Groupoidified Linear Algebra

Christopher D. Walker
(Joint work with John Baez and James Dolan)

Department of Mathematics
University of California, Riverside

November 22, 2008
There is a systematic process (first described by James Dolan) called Degroupoidification which turns:

Groupoids \Rightarrow Vector Spaces

"Spans" of Groupoids \Rightarrow Linear Operators

Groupoidification is an attempt to reverse this process. As with any categorification process, this "reverse" direction is not systematic.
There is a systematic process (first described by James Dolan) called **Degroupoidification** which turns:

- Groupoids \Rightarrow Vector Spaces

Groupoidification is an attempt to reverse this process. As with any categorification process, this "reverse" direction is not systematic.

Joint work with John Baez and James Dolan
There is a systematic process (first described by James Dolan) called **Degroupoidification** which turns:

- Groupoids \implies Vector Spaces
- “Spans” of Groupoids \implies Linear Operators
There is a systematic process (first described by James Dolan) called **Degroupoidification** which turns:

- Groupoids \Rightarrow Vector Spaces
- “Spans” of Groupoids \Rightarrow Linear Operators

Groupoidification is an attempt to reverse this process. As with any categorification process, this “reverse” direction is not systematic.
Why groupoids and “spans” of groupoids?
Why groupoids and “spans” of groupoids?

- We use groupoids because they give us a way of categorifying the positive real numbers.
Why groupoids and “spans” of groupoids?

- We use groupoids because they give us a way of categorifying the positive real numbers.
- We use “spans” because they give us a way to describe the matrix of a linear operator.
A little bit of category theory.
A little bit of category theory.
There are actually two categories we are working in:
A little bit of category theory.

There are actually two categories we are working in:

- **Grpd** - the category of groupoids as objects and functors as morphisms

Joint work with John Baez and James Dolan

Groupoidified Linear Algebra
A little bit of category theory.
There are actually two categories we are working in:

- **Grpd** - the category of groupoids as objects and functors as morphisms
- **Span** - the category of groupoids as objects and ‘spans’ of groupoids as morphisms
What is a span?
What is a span?

Definition

Given groupoids X and Y, a **span** from X to Y is defined as

```
\begin{tikzpicture}
  \node (S) at (0,0) {$S$};
  \node (X) at (1,0) {$X$};
  \node (Y) at (-1,0) {$Y$};
  \draw[->] (S) to node {$q$} (Y);
  \draw[->] (S) to node {$p$} (X);
\end{tikzpicture}
```

where S is another groupoid and $p : S \to X$ and $q : S \to Y$ are functors.

Joint work with John Baez and James Dolan

Groupoidified Linear Algebra
We can compose two spans using the “weak pullback” over the matching legs of the spans.
We can compose two spans using the “weak pullback” over the matching legs of the spans.

Definition

Given two functors $f: S \rightarrow Y$ and $g: T \rightarrow Y$, we define the weak pullback as:

$$
\begin{array}{c}
\pi_T \\
\downarrow & & \downarrow \\
T & & \Downarrow g \\
\downarrow & & \downarrow \\
TS & & S \\
\downarrow & & \Downarrow f \\
\pi_T \\
\end{array}
$$

where TS is the groupoid whose objects are triples (s, t, α) where $\alpha: f(s) \rightarrow g(t)$.

Joint work with John Baez and James Dolan

Groupoidified Linear Algebra
Where do the positive real numbers come from?

Definition
Given a groupoid X, we define the cardinality of X to be:

$$|X| = \sum [x] \cdot |\text{Aut}_x|$$

where x ranges over all isomorphism classes in X.

When this sum converges, we call the groupoid tame, and we can obtain any positive real number. This gives us access to a field to define a vector space over.

Example - Let E be the groupoid of finite sets and bijections. Then:

$$|E| = \sum n \cdot |S_n| = \sum n \cdot n! = e$$
Where do the positive real numbers come from?

Definition

Given a groupoid X, we define the **cardinality** of X to be:

$$|X| = \sum_{[x]} \frac{1}{|\text{Aut } x|}$$

where x ranges over all isomorphism classes in X.

