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Abstract

The Standard Model is the best tested and most widely accepted theory of
elementary particles we have today. It may seem complicated and arbitrary,
but it has hidden patterns that are revealed by the relationship between three
‘grand unified theories’: theories that unify forces and particles by extend-
ing the Standard Model symmetry group U(1) × SU(2) × SU(3) to a larger
group. These three are Georgi and Glashow’s SU(5) theory, Georgi’s theory
based on the group Spin(10), and the Pati–Salam model based on the group
SU(2)×SU(2)×SU(4). In this expository account for mathematicians, we ex-
plain only the portion of these theories that involves finite-dimensional group
representations. This allows us to reduce the prerequisites to a bare minimum
while still giving a taste of the profound puzzles that physicists are struggling
to solve.

1 Introduction

The Standard Model of particle physics is one of the greatest triumphs of physics.
This theory is our best attempt to describe all the particles and all the forces of
nature... except gravity. It does a great job of fitting experiments we can do in the
lab. But physicists are dissatisfied with it. There are three main reasons. First, it
leaves out gravity: that force is described by Einstein’s theory of general relativity,
which has not yet been reconciled with the Standard Model. Second, astronomical
observations suggest that there may be forms of matter not covered by the Standard
Model—most notably, ‘dark matter’. And third, the Standard Model is complicated
and seemingly arbitrary. This goes against the cherished notion that the laws of
nature, when deeply understood, are simple and beautiful.

For the modern theoretical physicist, looking beyond the Standard Model has
been an endeavor both exciting and frustrating. Most modern attempts are based on
string theory. There are also other interesting approaches, such as loop quantum
gravity and theories based on noncommutative geometry. But back in the mid
1970’s, before any of the currently popular approaches rose to prominence, physicists
pursued a program called ‘grand unification’. This sought to unify the forces and
particles of the Standard Model using the mathematics of Lie groups, Lie algebras,
and their representations. Ideas from this era remain influential, because grand
unification is still one of the most fascinating attempts to find order and beauty
lurking within the Standard Model.
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This paper is a gentle introduction to the group representations that describe
particles in the Standard Model and the most famous grand unified theories. To
make the material more approachable for mathematicians, we limit our scope by
not discussing particle interactions or ‘symmetry breaking’—the way a theory with
a large symmetry group can mimic one with a smaller group at low energies. These
topics lie at the very heart of particle physics. But by omitting them, we can
focus on ideas from algebra that many mathematicians will find familiar, while
introducing the unfamiliar ways that physicists use these ideas.

In fact, the essential simplicity of the representation theory involved in the
Standard Model and grand unified theories is quite striking. The usual textbook
approach to particle physics proceeds through quantum field theory and gauge the-
ory. While these subjects are very important to modern mathematics, learning
them is a major undertaking. We have chosen to focus on the algebra of grand
unified theories because many mathematicians have the prerequisites to understand
it with only a little work.

A full-fledged treatment of particle physics requires quantum field theory, which
uses representations of a noncompact Lie group called the Poincaré group on infinite-
dimensional Hilbert spaces. This brings in a lot of analytical subtleties, which make
it hard to formulate theories of particle physics in a mathematically rigorous way.
In fact, no one has yet succeeded in doing this for the Standard Model. But by ne-
glecting the all-important topic of particle interactions, we can restrict attention to
finite-dimensional Hilbert spaces: that is, finite-dimensional complex inner product
spaces. This makes our discussion purely algebraic in flavor.

Every theory we consider has an ‘internal symmetry group’ or ‘gauge group’.
This is a compact Lie group, say G. Particles then live in representations of G on a
finite-dimensional Hilbert space V . More precisely: V can always be decomposed as
a direct sum of irreducible representations, or irreps—and for our limited purposes,
particles are basis vectors of irreps. This provides a way to organize particles, which
physicists have been exploiting since the 1960s.

The idea of ‘unification’ has a clear meaning in these terms. Suppose V is a
representation, not only of G, but also some larger group H having G as a subgroup.
Then we expect V to decompose into fewer irreps as a representation of H than as
a representation of G, because elements of H can mix different irreps of G. So: by
introducing a larger symmetry group, particles can be unified into larger irreps.

‘Grand unification’ occurs when the compact Lie group G is simple, and thus
not a product of other groups. A gauge theory based on G requires an invariant
inner product on its Lie algebra. When G is simple, this form is unique up to a
scale factor, which physicists call a ‘coupling constant’: this measures the strength
of the force corresponding to G. When G is the product of simple factors, there
is one coupling constant for each factor of G. So, by using a simple Lie group as
gauge group, we minimize the number of coupling constants.

In this paper, we give an account of the algebra behind the Standard Model
and three attempts at unification: Georgi and Glashow’s SU(5) theory, Georgi’s
theory based on the group Spin(10) (physicists call this the SO(10) theory), and
the Pati–Salam model. All three date to around 1974. The first two are known
as grand unified theories, or GUTs, because they are based on simple Lie groups.
The Pati–Salam model is different: while it is called a GUT by some authors, and
does indeed involve unification, it is based on the Lie group SU(2)×SU(2)×SU(4),
which is merely semisimple.

It is important to note that these theories have their problems. The SU(5) theory
predicts that protons will decay more quickly than they do, and it requires certain
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trends to hold among the relative strengths of forces at high energies—trends which
the data do not support. The SO(10) theory may still be viable, especially if at low
enough energies it reduces to the Pati–Salam model. However, the issues involved
are complex. For details, see the paper by Bertolini et al and the many references
therein [4].

Nonetheless, it is still very much worthwhile for mathematicians to study the
algebra of grand unified theories. First, even apart from their physical signifi-
cance, these theories are intrinsically beautiful mathematical structures. Second,
they provide a nice way for mathematicians to get some sense of the jigsaw puzzle
that physicists are struggling to solve. It is certainly hopeless trying to under-
stand what physicists are trying to accomplish with string theory without taking
a look at grand unified theories. Finally, grand unified theories can be generalized
by adding ‘supersymmetry’—and the resulting generalizations are considered seri-
ous contenders for describing the real world. For some recent overviews of their
prospects, see Pati [26, 27] and Peskin [29].

This is how we shall proceed. In Section 2 we start by describing the Standard
Model. After a brief nod to the electron and photon, we explain some nuclear
physics in Section 2.1. We start with Heisenberg’s old attempt to think of the
proton and neutron as two states of a single particle, the ‘nucleon’, described by a 2-
dimensional representation of SU(2). The idea of unification through representation
theory traces its origins back to this notion.

After this warmup we tour the Standard Model in its current form. In Section 2.2
we describe the particles called ‘fundamental fermions’, which constitute matter. In
Section 2.3 we describe the particles called ‘gauge bosons’, which carry forces. Apart
from the elusive Higgs boson, all particles in the Standard Model are of these two
kinds. In Section 2.4 we give a more mathematical treatment of these ideas: the
gauge bosons are determined by the Standard Model gauge group

GSM = U(1)× SU(2)× SU(3),

while the fundamental fermions and their antiparticles are basis vectors of a highly
reducible representation of this group, which we call F ⊕ F ∗. Here F describes the
fermions, while F ∗ describes their antiparticles.

Amazingly, using the ideas of gauge theory and quantum field theory, plus
the ‘Higgs mechanism’ for symmetry breaking, we can recover the dynamical laws
obeyed by these particles from the representation of GSM on F ⊕F ∗. This informa-
tion is enough to decode the physics of these particles and make predictions about
what is seen in the gigantic accelerators that experimental physicists use to probe
the natural world at high energies. Unfortunately, to explain all this would go far
beyond the modest goals of this paper. For a guide to further study, see Section
1.1.

Having acquainted the reader with the Standard Model of particle physics in
Section 2, we then go on to talk about grand unified theories in Section 3. These
theories go beyond the Standard Model by ‘extending’ the gauge group. That is, we
pick a way to include GSM in some larger group G, and choose a representation V
of G which reduces to the Standard Model representation F ⊕ F ∗ when we restrict
it to GSM. We describe how this works for the SU(5) theory (Section 3.1), the
SO(10) theory (Section 3.2), and the Pati–Salam model (Section 3.3). Of course,
since we do not discuss the dynamics, a lot will go unsaid about these GUTs.

As we proceed, we explain how the SU(5) theory and the Pati–Salam model are
based on two distinct visions about how to extend the Standard Model. However, we
will see that the SO(10) theory is an extension of both the SU(5) theory (Section 3.2)
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and the Pati–Salam model (Section 3.4). Moreover, these two routes to the SO(10)
theory are compatible in a precise sense: we get a commuting square of groups, and
a commuting square of representations, which fit together to form a commuting
cube (Section 3.5).

In Section 4, we conclude by discussing what this means for physics: namely,
how the Standard Model reconciles the two visions of physics lying behind the SU(5)
theory and the Pati–Salam model. In a sense, it is the intersection of the SU(5)
theory and the Pati–Salam model within their common unification, SO(10).

Throughout the course of the paper, we occasionally summarize our progress in
theorems, most phrased in terms of commutative diagrams:

• Section 3.1, Theorem 1: the SU(5) theory extends the Standard Model.

• Section 3.2, Theorem 2: the Spin(10) theory extends the SU(5) theory.

• Section 3.3, Theorem 3: the Pati–Salam model extends the Standard Model.

• Section 3.4, Theorem 4: the Pati–Salam model is isomorphic to a theory
involving Spin(4)× Spin(6).

• Section 3.4, Theorem 5: the Spin(4) × Spin(6) theory extends the Standard
Model.

• Section 3.4, Theorem 6: the Spin(10) theory extends the Spin(4) × Spin(6)
theory.

