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“Categorification” is the process of finding category-theoretic
analogs to things in set theory.

Set Theory Category Theory

elements objects

equations between elements isomorphisms between objects

sets categories

functions functors

equations between functions natural isomorphisms between functors

Many algebraic structures have been successfully categorified.
However, quantum groups have been particularly hard to deal with.
We are attempting to solve this by a new categorification process.
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Groupoidification

There is a systematic process (first described by James Dolan and
Todd Trimble) called Degroupoidification which turns:

Groupoids =⇒ Vector Spaces

“Spans” of Groupoids =⇒ Linear Operators

Groupoidification is an attempt to reverse this process. As with
any categorification process, this “reverse” direction is not
systematic.
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Why groupoids and “spans” of groupoids?

We use groupoids because they give us a way of categorifying
vector spaces over real numbers.

Definition

Given a groupoid X we define the degroupoidification of X as
R[X ], where X is the set of isomorphism classes in X .
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Why groupoids and “spans” of groupoids?

We use groupoids because they give us a way of categorifying
vector spaces over real numbers.

Definition

Given a groupoid X we define the degroupoidification of X as
R[X ], where X is the set of isomorphism classes in X .

We use “spans” because they give us a way to describe the
matrix of a linear operator.
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Definition

Given groupoids X and Y , a span from X to Y is defined as

S
q
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�

p

��
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??

?

Y X

where S is another groupoid and p : S → X and q : S → Y are
functors

A span is a way of describing ‘how many’ ways an element of one
leg of the span is related to an element of the other leg of the span.
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Definition

Given groupoids X and Y , a span from X to Y is defined as

S
q
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Y X

where S is another groupoid and p : S → X and q : S → Y are
functors

A span is a way of describing ‘how many’ ways an element of one
leg of the span is related to an element of the other leg of the span.
Pictorially, this would look like:
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XY

S

Formulaically we can describe the linear operator in terms of its
matrix entries:

S
˜[x ][y ] =

∑

[s]∈p−1(x)
⋂

q−1(y)

#Aut(y)

#Aut(s)
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Some more details

Positive real numbers come from the cardinality of a groupoid.

Definition

Given a groupoid X , we define the cardinality of X to be:

|X | =
∑

[x ]

1

#Aut(x)

where x ranges of all isomorphism classes in X .
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Some more details

Positive real numbers come from the cardinality of a groupoid.

Definition

Given a groupoid X , we define the cardinality of X to be:

|X | =
∑

[x ]

1

#Aut(x)

where x ranges of all isomorphism classes in X .

When this sum converges, we call the groupoid tame.
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Some examples of groupoid cardinality:

The groupoid E of finite sets and bijections.

|E | =
∑

[x ]

1

|Aut x |
=

∑

n

1

|Sn|
=

∑

n

1

n!
= e
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Some examples of groupoid cardinality:

The groupoid E of finite sets and bijections.

|E | =
∑

[x ]

1

|Aut x |
=

∑

n

1

|Sn|
=

∑

n

1

n!
= e

Consider the weak quotient groupoid S//G for a finite group
G acting on a finite set S .
As a groupoid, the objects are elements of S , and the
morphisms are of the form (g , s) : s → gs.
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Some examples of groupoid cardinality:

The groupoid E of finite sets and bijections.

|E | =
∑

[x ]

1

|Aut x |
=

∑

n

1

|Sn|
=

∑

n

1

n!
= e

Consider the weak quotient groupoid S//G for a finite group
G acting on a finite set S .
As a groupoid, the objects are elements of S , and the
morphisms are of the form (g , s) : s → gs.

|S//G | =
#S

#G
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We can also produce a single vector (function) in R[X ]. Consider a
groupoid over X , p : Ψ → X .
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groupoid over X , p : Ψ → X .

Define the essential preimage p−1(x) to be the full
subgroupoid of Ψ containing all objects which map into the
isomorphism class of x .
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We can also produce a single vector (function) in R[X ]. Consider a
groupoid over X , p : Ψ → X .

Define the essential preimage p−1(x) to be the full
subgroupoid of Ψ containing all objects which map into the
isomorphism class of x .

We say Ψ is tame if p−1(x) is tame for all x . We then define
the function:

Ψ
˜
([x ]) = #Aut(x)|p−1(x)|

The multiplication by #Aut(x) is simply a choice of
convention (specifically the one which is appropriate for Hall
algebras).
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In the category of groupoids and spans, we can compose two spans
using the “weak pullback” over the matching legs of the spans.