Joint work with John Baez and James Dolan

Groupoidified Linear Algebra
Where do the positive real numbers come from?

Definition

Given a groupoid X, we define the **cardinality** of X to be:

$$|X| = \sum_{[x]} \frac{1}{|\text{Aut } x|}$$

where x ranges over all isomorphism classes in X

When this sum converges, we call the groupoid **tame**, and we can obtain any positive real number. This gives us access to a field to define a vector space over.
Where do the positive real numbers come from?

Definition

Given a groupoid X, we define the **cardinality** of X to be:

$$|X| = \sum_{[x]} \frac{1}{|\text{Aut } x|}$$

where x ranges over all isomorphism classes in X

When this sum converges, we call the groupoid **tame**, and we can obtain any positive real number. This gives us access to a field to define a vector space over.

Example - Let E be the groupoid of finite sets and bijections.

Then:
Where do the positive real numbers come from?

Definition

Given a groupoid X, we define the **cardinality** of X to be:

$$|X| = \sum_{[x]} \frac{1}{|\text{Aut } x|}$$

where x ranges over all isomorphism classes in X

When this sum converges, we call the groupoid **tame**, and we can obtain any positive real number. This gives us access to a field to define a vector space over.

Example - Let E be the groupoid of finite sets and bijections. Then:

$$|E|$$

Joint work with John Baez and James Dolan

Groupoidified Linear Algebra
Where do the positive real numbers come from?

Definition

Given a groupoid X, we define the **cardinality** of X to be:

$$|X| = \sum_{[x]} \frac{1}{|\text{Aut } x|}$$

where x ranges over all isomorphism classes in X

When this sum converges, we call the groupoid **tame**, and we can obtain any positive real number. This gives us access to a field to define a vector space over.

Example - Let E be the groupoid of finite sets and bijections. Then:

$$|E| = \sum_{n} \frac{1}{|S_n|}$$
Where do the positive real numbers come from?

Definition

Given a groupoid X, we define the **cardinality** of X to be:

$$|X| = \sum_{[x]} 1/|\text{Aut } x|$$

where x ranges over all isomorphism classes in X

When this sum converges, we call the groupoid **tame**, and we can obtain any positive real number. This gives us access to a field to define a vector space over.

Example - Let E be the groupoid of finite sets and bijections. Then:

$$|E| = \sum_n 1/|S_n| = \sum_n 1/n! = e$$

Joint work with John Baez and James Dolan

Groupoidified Linear Algebra
Definition

Given a groupoid \(X \) we define the **degroupoidification** of \(X \) as \(\mathbb{R}^X \), where \(X \) is the set of isomorphism classes in \(X \).
Definition

Given a groupoid X we define the **degroupoidification** of X as \mathbb{R}^X, where X is the set of isomorphism classes in X.

In order to produce a single vector (function) in \mathbb{R}^X, we consider a groupoid over X, $p : \Psi \rightarrow X$. We say Ψ is **tame** if $p^{-1}(x)$ is tame for all x, where $p^{-1}(x)$ is the essential preimage of x. We then define the function:

$$\Psi([x]) = |p^{-1}(x)|$$

Example - Again, consider E. Since $E \sim = \mathbb{N}$, $\mathbb{R}^E \sim = \mathbb{R}^{[\mathbb{N}]}$. Also E is a tame groupoid over itself with the identity functor.

Joint work with John Baez and James Dolan
Definition

Given a groupoid X we define the **degroupoidification** of X as \mathbb{R}^X, where X is the set of isomorphism classes in X.

In order to produce a single vector (function) in \mathbb{R}^X, we consider a groupoid over X, $p : \Psi \to X$. We say Ψ is **tame** if $p^{-1}(x)$ is tame for all x, where $p^{-1}(x)$ is the essential preimage of x. We then define the function:

$$\Psi([x]) = |p^{-1}(x)|$$

Example - Again, consider E. Since $E \cong \mathbb{N}$, $\mathbb{R}^E \cong \mathbb{R}[[x]]$.

Joint work with John Baez and James Dolan

Groupoidified Linear Algebra
Definition
Given a groupoid X we define the **degroupoidification** of X as \mathbb{R}^X, where X is the set of isomorphism classes in X.