• Section 3.5, Theorem 7: the Standard Model, the SU(5) theory, the Spin(4)×
Spin(6) theory and the Spin(10) theory fit together in a commutative cube.

• Section 4, Theorem 8: The true gauge group of the Standard Model is the
intersection of SU(5) and SO(4)× SO(6) in SO(10).

• Section 4, Theorem 9: The true gauge group of the Standard Model is the
intersection of SU(5) and (Spin(4)× Spin(6))/Z2 in Spin(10).

1.1 Guide to Further Reading

We have tried to limit our prerequisites to the bare minimum. This includes basic
facts about Lie groups, Lie algebras, and their representations—especially finite-
dimensional unitary representations of compact Lie groups. We will not need the
structure theory for simple Lie groups. We do, however, assume a little familiarity
with the classical Lie groups GL(n), SL(n), O(n), SO(n), U(n), and SU(n), as well
as their Lie algebras.

There are countless books on Lie groups, Lie algebras and their representations,
but the text by Hall [14] has everything we need, and more. Sternberg’s introduction
to group theory and physics [34] includes an excellent account of applications to
particle physics. To see the subject more through the eyes of a physicist, try the
books by Lipkin [20] or Tinkham [38]. Georgi’s text [11] shows how the subject
looks to one of the inventors of grand unified theories.

Starting in Section 3.1 we assume familiarity with exterior algebras, and in
Section 3.2 we also use Clifford algebras. For what we need, Chevalley’s book [6] is
more than sufficient.

For the interested reader, there are many introductions to particle physics where
one can learn the dynamics after getting a taste of the algebra here. It might be
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good to start by reading Griffiths’ introductory book [13] together with Sudbery’s
text specially designed for mathematicians [36]. The book by Huang [17] delves as
deep as one can go into the Standard Model without a heavy dose of quantum field
theory, and the book by Lee [19] is full of practical wisdom. For more information
on grand unified theories, see the textbooks by Ross [31] and Mohapatra [21].

Particle physics relies heavily on quantum field theory. There are many books on
this subject, none of which make it easy. Prerequisites include a good understand-
ing of classical mechanics, classical field theory and quantum mechanics. Many
physicists consider the books by Brown [5] and Ryder [32] to be the most approach-
able. The text by Peskin and Schroeder [30] offers a lot of physical insight, and
we have also found Zee’s book [40] very useful in this respect. Srednicki’s text [35]
is clear about many details that other books gloss over—and it costs nothing! Of
course, these books are geared toward physicists: mathematicians may find the lack
of rigor frustrating. Ticciati [37] provides a nice introduction for mathematicians,
but anyone serious about this subject should quickly accept the fact that quantum
field theory has not been made rigorous: this is a project for the century to come.

Particle physics also relies heavily on geometry, especially gauge theory. This
subject is easier to develop in a rigorous way, so there are plenty of texts that de-
scribe the applications to physics, but which a mathematician can easily understand.
Naber’s books are a great place to start [22, 23], and one of us has also written an
elementary introduction [3]. Isham’s text is elegant and concise [18], and many
people swear by Nakahara [24]. The quantum field theory texts mentioned above
also discuss gauge theory, but in language less familiar to mathematicians.

Finally, few things are more enjoyable than the history of nuclear and parti-
cle physics—a romantic tale full of heroic figures and tightly linked to the dark
drama of World War II, the Manhattan Project, and the ensuing Cold War. Crease
and Mann [8] give a very readable introduction. To dig deeper, try the book by
Segrè [33], or the still more detailed treatments by Pais [25] and Hoddeson et al [16].

2 The Standard Model

Today, most educated people know that the world is made of atoms, and that
atoms, in turn, are made of electrons, protons, and neutrons. The electrons orbit
a dense nucleus made of protons and neutrons, and as the outermost layer of any
atom’s structure, they are responsible for all chemistry. They are held close to the
nucleus by electromagnetic forces: the electrons carry a negative electric charge,
and protons carry a positive charge. Opposite charges attract, and this keeps the
electrons and the nucleus together.

At one point in time, electrons, protons, and neutrons were all believed to be
fundamental and without any constituent parts, just as atoms themselves were once
believed to be, before the discovery of the electron. Electrons are the only one of
these subatomic particles still considered fundamental, and it is with this venerable
particle that we begin a table of the basic constituents of matter, called ‘fundamental
fermions’. We will see more soon.

Fundamental Fermions (first try)
Name Symbol Charge
Electron e− -1

Since the electron is charged, it participates in electromagnetic interactions.
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From the modern perspective of quantum field theory, electromagnetic interactions
are mediated by the exchange of virtual photons, particles of light that we never
see in the lab, but whose effects we witness whenever like charges are repelled or
opposite charges are attracted. We depict this process with a diagram:

e
−

e
−

e
−

e
−

γ

Here, time runs up the page. Two electrons come in, exchange a photon, and
leave, slightly repelled from each other by the process.

The photon is our next example of a fundamental particle, though it is of a
different character than the electron and quarks. As a mediator of forces, the photon
is known as a gauge boson in modern parlance. It is massless, and interacts only
with charged particles, though it carries no charge itself. So, we begin our list of
gauge bosons as follows:

Gauge Bosons (first try)
Force Gauge Boson Symbol
Electromagnetism Photon γ

2.1 Isospin and SU(2)

Because like charges repel, it is remarkable that the atomic nucleus stays together.
After all, the protons are all positively charged and are repelled from each other
electrically. To hold these particles so closely together, physicists hypothesized a
new force, the strong force, strong enough to overcome the electric repulsion of
the protons. It must be strongest only at short distances (about 10−15 m), and then
it must fall off rapidly, for protons are repelled electrically unless their separation is
that small. Neutrons must also experience it, because they are bound to the nucleus
as well.

Physicists spent several decades trying to understand the strong force; it was
one of the principal problems in physics in the mid-twentieth century. About 1932,
Werner Heisenberg, pioneer in quantum mechanics, discovered one of the first clues
to its nature. He proposed, in [15], that the proton and neutron might really be two
states of the same particle, now called the nucleon. In modern terms, he attempted
to unify the proton and neutron.

To understand how, we need to know a little quantum mechanics. In quantum
mechanics, the state of any physical system is given by a unit vector in a complex
Hilbert space, and it is possible to take complex linear combinations of the system
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in different states. For example, the state for a quantum system, like a particle on
a line, is a complex-valued function

ψ ∈ L2(R),

or if the particle is confined to a 1-dimensional box, so that its position lies in the
unit interval [0, 1], then its state lives in the Hilbert space L2([0, 1]).

We have special rules for combining quantum systems. If, say, we have two
particles in a box, particle 1 and particle 2, then the state is a function of both
particle 1’s position and particle 2’s:

ψ ∈ L2([0, 1]× [0, 1]),

but this is isomorphic to the tensor product of particle 1’s Hilbert space with particle
2’s:

L2([0, 1]× [0, 1]) ∼= L2([0, 1]⊗ L2([0, 1]).

This is how we combine systems in general. If a system consists of one part with
Hilbert space V and another part with Hilbert space W , their tensor product V ⊗W
is the Hilbert space of the combined system. Heuristically,

and = ⊗.

We just discussed the Hilbert space for two particles in a single box. We now
consider the Hilbert space for a single particle in two boxes, by which we mean a
particle that is in one box, say [0, 1], or in another box, say [2, 3]. The Hilbert space
here is

L2([0, 1] ∪ [2, 3]) ∼= L2([0, 1])⊕ L2([2, 3]).

In general, if a system’s state can lie in a Hilbert space V or in a Hilbert space W ,
the total Hilbert space is then

V ⊕W.
Heuristically,

or = ⊕.
Back to nucleons. According to Heisenberg’s theory, a nucleon is a proton or

a neutron. If we use the simplest nontrivial Hilbert space for both the proton and
neutron, namely C, then the Hilbert space for the nucleon should be

C2 ∼= C⊕ C.

The proton and neutron then correspond to basis vectors of this Hilbert space:

p =

(
1
0

)
∈ C2

and

n =

(
0
1

)
∈ C2.

But, we can also have a nucleon in a linear combination of these states. More
precisely, the state of the nucleon can be represented by any unit vector in C2.

The inner product in C2 then allows us to compute probabilities, using the
following rule coming from quantum mechanics: the probability that a system in
state ψ ∈ H , a given Hilbert space, will be observed in state φ ∈ H is

|〈ψ, φ〉|2 .
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Since p and n are orthogonal, there is no chance of seeing a proton as a neutron or
vice versa, but for a nucleon in the state

αp+ βn ∈ C2,

there is probability |α|2 that measurement will result in finding a proton, and |β|2
that measurement will result in finding a neutron. The condition that our state be
a unit vector ensures that these probabilities add to 1.

In order for this to be interesting, however, there must be processes that can
turn protons and neutrons into different states of the nucleon. Otherwise, there
would be no point in having the full C2 space of states. Conversely, if there are
processes which can change protons into neutrons and back, it turns out we need
all of C2 to describe them.

Heisenberg believed in such processes, because of an analogy between nuclear
physics and atomic physics. The analogy turned out to be poor, based on the faulty
notion that the neutron was composed of a proton and an electron, but the idea of
the nucleon with states in C2 proved to be a breakthrough.

The reason is that in 1936 a paper by Cassen and Condon [7] appeared suggesting
that the nucleon’s Hilbert space C2 is acted on by the symmetry group SU(2). They
emphasized the analogy between this and the spin of the electron, which is also
described by vectors in C2, acted on by the double cover of the 3d rotation group,
which is also SU(2). In keeping with this analogy, the property that distinguishes
the proton and neutron states of a nucleon was dubbed isospin. The proton was
declared the isospin up state or I3 = 1

2 state, and the neutron was declared the
isospin down or I3 = − 1

2 state. Cassen and Condon’s paper put isospin on its
way to becoming a useful tool in nuclear physics.

