroupoidification of X as
RX , where X is the set of isomorphism classes in X .

In order to produce a single vector (function) in RX , we consider a
groupoid over X , p : Ψ→ X . We say Ψ is tame if p−1(x) is tame
for all x , where p−1(x) is the essential preimage of x . We then
define the function:

Ψ˜([x ]) = |p−1(x)|

Example - Again, consider E . Since E ∼= N, RE ∼= R[[x ]].
Also E is a tame groupoid over itself with the identity functor.
E˜([n]) = 1

n!
E˜ = ex .
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We now produce a linear operator out of a span of groupoids.

Definition

Given a tame span of groupoids

S
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the linear operator S˜ : RX → RY is given by S˜Ψ˜ = SΨ˜ , where Ψ is
a groupoid over X , v : Ψ→ X , and SΨ is the weak pullback:
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Considering the definition of weak pullback, we get a nice formula
for the matrix entries of S˜:

S[x][y ] =
∑

[s]∈p−1(x)
⋂

q−1(y)

|Aut x |
|Aut s|
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Addition We can add vectors and operators as follows:

Proposition

Give two groupoids Φ and Ψ over X , the disjoint union Φ + Ψ
forms a groupoid over X , and

Φ + Ψ
˜

= Φ˜ + Ψ˜
Proposition

Give two spans:

S
qS

����
��
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�

pS

��?
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T
qT

~~~~
~~

~~
~ pT

  @
@@

@@
@@

Y X Y X

the disjoint union S + T forms a span from X to Y , and

S + T
˜

= S˜ + T˜
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Scalar Multiplication We can multiply both vectors and linear
operators by scalars as follows:

Proposition

Given a groupoid Λ and a groupoid Φ over X , the groupoid Λ× Φ
over X satisfies

Λ× Φ
˜

= |Λ|Φ˜.
Proposition

Given a groupoid Λ and a span

S

����
��

��
�

��?
??

??
??

Y X

then
Λ× S
˜

= |Λ|S˜.
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We also have a concept of inner product, which turns our vector
space into a Hilbert space.

Definition

Given groupoids Φ and Ψ over X , we define the inner product
〈Φ,Ψ〉 to be this weak pullback:

〈Φ,Ψ〉

||yy
yy

yy
yy

y

""E
EE

EE
EE

EE

Φ

##F
FFFFFFFF Ψ

{{wwwwwwwww

X
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This definition holds to the standard properties of inner products.

Proposition

Given a groupoid Λ and groupoids Φ, Ψ, and Ψ′ over X , the
following properties hold:

〈Φ,Ψ〉 ' 〈Ψ,Φ〉.

〈Φ,Ψ + Ψ′〉 ' 〈Φ,Ψ〉+ 〈Φ,Ψ′〉.

〈Φ,Λ×Ψ〉 ' Λ× 〈Φ,Ψ〉.
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Definition

A groupoid Φ over X is called square-integrable if 〈Φ,Φ〉 is tame.
We define L2(X ) to be the subspace of RX consisting of finite real
linear combinations of vectors Φ˜ where Φ is square-integrable.

We then produce our Hilbert space.

Proposition

L2(X ) forms a Hilbert space with the inner product
〈Ψ˜ ,Φ˜〉 = |〈Ψ,Φ〉|.
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Examples

Hecke Algebras and Hecke Operators (Alex Hoffnung)

Quantum Harmonic Oscillators (Jeffrey Morton)

Jordan-Schwinger Representations

Quiver Representations and Hall Algebras
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