Definition

Given two functors f : S → Y and g : T → Y , we define the weak

pullback as:

TS
πT

}}||
||

||
|| πS

  B
BB

BB
BB

B

T
g

!!B
BB

BB
BB

B S
f

~~||
||

||
||

Y

where TS is the groupoid whose objects are triples (s, t, α) where
α : f (s) → g(t).
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In the category of groupoids and spans, we can compose two spans
using the “weak pullback” over the matching legs of the spans.

Definition

Given two functors f : S → Y and g : T → Y , we define the weak

pullback as:

TS
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g

!!B
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BB
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B S
f

~~||
||

||
||

Y

where TS is the groupoid whose objects are triples (s, t, α) where
α : f (s) → g(t).

With this we have another description of the linear operator
obtained from a span.
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Definition

Given a span of groupoids

S
q

����
��

��
�

p

��
??

??
??

?

Y X

the linear operator S
˜

: R[X ] → R[Y ] is given by S
˜
Ψ
˜

= SΨ
˜

where
Ψ is a groupoid over X , v : Ψ → X , and SΨ is the weak pullback:

SΨ
πS

~~||
||

||
|| πΨ

!!B
BB

BB
BB

B

S
q
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BB
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B Ψ
v

}}||
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Y X
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Considering the definition of weak pullback, we get the previously
mentioned formula for the matrix entries of S

˜
.

S
˜[x ][y ] =

∑

[s]∈p−1(x)
⋂

q−1(y)

#Aut(y)

#Aut(s)
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Considering the definition of weak pullback, we get the previously
mentioned formula for the matrix entries of S

˜
.

S
˜[x ][y ] =

∑

[s]∈p−1(x)
⋂

q−1(y)

#Aut(y)

#Aut(s)

This can be rewritten using groupoid cardinality as follows:

S
˜[x ][y ] = #Aut(y) |(p × q)−1(x , y)|.

This version will be useful later with our example.

Christopher D. Walker A Categorification of Hall Algebras



Groupoidification
Hall Algebras

Hall Algebras

Christopher D. Walker A Categorification of Hall Algebras



Groupoidification
Hall Algebras

Hall Algebras

1901 - E. Steinitz briefly described the idea of producing an
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1901 - E. Steinitz briefly described the idea of producing an
algebra from isomorphism classes of finite abelian p-groups.

1959 - Phillip Hall rediscovered the idea, but also only gave a
brief description.
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1901 - E. Steinitz briefly described the idea of producing an
algebra from isomorphism classes of finite abelian p-groups.

1959 - Phillip Hall rediscovered the idea, but also only gave a
brief description.

1990 - Claude Ringel formalized the construction for certain
abelian categories, and described the isomorphism of this
algebra with (a piece of) a quantum group.
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Hall Algebras

1901 - E. Steinitz briefly described the idea of producing an
algebra from isomorphism classes of finite abelian p-groups.

1959 - Phillip Hall rediscovered the idea, but also only gave a
brief description.

1990 - Claude Ringel formalized the construction for certain
abelian categories, and described the isomorphism of this
algebra with (a piece of) a quantum group.

The application of groupoidification to Hall algebras is very
natural, since Hall algebras are constructed out of
isomorphism classes of objects.
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Let Q be a quiver (i.e. a directed graph).

• // • •oo
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The Algebraic Construction

We first describe the category of interest.

Let Q be a quiver (i.e. a directed graph).

• // • •oo

A representation of Q assigns to each vertex a vector space
and to each arrow a linear operator.

V1
f // V2 V3

g
oo
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The Algebraic Construction

We first describe the category of interest.

Let Q be a quiver (i.e. a directed graph).

• // • •oo

A representation of Q assigns to each vertex a vector space
and to each arrow a linear operator.

V1
f // V2 V3

g
oo

Define Rep(Q) to be the category of finite dimensional
representations of Q over a finite field Fq.
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From the category Rep(Q), we construct the Hall algebra H(Q) as
follows:

The underlying vector space of H(Q) has a basis given by
isomorphism classes of representations of Q over Fq, labelled
as uM .
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From the category Rep(Q), we construct the Hall algebra H(Q) as
follows:

The underlying vector space of H(Q) has a basis given by
isomorphism classes of representations of Q over Fq, labelled
as uM .