Isospin proved useful because it formalized the following idea, which emerged
from empirical data around the time of Cassen and Condon’s paper. Namely: the
strong force, unlike the electromagnetic force, is the same whether the particles
involved are protons or neutrons. Protons and neutrons are interchangeable, as
long as we neglect the small difference in their mass, and most importantly, as long
as we neglect electromagnetic effects. One can phrase this idea in terms of group
representation theory as follows: the strong force is invariant under the action of
SU(2).

Though this idea was later seen to be an oversimplification, it foreshadowed
modern ideas about unification. The proton, living in the representation C of
the trivial group, and the neutron, living in a different representation C of the
trivial group, were unified into the nucleon, with representation C2 of SU(2). These
symmetries hold for the strong force, but not for electromagnetism: we say this
force ‘breaks’ SU(2) symmetry.

But what does it mean, exactly, to say that a force is invariant under the action
of some group? It means that when we are studying particles interacting via this
force, the Hilbert space of each particle should be equipped with a unitary represen-
tation of this group. Moreover, any physical process caused by this force should be
described by an ‘intertwining operator’: that is, a linear operator that respects the
action of this group. A bit more precisely, suppose V and W are finite-dimensional
Hilbert spaces on which some group G acts as unitary operators. Then a linear
operator F :V →W is an intertwining operator if

F (gψ) = gF (ψ)

for every ψ ∈ V and g ∈ G.
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Quite generally, symmetries give rise to conserved quantities. In quantum me-
chanics this works as follows. Suppose that G is a Lie group with a unitary rep-
resentation on the finite-dimensional Hilbert spaces V and W . Then V and W
automatically become representations of g, the Lie algebra of G, and any intertwin-
ing operator F :V →W respects the action of g. In other words,

F (Tψ) = TF (ψ)

for every ψ ∈ V and T ∈ g. Next suppose that ψ ∈ V is an eigenvector of T :

Tψ = iλψ

for some real number λ. Then it is easy to check F (ψ) is again an eigenvector of T
with the same eigenvalue:

TF (ψ) = iλF (ψ).

So, the number λ is ‘conserved’ by the operator F .
The element T ∈ g will act as a skew-adjoint operator on any unitary representa-

tion of G. Physicists prefer to work with self-adjoint operators since these have real
eigenvalues. In quantum mechanics, self-adjoint operators are called ‘observables’.
We can get an observable by dividing T by i.

In Casson and Condon’s isospin theory of the strong interaction, the symmetry
group G is SU(2). Here isospin, or more precisely I3, arises as above: it is just the
eigenvalue of a certain element of su(2), divided by i to get a real number. Because
any physical process caused by the strong force is described by an intertwining
operator, isospin is conserved. So, the total I3 of any system remains unchanged
after a process that involves only strong interactions.

Nevertheless, for the states in C2 that mix protons and neutrons to have any
meaning, there must be a mechanism which can convert protons into neutrons and
vice versa. Mathematically, we have a way to do this: the action of SU(2). What
does this correspond to, physically?

The answer originates in the work of Hideki Yukawa. In the early 1930s, he pre-
dicted the existence of a particle that mediates the strong force, much as the photon
mediates the electromagnetic force. From known properties of the strong force, he
was able to predict that this particle should be about 200 times as massive as the
electron, or about a tenth the mass of a proton. He predicted that experimentalists
would find a particle with a mass in this range, and that it would interact strongly
when it collided with nuclei.

Partially because of the intervention of World War II, it took over ten years for
Yukawa’s prediction to be vindicated. After a famous false alarm (see Section 2.5),
it became clear by 1947 that a particle with the expected properties had been found.
It was called the pion and it came in three varieties: one with positive charge, the
π+, one neutral, the π0, and one with negative charge, the π−.

The pion proved to be the mechanism that can transform nucleons. To wit, we
observe processes such as those in Figure 1, where we have drawn the Feynman
diagrams which depict the nucleons absorbing pions, transforming where they are
allowed to by charge conservation.
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π
− p

n

π
+

n

p

π− + p→ n π+ + n→ p

π
0 p

p

π
0

n

n

π0 + p→ p π0 + n→ n

Figure 1: The nucleons absorbing pions.

Because of isospin conservation, we can measure the I3 of a pion by looking at
these interactions with the nucleons. It turns out that the I3 of a pion is the same
as its charge:

Pion I3
π+ +1
π0 0
π− −1

Here we pause, because we can see the clearest example of a pattern that lies at the
heart of the Standard Model. It is the relationship between isospin I3 and charge
Q. For the pion, isospin and charge are equal:

Q(π) = I3(π).

But they are also related for the nucleon, though in a subtler way:

Nucleon I3 Charge
p 1

2 1

n − 1
2 0

10



The relationship for nucleons is

Q(N) = I3(N) +
1

2
.

This is nearly the most general relationship. It turns out that, for any given family
of particles that differ only by I3, we have the Gell-Mann–Nishijima formula:

Q = I3 + Y/2

where the charge Q and isospin I3 depend on the particle, but a new quantity,
the hypercharge Y , depends only on the family. For example, pions all have
hypercharge Y = 0, while nucleons both have hypercharge Y = 1.

Mathematically, Y being constant on ‘families’ just means it is constant on rep-
resentations of the isospin symmetry group, SU(2). The three pions, like the proton
and neutron, are nearly identical in terms of mass and their strong interactions. In
Heisenberg’s theory, the different pions are just different isospin states of the same
particle. Since there are three, they have to span a three-dimensional representation
of SU(2).

Up to isomorphism, there is only one three-dimensional complex irrep of SU(2),
which is Sym2C2, the symmetric tensors of rank 2. In general, the unique (n+ 1)-
dimensional irrep of SU(2) is given by SymnC2. Physicists call this the spin-n/2
representation of SU(2), or in the present context, the ‘isospin-n/2 representa-
tion’. This representation has a basis of vectors where I3 ranges from −n/2 to n/2
in integer steps. Nucleons lie in the isospin- 1

2 representation, while pions lie in the
isospin-1 representation.

This sets up an interesting puzzle. We know two ways to transform nucleons:
the mathematical action of SU(2), and their physical interactions with pions. How
are these related?

The answer lies in the representation theory. Just as the two nucleons span the
two-dimensional irrep of C2 of SU(2), the pions span the three-dimensional irrep
Sym2C2 of SU(2). But there is another way to write this representation which sheds
light on the pions and the way they interact with nucleons: because SU(2) is itself
a three-dimensional real manifold, its Lie algebra su(2) is a three-dimensional real
vector space. SU(2) acts on itself by conjugation, which fixes the identity and thus
induces linear transformations of su(2), giving a representation of SU(2) on su(2)
called the adjoint representation.

For simple Lie groups such as SU(2), the adjoint representation is irreducible.
Thus su(2) is a three-dimensional real irrep of SU(2). This is different from the
three-dimensional complex irrep Sym2C2, but very related. Indeed, Sym2C2 is just
the complexification of su(2):

Sym2C2 ∼= C⊗ su(2) ∼= sl(2,C).

The pions thus live in sl(2,C), a complex Lie algebra, and this acts on C2

because SU(2) does. To be precise, Lie group representations induce Lie algebra
representations, so the real Lie algebra su(2) has a representation on C2. This
then extends to a representation of the complex Lie algebra sl(2,C). And this
representation is even familiar—it is the fundamental representation of sl(2,C) on
C2.

Quite generally, whenever g is the Lie algebra of a Lie group G, and ρ:G×V →
V is a representation of G on some finite-dimensional vector space V , we get a
representation of the Lie algebra g on V , which we can think of as a linear map

dρ: g⊗ V → V.
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And this map is actually an intertwining operator, meaning that it commutes with
the action of G: since g and V are both representations of G this is a sensible thing
to say, and it is easy to check.

Pions act on nucleons via precisely such an intertwining operator:

sl(2,C)⊗ C2 → C2.

So, the interaction between pions and nucleons arises naturally from the action of
SU(2) on C2 after we complexify the Lie algebra of this group!

Physicists have invented a nice way to depict such intertwining operators—
Feynman diagrams:

π N

N
′

Figure 2: A nucleon absorbs a pion.

Here we see a nucleon coming in, absorbing a pion, and leaving. That is, this
diagram depicts a basic interaction between pions and nucleons.

Feynman diagrams are calculational tools in physics, though to actually use them
as such, we need quantum field theory. Then, instead of just standing for intertwin-
ing operators between representations of compact groups such as SU(2), they depict
intertwining operators between representations of the product of this group and the
Poincaré group, which describes the symmetries of spacetime. Unfortunately, the
details are beyond the scope of this paper. By ignoring the Poincaré group, we are,
in the language of physics, restricting our attention to ‘internal degrees of freedom’,
and their ‘internal’ (i.e., gauge) symmetries.

Nonetheless, we can put basic interactions like the one in figure 2 together to
form more complicated ones, like this:

p

n

n

p

π
−
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Here, two nucleons interact by exchanging pions. This is the mechanism for the
strong force proposed by Yukawa, still considered approximately right today. Better,
though, it depicts all the representation-theoretic ingredients of a modern gauge
theory in physics. That is, it shows two nucleons, which live in a representation C2

of the gauge group SU(2), interacting by the exchange of a pion, which lives in the
complexified adjoint rep, C ⊗ su(2). In the coming sections we will see how these
ideas underlie the Standard Model.

2.2 The Fundamental Fermions

2.2.1 Quarks

In the last section, we learned how Heisenberg unified the proton and neutron into
the nucleon, and that Yukawa proposed that nucleons interact by exchanging pions.
This viewpoint turned out to be at least approximately true, but it was based on
the idea that the proton, neutron and pions were all fundamental particles without
internal structure, which was not ultimately supported by the evidence.