In order to produce a single vector (function) in \mathbb{R}^X, we consider a groupoid over X, $p : \Psi \to X$. We say Ψ is **tame** if $p^{-1}(x)$ is tame for all x, where $p^{-1}(x)$ is the essential preimage of x. We then define the function:

$$\Psi([x]) = |p^{-1}(x)|$$

Example - Again, consider E. Since $E \cong \mathbb{N}$, $\mathbb{R}^E \cong \mathbb{R}[[x]]$. Also E is a tame groupoid over itself with the identity functor.

Joint work with John Baez and James Dolan

Groupoidified Linear Algebra
Definition

Given a groupoid X we define the **degroupoidification** of X as \mathbb{R}^X, where X is the set of isomorphism classes in X.

In order to produce a single vector (function) in \mathbb{R}^X, we consider a groupoid over X, $p : \Psi \to X$. We say Ψ is **tame** if $p^{-1}(x)$ is tame for all x, where $p^{-1}(x)$ is the essential preimage of x. We then define the function:

$$\Psi([x]) = |p^{-1}(x)|$$

Example - Again, consider E. Since $E \cong \mathbb{N}$, $\mathbb{R}^E \cong \mathbb{R}[[x]]$. Also E is a tame groupoid over itself with the identity functor. $E([n]) = \frac{1}{n!}$
Given a groupoid X we define the **degroupoidification** of X as \mathbb{R}^X, where X is the set of isomorphism classes in X.

In order to produce a single vector (function) in \mathbb{R}^X, we consider a groupoid over X, $p : \Psi \to X$. We say Ψ is **tame** if $p^{-1}(x)$ is tame for all x, where $p^{-1}(x)$ is the essential preimage of x. We then define the function:

$$\Psi([x]) = |p^{-1}(x)|$$

Example - Again, consider E. Since $E \cong \mathbb{N}$, $\mathbb{R}^E \cong \mathbb{R}[[x]]$. Also E is a tame groupoid over itself with the identity functor.

$E([n]) = \frac{1}{n!}$
$E = e^x$.

Joint work with John Baez and James Dolan

Groupoidified Linear Algebra
We now produce a linear operator out of a span of groupoids.

Joint work with John Baez and James Dolan

Groupoidified Linear Algebra
We now produce a linear operator out of a span of groupoids.

Definition

Given a tame span of groupoids

\[
\begin{array}{c}
S \\
q \\
Y \quad X
\end{array}
\]

the linear operator \(S : \mathbb{R}^X \to \mathbb{R}^Y \) is given by \(\widetilde{S}\Psi = \widetilde{S}\Psi \), where \(\Psi \) is a groupoid over \(X \), \(\nu : \Psi \to X \), and \(\widetilde{S}\Psi \) is the weak pullback:

\[
\begin{array}{c}
\Psi \\
\pi_S \\
\downarrow \quad \downarrow \\
S \\
\downarrow \quad \downarrow \\
Y \quad X
\end{array}
\]
Considering the definition of weak pullback, we get a nice formula for the matrix entries of \mathcal{S}:
Considering the definition of weak pullback, we get a nice formula for the matrix entries of \tilde{S}:

$$S_{[x][y]} = \sum_{[s] \in p^{-1}(x) \cap q^{-1}(y)} \frac{|\text{Aut } x|}{|\text{Aut } s|}$$
Addition We can add vectors and operators as follows:
Addition We can add vectors and operators as follows:

Proposition

Give two groupoids Φ and Ψ over X, the disjoint union Φ + Ψ forms a groupoid over X, and

\[\Phi + \Psi = \Phi + \Psi \]
Addition We can add vectors and operators as follows:

Proposition

Give two groupoids Φ and Ψ over X, the disjoint union $\Phi + \Psi$ forms a groupoid over X, and

\[
\Phi + \Psi = \Phi + \Psi
\]