For three representations M, N, and E , define the set:

PE
MN = {(f , g) | 0 → N

f
→ E

g
→ M → 0 is exact}
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From the category Rep(Q), we construct the Hall algebra H(Q) as
follows:

The underlying vector space of H(Q) has a basis given by
isomorphism classes of representations of Q over Fq, labelled
as uM .

For three representations M, N, and E , define the set:

PE
MN = {(f , g) | 0 → N

f
→ E

g
→ M → 0 is exact}

We then define an associative multiplication on H(Q) by:

uM · uN =
∑

E

#PE
MN

#Aut(M)#Aut(N)
uE
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Isomorphism with Quantum Groups.

For any quiver Q, there is an underlying diagram given by ignoring
the orientation of the edges. There is a quantum group associated
to this diagram, namely Uq(g) where g is the Lie algebra associated
to the diagram. We will take a simple example to illustrate:
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Isomorphism with Quantum Groups.

For any quiver Q, there is an underlying diagram given by ignoring
the orientation of the edges. There is a quantum group associated
to this diagram, namely Uq(g) where g is the Lie algebra associated
to the diagram. We will take a simple example to illustrate:
Example - Consider the A2 quiver:

• // •

The Lie algebra associated to A2 is sl(3). We can describe the
quantum group Uq(sl(3)) in terms of generators and relations.
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Generators: {Ei ,Fi ,Ki ,K
−1
i } for i = 1, 2. Relations:

KiK
−1
i = 1

KiEiK
−1
i = q2Ei KiFiK

−1
i = q−2Fi

[Ei ,Fj ] = δij

Ki − K−1
i

q − q−1

E 2
i Ej − (q + 1)EiEjEi + EjE

2
i = 0 i 6= j

F 2
i Fj − (q + 1)FiFjFi + FjF

2
i = 0 i 6= j

These last two are called the Serre relations.
Note - We are using the asymmetric q-integers (i.e. [2]q = q + 1).
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Generators: {Ei ,Fi ,Ki ,K
−1
i } for i = 1, 2. Relations:

KiK
−1
i = 1

KiEiK
−1
i = q2Ei KiFiK

−1
i = q−2Fi

[Ei ,Fj ] = δij

Ki − K−1
i

q − q−1

E 2
i Ej − (q + 1)EiEjEi + EjE

2
i = 0 i 6= j

F 2
i Fj − (q + 1)FiFjFi + FjF

2
i = 0 i 6= j

These last two are called the Serre relations.
Note - We are using the asymmetric q-integers (i.e. [2]q = q + 1).
We are interested in the subalgebra Uq(n

+) generated by {E1,E2}
and the two Serre relations between them.
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Now lets construct the Hall algebras associated to A2.
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Now lets construct the Hall algebras associated to A2.
By Gabriel’s Theorem, the category Rep(Q) has a finite number of
indecomposable representations, namely:

S1 = Fq
// 0

S2 = 0 // Fq

X = Fq
1 // Fq

Note: the first two are also irreducible.
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We will define a map from Uq(n
+) to H(Q) by:

Ei 7−→ Si
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We will define a map from Uq(n
+) to H(Q) by:

Ei 7−→ Si

Although the category Rep(Q) is not semisimple, it is at least
completely decomposable. This lets us extend linearly from this
map to all of H(Q) by addition in Uq(n

+).
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We will define a map from Uq(n
+) to H(Q) by:

Ei 7−→ Si

Although the category Rep(Q) is not semisimple, it is at least
completely decomposable. This lets us extend linearly from this
map to all of H(Q) by addition in Uq(n

+).
We would then like to show that the Serre relations hold in H(Q).

Christopher D. Walker A Categorification of Hall Algebras



Groupoidification
Hall Algebras

As an example, we will calculate the following product:
[S1] · [S2]
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As an example, we will calculate the following product:
[S1] · [S2]

We start by trying to find all isomorphism classes of
representations [E ] such that 0 → S2 → E → S1 → 0 is exact.
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As an example, we will calculate the following product:
[S1] · [S2]

We start by trying to find all isomorphism classes of
representations [E ] such that 0 → S2 → E → S1 → 0 is exact.

Since each vertex is a vector space, then dimension must be
equal to the sum of the dimensions from the corresponding
vertex of S1 and S2. this means E will be of the form
Fq

α
−→ Fq, where α ∈ Fq.
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As an example, we will calculate the following product:
[S1] · [S2]

We start by trying to find all isomorphism classes of
representations [E ] such that 0 → S2 → E → S1 → 0 is exact.