Protons and neutrons are not fundamental. They are made of particles called
quarks. There are a number of different types of quarks, called flavors. However,
it takes only two flavors to make protons and neutrons: the up quark, u, and the
down quark, d. The proton consists of two up quarks and one down:

p = uud

while the neutron consists of one up quark and two down:

n = udd

Protons have an electric charge of +1, exactly opposite the electron, while neutrons
are neutral, with 0 charge. These two conditions are enough to determine the charge
of their constituents, which are fundamental fermions much like the electron:

Fundamental Fermions (second try)
Name Symbol Charge
Electron e− −1

Up quark u + 2
3

Down quark d − 1
3

There are more quarks than these, but these are the lightest ones, comprising the
first generation. They are all we need to make protons and neutrons, and so,
with the electron in tow, the above list contains all the particles we need to make
atoms.

Yet quarks, fundamental as they are, are never seen in isolation. They are al-
ways bunched up into particles like the proton and neutron. This phenomenon is
called confinement. It makes the long, convoluted history of how we came to un-
derstand quarks, despite the fact that they are never seen, all the more fascinating.
Unfortunately, we do not have space for this history here, but it can be found in
the books by Crease and Mann [8], Segrè [33], and Pais [25].

It is especially impressive how physicists were able to discover that each flavor
of quark comes in three different states, called colors: red r, green g, and blue
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b. These ‘colors’ have nothing to do with actual colors; they are just cute names—
though as we shall see, the names are quite well chosen. Mathematically, all that
matters is that the Hilbert space for a single quark is C3; we call the standard basis
vectors r, g and b. The color symmetry group SU(3) acts on this Hilbert space
in the obvious way, via its fundamental representation.

Since both up and down quarks come in three color states, there are really six
kinds of quarks in the matter we see around us. Three up quarks, spanning a copy
of C3:

ur, ug, ub ∈ C3.

and three down quarks, spanning another copy of C3:

dr, dg , db ∈ C3.

The group SU(3) acts on each space. All six quarks taken together span this vector
space:

C3 ⊕ C3 ∼= C2 ⊗ C3

where C2 is spanned by the flavors u and d. Put another way, a first-generation
quark comes in one of six flavor-color states.

How could physicists discover the concept of color, given that quarks are con-
fined? In fact confinement was the key to this discovery! Confinement amounts to
the following decree: all observed states must be white, i.e., invariant under the
action of SU(3). It turns out that this has many consequences.

For starters, this decree implies that we cannot see an individual quark, because
they all transform nontrivially under SU(3). Nor do we ever see a particle built
from two quarks, since no unit vectors in C3 ⊗ C3 are fixed by SU(3). But we do
see particles made of three quarks: namely, nucleons! This is because there are unit
vectors in

C3 ⊗ C3 ⊗ C3

fixed by SU(3). Indeed, as a representation of SU(3), C3⊗C3⊗C3 contains precisely
one copy of the trivial representation: the antisymmetric rank three tensors, Λ3C3 ⊆
C3 ⊗C3 ⊗C3. This one dimensional vector space is spanned by the wedge product
of all three basis vectors:

r ∧ b ∧ g ∈ Λ3C3.

So, up to normalization, this must be the color state of a nucleon. And now we see
why the ‘color’ terminology is well-chosen: an equal mixture of red, green and blue
light is white. This is just a coincidence, but it is too cute to resist.

So: color is deeply related to confinement. Flavor, on the other hand, is deeply
related to isospin. Indeed, the flavor C2 is suspiciously like the isospin C2 of the
nucleon. We even call the quark flavors ‘up’ and ‘down’. This is no accident. The
proton and neutron, which are the two isospin states of the nucleon, differ only by
their flavors, and only the flavor of one quark at that. If one could interchange u
and d, one could interchange protons and neutrons.

Indeed, we can use quarks to explain the isospin symmetry of Section 2.1. Pro-
tons and neutrons are so similar, with nearly the same mass and strong interactions,
because u and d quarks are so similar, with nearly the same mass and truly identical
colors.

So as in Section 2.1, let SU(2) act on the flavor states C2. By analogy with that
section, we call this SU(2) the isospin symmetries of the quark model. Unlike the
color symmetries SU(3), these symmetries are not exact, because u and d quarks
have different mass and charge. Nevertheless, they are useful.
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The isospin of the proton and neutron then arises from the isospin of its quarks.
Define I3(u) = 1

2 and I3(d) = − 1
2 , making u and d the isospin up and down states

at which their names hint. To find the I3 of a composite, like a proton or neutron,
add the I3 for its constituents. This gives the proton and neutron the right I3:

I3(p) = 1
2 + 1

2 − 1
2 = 1

2

I3(n) = 1
2 − 1

2 − 1
2 = − 1

2 .

Of course, having the right I3 is not the whole story for isospin. The states p and
n must still span a copy of the fundamental rep C2 of SU(2). Whether or not this
happens depends on how the constituent quark flavors transform under SU(2).

The states u⊗ u⊗ d and u⊗ d⊗ d do not span a copy of the fundamental rep
of SU(2) inside C2 ⊗ C2 ⊗ C2. So, as with color, the equations

p = uud, n = udd

fail to give us the whole story. For the proton, we actually need some linear com-
bination of the I3 = 1

2 flavor states, which are made of two u’s and one d:

u⊗ u⊗ d, u⊗ d⊗ u, d⊗ u⊗ u ∈ C2 ⊗ C2 ⊗ C2.

And for the neutron, we need some linear combination of the I3 = − 1
2 flavor states,

which are made of one u and two d’s:

u⊗ d⊗ d, d⊗ u⊗ d, d⊗ d⊗ u ∈ C2 ⊗ C2 ⊗ C2.

Writing p = uud and n = udd is just a sort of shorthand for saying that p and n
are made from basis vectors with those quarks in them.

In physics, the linear combination required to make p and n work also involves
the ‘spin’ of the quarks, which lies outside of our scope. We will content ourselves
with showing that it can be done. That is, we will show that C2 ⊗ C2 ⊗ C2 really
does contain a copy of the fundamental rep C2 of SU(2). To do this, we use the
fact that any rank 2 tensor can be decomposed into symmetric and antisymmetric
parts; for example,

C2 ⊗ C2 ∼= Sym2C2 ⊕ Λ2C2

and this is actually how C2 ⊗ C2 decomposes into irreps. Sym2C2, as we noted in
Section 2.1, is the unique 3-dimensional irrep of SU(2); its othogonal complement
Λ2C2 in C2 ⊗ C2 is thus also a subrepresentation, but this space is 1-dimensional,
and must therefore be the trivial irrep, Λ2C2 ∼= C. In fact, for any SU(n), the top
exterior power of its fundamental rep, ΛnCn, is trivial.

As a representation of SU(2), we thus have

C2 ⊗ C2 ⊗ C2 ∼= C2 ⊗ (Sym2C2 ⊕ C)
∼= C2 ⊗ Sym2C2 ⊕ C2.

So indeed, C2 is a subrepresentation of C2 ⊗ C2 ⊗ C2.
As in the last section, there is no reason to have the full C2 of isospin states

for nucleons unless there is a way to change protons into neutrons. There, we
discussed how the pions provide this mechanism. The pions live in sl(2,C), the
complexification of the adjoint representation of SU(2), and this acts on C2:
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π N

N
′

This Feynman diagram is a picture of the intertwining operator sl(2,C)⊗C2 → C2

given by the representation of sl(2,C) on C2. Now we know that nucleons are made
of quarks and that isospin symmetry comes from their flavor symmetry. What
about pions?

Pions also fit into this model, but they require more explanation, because they
are made of quarks and ‘antiquarks’. To every kind of particle, there is a cor-
responding antiparticle, which is just like the original particle but with opposite
charge and isospin. The antiparticle of a quark is called an antiquark.

In terms of group representations, passing from a particle to its antiparticle
corresponds to taking the dual representation. Since the quarks live in C2 ⊗ C3,
a representation of SU(2) × SU(3), the antiquarks live in the dual representation
C2∗ ⊗ C3∗. Since C2 has basis vectors called up and down:

u =

(
1
0

)
∈ C2 d =

(
0
1

)
∈ C2

the space C2∗ has a dual basis

u = (1, 0) ∈ C2∗ d = (0, 1) ∈ C2∗

called antiup and antidown. Similarly, since the standard basis vectors for C3 are
called red, green and blue, the dual basis vectors for C3∗ are known as anticolors:
namely antired r, antigreen g, and antiblue b. When it comes to actual colors of
light, antired is called ‘cyan’: this is the color of light which blended with red gives
white. Similarly, antigreen is magenta, and antiblue is yellow. But few physicists
dare speak of ‘magenta antiquarks’—apparently this would be taking the joke too
far.

All pions are made from one quark and one antiquark. The flavor state of the
pions must therefore live in

C2 ⊗ C2∗.

We can use the fact that pions live in sl(2,C) to find out how they decompose into
quarks and antiquarks, since

sl(2,C) ⊆ End(C2).

First, express the pions as matrices:

π+ =

(
0 1
0 0

)
π0 =

(
1 0
0 −1

)
π− =

(
0 0
1 0

)
.
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We know they have to be these matrices, up to normalization, because these act
the right way on nucleons in C2:

π− + p→ n

π+ + n→ p

π0 + p→ p

π0 + n→ n.

Now, apply the standard isomorphism End(C2) ∼= C2⊗C2∗ to write these matrices
as linear combinations of quarks and antiquarks:

π+ = u⊗ d, π0 = u⊗ u− d⊗ d, π− = d⊗ u.