Proposition

Give two spans:

\[
\begin{array}{ccc}
S & \xrightarrow{q_S} & Y \\
\quad & p_S & \quad \\
\downarrow & & \downarrow \\
X & \xrightarrow{q_T} & Y \\
\quad & p_T & \quad \\
\downarrow & & \downarrow \\
Y & \xrightarrow{p_T} & X
\end{array}
\]

the disjoint union $S + T$ forms a span from X to Y, and

\[
S + T = \tilde{S} + \tilde{T}
\]

Joint work with John Baez and James Dolan
Groupoidified Linear Algebra
Scalar Multiplication We can multiply both vectors and linear operators by scalars as follows:
Scalar Multiplication We can multiply both vectors and linear operators by scalars as follows:

Proposition

Given a groupoid Λ and a groupoid Φ over X, the groupoid $\Lambda \times \Phi$ over X satisfies

$$\Lambda \times \Phi = |\Lambda| \Phi.$$
Scalar Multiplication We can multiply both vectors and linear operators by scalars as follows:

Proposition

Given a groupoid \(\Lambda \) and a groupoid \(\Phi \) over \(X \), the groupoid \(\Lambda \times \Phi \) over \(X \) satisfies

\[
\Lambda \times \Phi = |\Lambda|\Phi.
\]

Proposition

Given a groupoid \(\Lambda \) and a span

\[
\begin{array}{ccc}
S & \rightarrow & Y \\
\downarrow & & \downarrow \\
& \Lambda \times S & \rightarrow \ X
\end{array}
\]

then

\[
\Lambda \times S = |\Lambda|S.
\]
We also have a concept of inner product, which turns our vector space into a Hilbert space.
We also have a concept of inner product, which turns our vector space into a Hilbert space.

Definition

*Given groupoids Φ and Ψ over X, we define the **inner product** $\langle \Phi, \Psi \rangle$ to be this weak pullback:*

\[
\begin{array}{c}
\Phi \\
\downarrow \\
\langle \Phi, \Psi \rangle \\
\downarrow \\
X
\end{array} \quad \begin{array}{c}
\Psi \\
\downarrow \\
\langle \Phi, \Psi \rangle \\
\downarrow \\
X
\end{array}
\]

Joint work with John Baez and James Dolan

Groupoidified Linear Algebra
This definition holds to the standard properties of inner products.
This definition holds to the standard properties of inner products.

Proposition

Given a groupoid \(\Lambda \) and groupoids \(\Phi, \Psi, \) and \(\Psi' \) over \(X \), the following properties hold:

- \(\langle \Phi, \Psi \rangle \simeq \langle \Psi, \Phi \rangle. \)
- \(\langle \Phi, \Psi + \Psi' \rangle \simeq \langle \Phi, \Psi \rangle + \langle \Phi, \Psi' \rangle. \)
- \(\langle \Phi, \Lambda \times \Psi \rangle \simeq \Lambda \times \langle \Phi, \Psi \rangle. \)
Definition

A groupoid Φ over X is called **square-integrable** if $\langle \Phi, \Phi \rangle$ is tame. We define $L^2(X)$ to be the subspace of \mathbb{R}^X consisting of finite real linear combinations of vectors Φ where Φ is square-integrable.
Definition

A groupoid Φ over X is called **square-integrable** if $\langle \Phi, \Phi \rangle$ is tame. We define $L^2(X)$ to be the subspace of \mathbb{R}^X consisting of finite real linear combinations of vectors Φ where Φ is square-integrable.

We then produce our Hilbert space.

Proposition

$L^2(X)$ forms a Hilbert space with the inner product $\langle \psi, \Phi \rangle = |\langle \psi, \Phi \rangle|$.
Examples
Examples

- Hecke Algebras and Hecke Operators (Alex Hoffnung)
Examples

- Hecke Algebras and Hecke Operators (Alex Hoffnung)
- Quantum Harmonic Oscillators (Jeffrey Morton)
Examples

- Hecke Algebras and Hecke Operators (Alex Hoffnung)
- Quantum Harmonic Oscillators (Jeffrey Morton)
- Jordan-Schwinger Representations
Examples

- Hecke Algebras and Hecke Operators (Alex Hoffnung)
- Quantum Harmonic Oscillators (Jeffrey Morton)
- Jordan-Schwinger Representations
- Quiver Representations and Hall Algebras