Since each vertex is a vector space, then dimension must be
equal to the sum of the dimensions from the corresponding
vertex of S1 and S2. this means E will be of the form
Fq

α
−→ Fq, where α ∈ Fq.

We then check what values of α will make this an extension of
S1 by S2.
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As an example, we will calculate the following product:
[S1] · [S2]

We start by trying to find all isomorphism classes of
representations [E ] such that 0 → S2 → E → S1 → 0 is exact.

Since each vertex is a vector space, then dimension must be
equal to the sum of the dimensions from the corresponding
vertex of S1 and S2. this means E will be of the form
Fq

α
−→ Fq, where α ∈ Fq.

We then check what values of α will make this an extension of
S1 by S2.

Next, we will calculate PE
S1S2

for each E .
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a few other results:
[S1] · [S2] = [S1 ⊕ S2] + [X ]
[S2] · [S1] = [S1 ⊕ S2]
[Si ] · [Si ] = (q + 1)[Si ⊕ Si ]
[S1] · [X ] = q[S1 ⊕ X ]
[S2] · [X ] = [S2 ⊕ X ]
[X ] · [S1] = [S1 ⊕ X ]
[X ] · [S2] = q[S2 ⊕ X ]
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Using these, we can produce the triple products.
[S1]

2 · [S2] = (q + 1)[S1 ⊕ S1 ⊕ S2] + (q + 1)[S1 ⊕ X ]
[S1] · [S2] · [S1] = (q + 1)[S1 ⊕ S1 ⊕ S2] + [S1 ⊕ X ]
[S2] · [S1]

2 = (q + 1)[S1 ⊕ S1 ⊕ S2]
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Using these, we can produce the triple products.
[S1]

2 · [S2] = (q + 1)[S1 ⊕ S1 ⊕ S2] + (q + 1)[S1 ⊕ X ]
[S1] · [S2] · [S1] = (q + 1)[S1 ⊕ S1 ⊕ S2] + [S1 ⊕ X ]
[S2] · [S1]

2 = (q + 1)[S1 ⊕ S1 ⊕ S2]
Finally, we verify the Serre relation:

[S1]
2 · [S2] − (q + 1)[S1] · [S2] · [S1] + [S2] · [S1]

2 = 0
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Lets now apply groupoidification to the construction of Hall
algebras
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Lets now apply groupoidification to the construction of Hall
algebras

First, we construct the groupoid that will stand in for the
underlying vector space. By the construction of Hall algebras
we see that this should be Rep(Q)◦, which is the underlying
groupoid of Rep(Q).
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Lets now apply groupoidification to the construction of Hall
algebras

First, we construct the groupoid that will stand in for the
underlying vector space. By the construction of Hall algebras
we see that this should be Rep(Q)◦, which is the underlying
groupoid of Rep(Q).

Next we construct a multiplication span. We start by defining
a new groupoid SES(Rep(Q)):
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Lets now apply groupoidification to the construction of Hall
algebras

First, we construct the groupoid that will stand in for the
underlying vector space. By the construction of Hall algebras
we see that this should be Rep(Q)◦, which is the underlying
groupoid of Rep(Q).

Next we construct a multiplication span. We start by defining
a new groupoid SES(Rep(Q)):

Objects - Short exact sequences of objects in Rep(Q).
Morphisms - Isomorphisms of short exact sequences:

0 // N
f //

α

��

E
g

//

β

��

M //

γ

��

0

0 // N ′
f ′

// E ′
g ′

// M ′ // 0
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We define the multiplication span:

SES(Rep(Q))
πE

wwooooooooooo
πM×πN

))SSSSSSSSSSSSSS

Rep(Q)◦ Rep(Q)◦ × Rep(Q)◦
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We define the multiplication span:

SES(Rep(Q))
πE

wwooooooooooo
πM×πN

))SSSSSSSSSSSSSS

Rep(Q)◦ Rep(Q)◦ × Rep(Q)◦

This makes sense, because given a pair of representations (M,N)
on the right, the span associates to it every short exact sequence
with N as the subrep and M as the quotient. This is then projected
down to representations E which appear as extensions of M by N.
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We can then apply the degroupoidification to this span. Doing
this, we get an operator:

m : R[Rep(Q)◦] ⊗ R[Rep(Q)◦] → R[Rep(Q)◦]

with

m(uM ⊗ uN) =
∑

E∈PE
MN

#Aut(E ) |(p × q)−1(M,N,E )| uE .
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We can then apply the degroupoidification to this span. Doing
this, we get an operator:

m : R[Rep(Q)◦] ⊗ R[Rep(Q)◦] → R[Rep(Q)◦]

with

m(uM ⊗ uN) =
∑

E∈PE
MN

#Aut(E ) |(p × q)−1(M,N,E )| uE .