Note these all have the right I3, because isospins reverse for antiparticles. For
example, I3(d) = + 1

2 , so I3(π+) = 1.
In writing these pions as quarks and antiquarks, we have once again neglected

to write the color, because this works the same way for all pions. As far as color
goes, pions live in

C3 ⊗ C3∗.

Confinement says that pions need to be white, just like nucleons, and there is only
a one-dimensional subspace of C3 ⊗ C3∗ on which SU(3) acts trivially, spanned by

r ⊗ r + g ⊗ g + b⊗ b ∈ C3 ⊗ C3∗.

So, this must be the color state of all pions.
Finally, the Gell-Mann–Nishijima formula also still works for quarks, provided

we define the hypercharge for both quarks to be Y = 1
3 :

Q(u) = I3(u) + Y/2 = 1
2 + 1

6 = 2
3

Q(d) = I3(d) + Y/2 = − 1
2 + 1

6 = − 1
3 .

Since nucleons are made of three quarks, their total hypercharge is Y = 1, just as
before.

2.2.2 Leptons

With the quarks and electron, we have met all the fundamental fermions required
to make atoms, and almost all of the particles we need to discuss the Standard
Model. Only one player remains to be introduced: the neutrino, ν. This particle
completes the first generation of fundamental fermions:

The First Generation of Fermions — Charge
Name Symbol Charge

Neutrino ν 0

Electron e− −1

Up quark u + 2
3

Down quark d − 1
3
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Neutrinos are particles which show up in certain interactions, like the decay of
a neutron into a proton, an electron, and an antineutrino

n→ p+ e− + ν.

Indeed, neutrinos ν have antiparticles ν, just like quarks and all other particles. The
electron’s antiparticle, denoted e+, was the first discovered, so it wound up subject
to an inconsistent naming convention: the ‘antielectron’ is called a positron.

Neutrinos carry no charge and no color. They interact very weakly with other
particles, so weakly that they were not observed until the 1950s, over 20 years
after they were hypothesized by Pauli. Collectively, neutrinos and electrons, the
fundamental fermions that do not feel the strong force, are called leptons.

In fact, the neutrino only interacts via the weak force. Like the electromag-
netic force and the strong force, the weak force is a fundamental force, hypothesized
to explain the decay of the neutron, and eventually required to explain other phe-
nomena.

The weak force cares about the ‘handedness’ of particles. It seems that every
particle that we have discussed comes in left- and right-handed varieties, which
(quite roughly speaking) spin in opposite ways. There are are left-handed leptons,
which we denote as

νL e−L
and left-handed quarks, which we denote as

uL dL

and similarly for right-handed fermions, which we will denote with a subscript R.
As the terminology suggests, looking in a mirror interchanges left and right—in a
mirror, the left-handed electron e−L looks like a right-handed electron, e−R, and vice
versa. More precisely, applying any of the reflections in the Poincaré group to the
(infinite-dimensional) representation we use to describe these fermions interchanges
left and right.

Remarkably, the weak force interacts only with left-handed particles and right-
handed antiparticles. For example, when the neutron decays, we always have

nL → pL + e−L + νR

and never
nR → pR + e−R + νL.

This fact about the weak force, first noticed in the 1950s, left a deep impression on
physicists. No other physical law is asymmetric in left and right. That is, no other
physics, classical or quantum, looks different when viewed in a mirror. Why the
weak force, and only the weak force, exhibits this behavior is a mystery.

Since neutrinos only feel the weak force, and the weak force only involves left-
handed particles, the right-handed neutrino νR has never been observed directly.
For a long time, physicists believed this particle did not even exist, but recent
observations of neutrino oscillations suggest otherwise. In this paper, we will assume
there are right-handed neutrinos, but the reader should be aware that this is still
open to some debate. In particular, even if they do exist, we know very little about
them.

Note that isospin is not conserved in weak interactions. After all, we saw in the
last section that I3 is all about counting the number of u quarks over the number
of d quarks. In a weak process such as neutron decay

udd→ uud+ e− + ν,

18



the right-hand side has I3 = − 1
2 , while the left has I3 = 1

2 .
Yet maybe we are not being sophisticated enough. Perhaps isospin can be

extended beyond quarks, and leptons can also carry I3. Indeed, if we define I3(νL) =
1
2 and I3(e−) = − 1

2 , we get

nL → pL + e−L + νR

I3 : − 1
2 = 1

2 − 1
2 − 1

2

where we have used the rule that isospin reverses sign for antiparticles.
This extension of isospin is called weak isospin since it extends the concept

to weak interactions. Indeed, it turns out to be fundamental to the theory of weak
interactions. Unlike regular isospin symmetry, which is only approximate, weak
isospin symmetry turns out to be exact.

So from now on we shall discuss only weak isospin, and call it simply isospin.
Weak isospin is zero for right-handed particles, and ± 1

2 for left-handed particles:

The First Generation of Fermions — Charge and Isospin

Name Symbol Charge Isospin
Q I3

Left-handed neutrino νL 0 1
2

Left-handed electron e−L −1 − 1
2

Left-handed up quark uL + 2
3

1
2

Left-handed down quark dL − 1
3 − 1

2

Right-handed neutrino νR 0 0

Right-handed electron e−R −1 0

Right-handed up quark uR + 2
3 0

Right-handed down quark dR − 1
3 0

The antiparticle of a left-handed particle is right-handed, and the antiparticle of a
right-handed particle is left-handed. The isospins also change sign. For example,
I3(e+

R) = + 1
2 , while I3(e+

L) = 0.
In Section 2.3.2, we will see that the Gell-Mann–Nishijima formula, when applied

to weak isospin, defines a fundamental quantity, the ‘weak hypercharge’, that is vital
to the Standard Model. But first, in Section 2.3.1, we discuss how to generalize the
SU(2) symmetries from isospin to weak isospin.

2.3 The Fundamental Forces

2.3.1 Isospin and SU(2), Redux

The tale we told of isospin in Section 2.1 only concerned the strong force, which
binds nucleons together into nuclei. We learned about an approximation in which
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nucleons live in the fundamental rep C2 of the isospin symmetry group SU(2), and
that they interact by exchanging pions, which live in the complexified adjoint rep
of this group, namely sl(2,C).

But this tale is mere prelude to the modern story, where weak isospin, defined in
Section 2.2.2, is the star of the show. This story is not about the strong force, but
rather the weak force. This story parallels the old one, but it involves left-handed
fermions instead of nucleons. The left-handed fermions, with I3 = ± 1

2 , are paired up
into fundamental representations of SU(2), the weak isospin symmetry group.
There is one spanned by left-handed leptons:

νL, e
−
L ∈ C2,

and one spanned by each color of left-handed quarks:

urL, d
r
L ∈ C2, ugL, d

g
L ∈ C2, ubL, d

b
L ∈ C2.

The antiparticles of the left-handed fermions, the right-handed antifermions, span
the dual representation C2∗.

Because these particles are paired up in the same SU(2) representation, physi-
cists often write them as doublets:

(
νL
e−L

) (
uL
dL

)

with the particle of higher I3 written on top. Note that we have suppressed color
on the quarks. This is conventional, and is done because SU(2) acts the same way
on all colors.

The particles in these doublets then interact via the exchange of W bosons,
which are the weak isospin analogues of the pions. Like the pions, there are three
W bosons:

W+ =

(
0 1
0 0

)
, W 0 =

(
1 0
0 −1

)
, W− =

(
0 0
1 0

)
.

They span the complexified adjoint rep of SU(2), sl(2,C), and they act on each of
the doublets like the pions act on the nucleons, via the action of sl(2,C) on C2. For
example,

W
+

d

u

Again, Feynman diagrams are the physicists’ way of drawing intertwining oper-
ators. Since all the C2’s are acted on by the same SU(2), they can interact with
each other via W boson exchange. For example, quarks and leptons can interact
via W ’s:
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d

u

ν

e
−

W
−

This is in sharp contrast to the old isospin theory. In the new theory, it is processes
like these that are responsible for the decay of the neutron:

ddu

udu

W
−

ν̄ e
−

The fact that only left-handed particles are combined into doublets reflects the
fact that only they take part in weak interactions. Every right-handed fermion,
on the other hand, is trivial under SU(2). Each one spans the trivial rep, C. An
example is the right-handed electron

e−R ∈ C.

Physicists call these particles singlets, meaning they are trivial under SU(2). This
is just the representation theoretic way of saying the right-handed electron, e−R, does
not participate in weak interactions.

In summary, left-handed fermions are grouped into doublets (nontrivial repre-
sentations of SU(2) on C2), while right-handed fermions are singlets (trivial repre-
sentations on C). So, the left-handed ones interact via the exchange of W bosons,
while the right-handed ones do not.
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The First Generation of Fermions — SU(2) Representations

Name Symbol Isospin SU(2) rep

Left-handed leptons

(
νL
e−L

)
± 1

2 C2

Left-handed quarks

(
uL
dL

)
± 1

2 C2

Right-handed neutrino νR 0 C

Right-handed electron e−R 0 C

Right-handed up quark uR 0 C

Right-handed down quark dR 0 C

2.3.2 Hypercharge and U(1)

In Section 2.2.2, we saw how to extend the notion of isospin to weak isospin, which
proved to be more fundamental, since we saw in Section 2.3.1 how this gives rise to
interactions among left-handed fermions mediated via W bosons.

We grouped all the fermions into SU(2) representations. When we did this in
Section 2.1, we saw that the SU(2) representations of particles were labeled by a
quantity, the hypercharge Y , which relates the isospin I3 to the charge Q via the
Gell-Mann–Nishijima formula

Q = I3 + Y/2.

We can use this formula to extend the notion of hypercharge to weak hyper-
charge, a quantity which labels the weak isospin representations. For left-handed
quarks, this notion, like weak isospin, coincides with the old isospin and hyper-
charge. We have weak hypercharge Y = 1

3 for these particles:

Q(uL) = I3(uL) + Y/2 = 1
2 + 1

6 = 2
3

Q(dL) = I3(dL) + Y/2 = − 1
2 + 1

6 = − 1
3 .

But just as weak isospin extended isospin to leptons, weak hypercharge extends
hypercharge to leptons. For left-handed leptons the Gell-Mann–Nishijima formula
holds if we set Y = −1:

Q(νL) = I3(νL) + Y/2 = 1
2 − 1

2 = 0

Q(e−L) = I3(e−L ) + Y/2 = − 1
2 − 1

2 = −1.

Note that the weak hypercharge of quarks comes in units one-third the size of
the weak hypercharge for leptons, a reflection of the fact that quark charges come
in units one-third the size of lepton charges. Indeed, thanks to the Gell-Mann–
Nishijima formula, these facts are equivalent.

For right-handed fermions, weak hypercharge is even simpler. Since I3 = 0 for
these particles, the Gell-Mann–Nishijima formula reduces to

Q = Y/2.
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So, the hypercharge of a right-handed fermion is twice its charge. In summary, the
fermions have these hypercharges:

The First Generation of Fermions — Hypercharge

Name Symbol Hypercharge
Y

Left-handed leptons

(
νL
e−L

)
−1

Left-handed quarks

(
uL
dL

)
1
3

Right-handed neutrino νR 0

Right-handed electron e−R −2

Right-handed up quark uR
4
3

Right-handed down quark dR − 2
3

But what is the meaning of hypercharge? We can start by reviewing our answer
for the quantity I3. This quantity, as we have seen, is related to how particles inter-
act via W bosons, because particles with I3 = ± 1

2 span the fundamental represen-
tation of SU(2), while the W bosons span the complexified adjoint representation,
which acts on any other representation. Yet there is a deeper connection.

In quantum mechanics, observables such as I3 correspond to self-adjoint opera-
tors. We will denote the operator corresponding to an observable with a caret; for
example, Î3 is the operator corresponding to I3. A state of specific I3, such as νL,
which has I3 = 1

2 , is an eigenvector,

Î3νL =
1

2
νL

with an eigenvalue that is the I3 of the state. This makes it easy to write Î3 as a
matrix when we let it act on the C2 with basis νL and e−L , or any other doublet.
We get

Î3 =

(
1
2 0
0 − 1

2

)
.

Note that this is an element of su(2) divided by i. So, it lies in sl(2,C), the
complexified adjoint representation of SU(2). In fact it equals 1

2W
0, one of the

gauge bosons. So, up to a constant of proportionality, the observable Î3 is one of
the gauge bosons!

Similarly, corresponding to hypercharge Y is an observable Ŷ . This is also, up
to proportionality, a gauge boson, though this gauge boson lives in the complexified
adjoint rep of U(1).

Here are the details. Particles with hypercharge Y span irreps CY of U(1).
Since U(1) is abelian, all of its irreps are one-dimensional. By CY we denote the
one-dimensional vector space C with action of U(1) given by

α · z = α3Y z.
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The factor of 3 takes care of the fact that Y might not be an integer, but is only
guaranteed to be an integral multiple of 1

3 . For example, the left-handed leptons

νL and e−L both have hypercharge Y = −1, so each one spans a copy of C−1:

νL ∈ C−1, e−L ∈ C−1

or, more compactly,
νL, e

−
L ∈ C−1 ⊗ C2

where C2 is trivial under U(1).
In summary, the fermions we have met thus far lie in these U(1) representations:

The First Generation of Fermions — U(1) Representations
Name Symbol U(1) rep

Left-handed leptons

(
νL
e−L

)
C−1

Left-handed quarks

(
uL
dL

)
C 1

3

Right-handed neutrino νR C0

Right-handed electron e−R C−2

Right-handed up quark uR C 4
3

Right-handed down quark dR C− 2
3

Now, the adjoint representation u(1) of U(1) is just the tangent space to the
unit circle in C at 1. It is thus parallel to the imaginary axis, and can be identified
with iR. It is generated by i. i also generates the complexification, C⊗ u(1) ∼= C,
though this also has other convenient generators, like 1. Given a particle ψ ∈ CY
of hypercharge Y , we can differentiate the action of U(1) on ψ

eiθ · ψ = e3iY θψ

and set θ = 0 to find out how u(1) acts:

i · ψ = 3iY ψ.

Dividing by i we obtain
1 · ψ = 3Y ψ.

In other words, we have

Ŷ =
1

3
∈ C

as an element of the complexified adjoint rep of U(1).
Particles with hypercharge interact by exchange of a boson, called the B bo-

son, which spans the complexified adjoint rep of U(1). Of course, since C is one-
dimensional, any nonzero element spans it. Up to a constant of proportionality, the
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B boson is just Ŷ , and we might as well take it to be equal to Ŷ , but calling it B
is standard in physics.

The B boson is a lot like another, more familiar U(1) gauge boson—the photon!
The hypercharge force which the B boson mediates is a lot like electromagnetism,
which is mediated by photons, but its strength is proportional to hypercharge rather
than charge. As usual, we can draw the U(1) intertwining operators as Feynman
diagrams:

B

2.3.3 Electroweak Symmetry Breaking

In the Standard Model, electromagnetism and the weak force are unified into the
electroweak force. This is is a U(1) × SU(2) gauge theory, and without saying
so, we just told you all about it in sections 2.3.1 and 2.3.2. The fermions live in
representations of hypercharge U(1) and weak isospin SU(2), exactly as we described
in those sections, and we tensor these together to get representations of U(1)×SU(2):

The First Generation of Fermions — U(1)× SU(2) Representations
Name Symbol Hypercharge Isospin U(1)× SU(2) rep

Left-handed leptons

(
νL
e−L

)
−1 ± 1

2 C−1 ⊗ C2

Left-handed quarks

(
uL
dL

)
1
3 ± 1

2 C 1
3
⊗ C2

Right-handed neutrino νR 0 0 C0 ⊗ C

Right-handed electron e−R −2 0 C−2 ⊗ C

Right-handed up quark uR
4
3 0 C 4

3
⊗ C

Right-handed down quark dR − 2
3 0 C− 2

3
⊗ C

These fermions interact by exchanging B and W bosons, which span C⊕sl(2,C),
the complexified adjoint representation of U(1)× SU(2).

Yet despite the electroweak unification, electromagnetism and the weak force are
very different at low energies, including most interactions in the everyday world.
Electromagnetism is a force of infinite range that we can describe by a U(1) gauge
theory, with the photon as gauge boson:
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γ

The photon lives in C ⊕ sl(2,C), alongside the B and W bosons. It is given by a
linear combination

γ = W 0 +B/2

that parallels the Gell-Mann–Nishijima formula, Q = I3 + Y/2.
The weak force is of very short range and mediated by the W and Z bosons:

W
+

W
−

Z

The Z boson lives in C⊕ sl(2,C), and is given by the linear combination

Z = W 0 −B/2

which is in some sense ‘perpendicular’ to the photon. So, we can expand our chart
of gauge bosons to include a basis for all of C⊕ sl(2,C) as follows:

Gauge Bosons (second try)
Force Gauge boson Symbol
Electromagnetism Photon γ

Weak force W and Z bosons W+, W− and Z

What makes the photon (and electromagnetism) so different from the W and
Z bosons (and the weak force)? It is symmetry breaking. Symmetry breaking
allows the full electroweak U(1)×SU(2) symmetry group to be hidden away at high
energy, replaced with the electomagnetic subgroup U(1) at lower energies. This
electromagnetic U(1) is not the obvious factor of U(1) given by U(1) × 1. It is
another copy, one which wraps around inside U(1) × SU(2) in a manner given by
the Gell-Mann–Nishijima formula.

The dynamics behind symmetry breaking are beyond the scope of this paper.
We will just mention that, in the Standard Model, electroweak symmetry breaking
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is believed to be due to the ‘Higgs mechanism’. In this mechanism, all particles in
the Standard Model, including the photon and the W and Z bosons, interact with
a particle called the ‘Higgs boson’, and it is their differing interactions with this
particle that makes them appear so different at low energies.

The Higgs boson has yet to be observed, and remains one of the most mysterious
parts of the Standard Model. As of this writing, the Large Hadron Collider at CERN
is beginning operations; searching for the Higgs boson is one of its primary aims.

For the details on symmetry breaking and the Higgs mechanism, which is essen-
tial to understanding the Standard Model, see Huang [17]. For a quick overview,
see Zee [40].

2.3.4 Color and SU(3)

There is one more fundamental force in the Standard Model: the strong force.
We have already met this force, as the force that keeps the nucleus together, but we
discussed it before we knew that protons and neutrons are made of quarks. Now we
need a force to keep quarks together inside the nucleons, and quark confinement tells
us it must be a very strong force indeed. It is this force that, in modern parlance, is
called the strong force and is considered fundamental. The force between nucleons
is a side effect of these more fundamental interactions among quarks.

Like all three forces in the Standard Model, the strong force is explained by a
gauge theory, this time with gauge group SU(3), the color symmetry group of the
quarks. The picture is simpler than that of electromagnetism and the weak force,
however, because this symmetry is ‘unbroken’.