We wish to show this matches the Hall algebra product uM · uN .
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For this, we must make a few observations.

First, we note that the group Aut(N) × Aut(E ) × Aut(M)
acts on the set PE

MN . This action is not necessarily free, but
this is just the sort of situation groupoid cardinality is
designed to handle.
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For this, we must make a few observations.

First, we note that the group Aut(N) × Aut(E ) × Aut(M)
acts on the set PE

MN . This action is not necessarily free, but
this is just the sort of situation groupoid cardinality is
designed to handle.

Taking the weak quotient
PE

MN//(Aut(N) × Aut(E ) × Aut(M)), we obtain a groupoid
equivalent to one whose objects are short exact sequences of
the form 0 → N → E → M → 0 and morphisms are
isomorphisms of short exact sequences (i.e. the subgroupoid
(p × q)−1(M,N,E ) of SES(Rep(Q))).
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We can then calculate.
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We can then calculate.

|(p × q)−1(M,N,E )| = |PE
MN//(Aut(N) × Aut(E ) × Aut(M))|

=
#PE

MN

#Aut(N)#Aut(E )#Aut(M)
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We can then calculate.

|(p × q)−1(M,N,E )| = |PE
MN//(Aut(N) × Aut(E ) × Aut(M))|

=
#PE

MN

#Aut(N)#Aut(E )#Aut(M)

So, we obtain

m(uM ⊗ uN) =
∑

E∈PE
MN

#PE
MN

#Aut(M)#Aut(N)
uE .

which is precisely the Hall algebra product uM · uN .
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A similar process can be applied to the adjoint span:

SES(Rep(Q))
πE

''OOOOOOOOOOO
πM×πN

uukkkkkkkkkkkkkk

Rep(Q)◦ × Rep(Q)◦ Rep(Q)◦

To obtain a coassociative comultiplication.
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A similar process can be applied to the adjoint span:

SES(Rep(Q))
πE

''OOOOOOOOOOO
πM×πN

uukkkkkkkkkkkkkk

Rep(Q)◦ × Rep(Q)◦ Rep(Q)◦

To obtain a coassociative comultiplication.
Unfortunately, these are not compatible, in the sense that they do
not form a bialgebra. Instead, they give a twisted bialgebra.
Algebraically we can describe this as a bialgebra in a braided
monoidal category, and we have the beginning of an idea of how to
describe this in terms of groupoids and spans.
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There are other thing that can be done algebraically with Hall
algebras that we would like to “groupoidify”.
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There are other thing that can be done algebraically with Hall
algebras that we would like to “groupoidify”.

It is known how to remove the dependance on the orientation
of the quiver via an altered multiplication and
comultiplication.
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There are other thing that can be done algebraically with Hall
algebras that we would like to “groupoidify”.

It is known how to remove the dependance on the orientation
of the quiver via an altered multiplication and
comultiplication.

It is also known how to remove the “twist” on the tensor
multiplication to get a true bialgebra by extending H(Q) to
something isomorphic to Uq(b

+).
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There are other thing that can be done algebraically with Hall
algebras that we would like to “groupoidify”.

It is known how to remove the dependance on the orientation
of the quiver via an altered multiplication and
comultiplication.

It is also known how to remove the “twist” on the tensor
multiplication to get a true bialgebra by extending H(Q) to
something isomorphic to Uq(b

+).

The Big Open Question: How do we include the “negative” part of
the Quantum Group?
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There are other thing that can be done algebraically with Hall
algebras that we would like to “groupoidify”.

It is known how to remove the dependance on the orientation
of the quiver via an altered multiplication and
comultiplication.

It is also known how to remove the “twist” on the tensor
multiplication to get a true bialgebra by extending H(Q) to
something isomorphic to Uq(b

+).

The Big Open Question: How do we include the “negative” part of
the Quantum Group?

The End
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