By now you can guess how this goes. Every kind of quark spans the fundamental
representation C3 of SU(3). For example, the left-handed up quark, with its three
colors, lives in

urL, u
g
L, u

b
L ∈ C3

and the left-handed down quark, with its three colors, spans another copy of C3,

drL, d
g
L, d

b
L ∈ C3

Together, these span the SU(3) representation

C2 ⊗ C3

where C2 is trivial under SU(3).
The quarks interact by the exchange of gluons, the gauge bosons of the strong

force. These gauge bosons live in C ⊗ su(3) ∼= sl(3,C), the complexified adjoint
representation of SU(3). The interactions are drawn as Feynman diagrams, which
now depict intertwining operators between representations of SU(3):

q

q

q

q

g
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The gluons are fundamental particles, gauge bosons of the strong force, and they
complete our table of gauge bosons:

Gauge Bosons
Force Gauge Boson Symbol
Electromagnetism Photon γ

Weak force W and Z bosons W+, W− and Z

Strong force Gluons g

On the other hand, the leptons are ‘white’: they transform trivially under SU(3).
So, they do not exchange gluons. In other words, they are not affected by the strong
force. We can capture all of this information in a table, where we give the SU(3)
representations in which all our fermions live.

The First Generation of Fermions — SU(3) Representations

Name Symbol Colors SU(3) rep
Left-handed neutrino νL white C

Left-handed electron e−L white C

Left-handed up quarks urL, u
g
L, u

b
L r, g, b C3

Left-handed down quarks drL, d
g
L, d

b
L r, g, b C3

Right-handed electron e−R white C

Right-handed neutrino νR white C

Right-handed up quarks urR, u
g
R, u

b
R r, g, b C3

Right-handed down quarks drR, d
g
R, d

b
R r, g, b C3

2.4 The Standard Model Representation

We are now in a position to put the entire Standard Model together in a single
picture, much as we combined the isospin SU(2) and hypercharge U(1) into the
electroweak gauge group, U(1) × SU(2), in Section 2.3.3. We then tensored the
hypercharge U(1) representations with the isospin SU(2) representations to get the
electroweak representations.

Now let us take this process one step further, by bringing in a factor of SU(3),
for the color symmetry, and tensoring the representations of U(1)× SU(2) with the
representations of SU(3). Doing this, we get the Standard Model. The Standard
Model has this gauge group:

GSM = U(1)× SU(2)× SU(3).
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The fundamental fermions described by the Standard Model combine to form rep-
resentations of this group. We know what these are, and describe all of them in
Table 1.

The Standard Model Representation
Name Symbol U(1)× SU(2)× SU(3) rep

Left-handed leptons

(
νL
e−L

)
C−1 ⊗ C2 ⊗ C

Left-handed quarks

(
urL, u

g
L, u

b
L

drL, d
g
L, d

b
L

)
C 1

3
⊗ C2 ⊗ C3

Right-handed neutrino νR C0 ⊗ C⊗ C

Right-handed electron e−R C−2 ⊗ C⊗ C

Right-handed up quarks (urR, u
g
R, u

b
R) C 4

3
⊗ C⊗ C3

Right-handed down quarks (drR, d
g
R, d

b
R) C− 2

3
⊗ C⊗ C3

Table 1: Fundamental fermions as representations of GSM = U(1)×SU(2)×SU(3)

All of the representations of GSM in the left-hand column are irreducible, since
they are made by tensoring irreps of this group’s three factors, U(1), SU(2) and
SU(3). This is a general fact: if V is an irrep of G, and W is an irrep of H , then
V ⊗W is an irrep of G×H . Moreover, all irreps of G×H arise in this way.

On the other hand, if we take the direct sum of all these irreps,

F = (C−1 ⊗ C2 ⊗ C) ⊕ · · · ⊕ (C− 2
3
⊗ C⊗ C3),

we get a reducible representation containing all the first-generation fermions in the
Standard Model. We call F the fermion representation. If we take the dual of
F , we get a representation describing all the antifermions in the first generation.
And taking the direct sum of these spaces:

F ⊕ F ∗

we get a representation of GSM that we will call the Standard Model repre-
sentation. It contains all the first-generation elementary particles in the Standard
Model. It does not contain the gauge bosons or the mysterious Higgs.

The fermions living in the Standard Model representation interact by exchanging
gauge bosons that live in the complexified adjoint representation of GSM. We have
already met all of these, and we collect them in Table 2.
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Gauge Bosons
Force Gauge Boson Symbol

Electromagnetism Photon γ

Weak force W and Z bosons W+, W− and Z

Strong force Gluons g

Table 2: Gauge bosons

Of all the particles and antiparticles in F ⊕ F ∗, exactly two of them are fixed
by the action of GSM. These are the right-handed neutrino

νR ∈ C0 ⊗ C⊗ C

and its antiparticle
νL ∈ (C0 ⊗ C⊗ C)∗,

both of which are trivial representations of GSM; they thus do not participate in any
forces mediated by the gauge bosons of the Standard Model. They might interact
with the Higgs boson, but very little about right-handed neutrinos is known with
certainty at this time.

2.5 Generations

Our description of the Standard Model is almost at an end. We have told you about
its gauge group, GSM, its representation F ⊕F ∗ on the first generation of fermions
and antifermions, and a bit about how these fermions interact by exchanging gauge
bosons, which live in the complexified adjoint rep of GSM. For the grand unified
theories we are about to discuss, that is all we need. The stage is set.

Yet we would be derelict in our duty if we did not mention the second and third
generation of fermions. The first evidence for these came in the 1930s, when a
charged particle 207 times as heavy as the electron was found. At first researchers
thought it was the particle predicted by Yukawa—the one that mediates the strong
force between nucleons. But then it turned out the newly discovered particle was
not affected by the strong force. This came as a complete surprise. As the physicist
Rabi quipped at the time: “Who ordered that?”

Dubbed the muon and denoted µ−, this new particle turned out to act like an
overweight electron. Like the electron, it feels only the electromagnetic and weak
force—and like the electron, it has its own neutrino! So, the neutrino we have been
discussing so far is now called the electron neutrino, νe, to distinguish it from
the muon neutrino, νµ. Together, the muon and the muon neutrino comprise the
second generation of leptons. The muon decays via the weak force into an electron,
a muon neutrino, and an electron antineutrino:

µ− → e− + νµ + νe.

Much later, in the 1970s, physicists realized there was also a second generation
of quarks: the charm quark, c, and the strange quark, s. This was evidence
of another pattern in the Standard Model: there are as many flavors of quark as
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there are leptons. In Section 3.3, we will learn about the Pati–Salam model, which
explains this pattern by unifying quarks and leptons.

Today, we know about three generations of fermions. Three of quarks:

Quarks by Generation
1st Generation 2nd Generation 3rd Generation
Name Symbol Name Symbol Name Symbol

Up u Charm c Top t

Down d Strange s Bottom b

and three of leptons:

Leptons by Generation
1st Generation 2nd Generation 3rd Generation

Name Symbol Name Symbol Name Symbol

Electron νe Muon νµ Tau ντ
neutrino neutrino neutrino

Electron e− Muon µ− Tau τ−

The second and third generations of quarks and charged leptons differ from the first
by being more massive and able to decay into particles of the earlier generations.
The various neutrinos do not decay, and for a long time it was thought they were
massless, but now it is known that some and perhaps all of them are massive. This
allows them to change back and forth from one type to another, a phenomenon
called ‘neutrino oscillation’.

The Standard Model explains all of this by something called the Higgs mech-
anism. Apart from how they interact with the Higgs boson, the generations are
identical. For instance, as representations of GSM, each generation spans another
copy of F . Each generation of fermions has corresponding antifermions, spanning
a copy of F ∗.

All told, we thus have three copies of the Standard Model representation, F⊕F ∗.
We will only need to discuss one generation, so we find it convenient to speak as if
F ⊕ F ∗ contains particles of the first generation. No one knows why the Standard
Model is this redundant, with three sets of very similar particles. It remains a
mystery.

3 Grand Unified Theories

Not all of the symmetries of GSM, the gauge group of the Standard Model, are
actually seen in ordinary life. This is because some of the symmetries are ‘sponta-
neously broken’. This means that while they are symmetries of the laws of physics,
they are not symmetries of the vacuum. To see these symmetries we need to do
experiments at very high energies, where the asymmetry of the vacuum has less
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effect. So, the behavior of particles at lower energies is like a shadow of the funda-
mental laws of physics, cast down from on high: a cryptic clue we must struggle to
interpret.

It is reasonable to ask if this process continues. Could the symmetries of the
Standard Model be just a subset of all the symmetries in nature? Could they be
the low energy shadows of laws still more symmetric?

A grand unified theory, or GUT, constitutes a guess at what these ‘more sym-
metric’ laws might be. It is a theory with more symmetry than the Standard
Model, which reduces to the Standard Model at lower energies. It is also, therefore,
an attempt to describe the physics at higher energies.

GUTs are speculative physics. The Standard Model has been tested in countless
experiments. There is a lot of evidence that it is an incomplete theory, and some
vague clues about what the next theory might be like, but so far there is no empirical
evidence that any GUT is correct—and even some empirical evidence that some
GUTs, like SU(5), are incorrect.

Nonetheless, GUTs are interesting to theoretical physicists, because they allow
us to explore some very definite ideas about how to extend the Standard Model.
And because they are based almost entirely on the representation theory of compact
Lie groups, the underlying physical ideas provide a marvelous playground for this
beautiful area of mathematics.

Amazingly, this beauty then becomes a part of the physics. The representa-
tion of GSM used in the Standard Model seems ad hoc. Why this one? Why all
those seemingly arbitrary hypercharges floating around, mucking up some otherwise
simple representations? Why do both leptons and quarks come in left- and right-
handed varieties, which transform so differently? Why do quarks come in charges
which are in units 1

3 times an electron’s charge? Why are there the same number
of quarks and leptons? GUTs can shed light on these questions, using only group
representation theory.

3.1 The SU(5) GUT

The SU(5) grand unified theory appeared in a 1974 paper by Howard Georgi and
Sheldon Glashow [12]. It was the first grand unified theory, and is still considered
the prototypical example. As such, there are many accounts of it in the physics
literature. The textbooks by Ross [31] and Mohapatra [21] both devote an entire
chapter to the SU(5) theory, and a lucid summary can be found in a review article by
Witten [39], which also discusses the supersymmetric generalization of this theory.

In this section, we will limit our attention to the nonsupersymmetric version of
SU(5) theory, which is how it was originally proposed. Unfortunately, this theory
has since been ruled out by experiment; it predicts that protons will decay faster
than the current lower bound on proton lifetime [26]. Nevertheless, because of its
prototypical status and intrinsic interest, we simply must talk about the SU(5)
theory.

The core idea behind the SU(5) grand unified theory is that because the Standard
Model representation F ⊕ F ∗ is 32-dimensional, each particle or antiparticle in the
first generation of fermions can be named by a 5-bit code. Roughly speaking, these
bits are the answers to five yes-or-no questions:

• Is the particle isospin up?

• Is it isospin down?
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• Is it red?

• Is it green?

• Is it blue?

There are subtleties involved when we answer ‘yes’ to both the first two questions,
or ‘yes’ to more than one of the last three, but let us start with an example where
these issues do not arise: the bit string 01100. This names a particle that is down
and red. So, it refers to a red quark whose isospin is down, meaning − 1

2 . Glancing
at Table 1, we see just one particle meeting this description: the red left-handed
down quark, drL.

We can flesh out this scheme by demanding that the operation of taking an-
tiparticles correspond to switching 0’s for 1’s in the code. So the code for the
antiparticle of drL, the ‘antired right-handed antidown antiquark’, is 10011. This is
cute: it means that being antidown is the same as being up, while being antired is
the same as being both green and blue.

Furthermore, in this scheme all antileptons are ‘black’ (the particles with no
color, ending in 000), while leptons are ‘white’ (the particles with every color,
ending in 111). Quarks have exactly one color, and antiquarks have exactly two.

We are slowly working our way to the SU(5) theory. Next let us bring Hilbert
spaces into the game. We can take the basic properties of being up, down, red,
green or blue, and treat them as basis vectors for C5. Let us call these vectors
u, d, r, g, b. The exterior algebra ΛC5 has a basis given by wedge products of these 5
vectors. This exterior algebra is 32-dimensional, and it has a basis labelled by 5-bit
strings. For example, the bit string 01100 corresponds to the basis vector d ∧ r,
while the bit string 10011 corresponds to u ∧ g ∧ b.

Next we bring in representation theory. The group SU(5) has an obvious repre-
sentation on C5. And since the operation of taking exterior algebras is functorial,
this group also has a representation on ΛC5. In the SU(5) grand unified theory, this
is the representation we use to describe a single generation of fermions and their
antiparticles.

Just by our wording, though, we are picking out a splitting of C5 into C2 ⊕C3:
the isospin and color parts, respectively. Choosing such a splitting of C5 picks out
a subgroup of SU(5), the set of all group elements that preserve this splitting. This
subgroup consists of block diagonal matrices with a 2× 2 block and a 3× 3 block,
both unitary, such that the determinant of the whole matrix is 1. Let us denote
this subgroup as S(U(2)× U(3)).

Now for the miracle: the subgroup S(U(2)×U(3)) is isomorphic to the Standard
Model gauge group (at least modulo a finite subgroup). And, when we restrict the
representation of SU(5) on ΛC5 to S(U(2) × U(3)), we get the Standard Model
representation!

There are two great things about this. The first is that it gives a concise and
mathematically elegant description of the Standard Model representation. The
second is that the seemingly ad hoc hypercharges in the Standard Model must be
exactly what they are for this description to work. So, physicists say the SU(5)
theory explains the fractional charges of quarks: the fact that quark charges come
in units 1

3 the size of the electron charge pops right out of this theory.
With this foretaste of the fruits the SU(5) theory will bear, let us get to work

and sow the seeds. Our work will have two parts. First we need to check that

S(U(2)×U(3)) ∼= GSM/N
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where N is some finite normal subgroup that acts trivially on F ⊕ F ∗. Then we
need to check that indeed

ΛC5 ∼= F ⊕ F ∗

as representations of S(U(2)×U(3)).
First, the group isomorphism. Naively, one might seek to build the SU(5) theory

by including GSM as a subgroup of SU(5). Can this be done? Clearly, we can
include SU(2)× SU(3) as block diagonal matrices in SU(5):

SU(2)× SU(3) → SU(5)

(g, h) 7−→
(
g 0
0 h

)
.

but this is not enough, because GSM also has that pesky factor of U(1), related to
the hypercharge. How can we fit that in?

The first clue is that elements of U(1) must commute with the elements of
SU(2) × SU(3). But the only elements of SU(5) that commute with everybody in
the SU(2)×SU(3) subgroup are diagonal, since they must separately commute with
SU(2) × 1 and 1 × SU(3), and the only elements doing so are diagonal. Moreover,
they must be scalars on each block. So, they have to look like this:

(
α 0
0 β

)

where α stands for the 2× 2 identity matrix times the complex number α ∈ U(1),
and similarly for β in the 3× 3 block. For the above matrix to lie in SU(5), it must
have determinant 1, so α2β3 = 1. This condition cuts the group of such matrices
from U(1)×U(1) down to U(1). In fact, all such matrices are of the form

(
α3 0
0 α−2

)

where α runs over U(1).
So if we throw in elements of this form, do we get U(1)× SU(2)× SU(3)? More

precisely, does this map:

φ: GSM → SU(5)

(α, g, h) 7−→
(
α3g 0

0 α−2h

)

give an isomorphism between GSM and S(U(2) × U(3))? It is clearly a homomor-
phism. It clearly maps GSM into the subgroup S(U(2) × U(3)), and it is easy to
check that it maps GSM onto this subgroup. But is it one-to-one?

The answer is no: the map φ has a kernel, Z6. The kernel is the set of all
elements of the form

(α, α−3, α2) ∈ U(1)× SU(2)× SU(3)

and this is Z6, because scalar matrices α−3 and α2 live in SU(2) and SU(3), respec-
tively, if and only if α is a sixth root of unity. So, all we get is

GSM/Z6
∼= S(U(2)×U(3)) ↪→ SU(5).

This sets up a nerve-wracking test that the SU(5) theory must pass for it to
have any chance of success. After all, not all representations of GSM factor through
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GSM/Z6, but all those coming from representations of SU(5) must do so. A repre-
sentation of GSM will factor through GSM/Z6 only if the Z6 subgroup acts trivially.

In short: the SU(5) GUT is doomed unless Z6 acts trivially on every fermion.
(And antifermion, but that amounts to the same thing.) For this to be true, some
nontrivial relations between hypercharge, isospin and color must hold.

For example, consider the left-handed electron

e−L ∈ C−1 ⊗ C2 ⊗ C.

For any sixth root of unity α, we need

(α, α−3, α2) ∈ U(1)× SU(2)× SU(3)

to act trivially on this particle. Let us see how it acts. Note that:

• α ∈ U(1) acts on C−1 as multiplication by α−3;

• α−3 ∈ SU(2) acts on C2 as multiplication by α−3;

• α2 ∈ SU(3) acts trivially on C.

So, we have
(α, α−3, α2) · e−L = α−3α−3e−L = e−L .

The action is indeed trivial—precisely because α is a sixth root of unity.
Or, consider the right-handed d quark:

dR ∈ C− 2
3
⊗ C⊗ C3.

How does (α, α−3, α2) act on this? We note:

• α ∈ U(1) acts on C− 2
3

as multiplication by α−2;

• α−3 ∈ SU(2) acts trivially on the trivial representation C;

• α2 ∈ SU(3) acts on C3 as multiplication by α2.

So, we have
(α, α−3, α2) · dR = α−2α2dR = dR.

Again, the action is trivial.
For SU(5) to work, though, Z6 has to act trivially on every fermion. There are

16 cases to check, and it is an awful lot to demand that hypercharge, the most
erratic part of the Standard Model representation, satisfies 16 relations.

Or is it? In general, for a fermion with hypercharge Y , there are four distinct
possibilities:

Hypercharge relations
Case Representation Relation
Nontrivial SU(2), nontrivial SU(3) ⇒ CY ⊗ C2 ⊗ C3 ⇒ α3Y−3+2 = 1
Nontrivial SU(2), trivial SU(3) ⇒ CY ⊗ C2 ⊗ C ⇒ α3Y−3 = 1
Trivial SU(2), nontrivial SU(3) ⇒ CY ⊗ C⊗ C3 ⇒ α3Y+2 = 1
Trivial SU(2), trivial SU(3) ⇒ CY ⊗ C⊗ C ⇒ α3Y = 1

Better yet, say it like a physicist!
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Hypercharge relations
Case Representation Relation
Left-handed quark ⇒ CY ⊗ C2 ⊗ C3 ⇒ α3Y−3+2 = 1
Left-handed lepton ⇒ CY ⊗ C2 ⊗ C ⇒ α3Y−3 = 1
Right-handed quark ⇒ CY ⊗ C⊗ C3 ⇒ α3Y+2 = 1
Right-handed lepton ⇒ CY ⊗ C⊗ C ⇒ α3Y = 1

But α is sixth root of unity, so all this really says is that those exponents are
multiples of six:

Hypercharge relations
Case Relation
Left-handed quark ⇒ 3Y − 3 + 2 ∈ 6Z
Left-handed lepton ⇒ 3Y − 3 ∈ 6Z
Right-handed quark ⇒ 3Y + 2 ∈ 6Z
Right-handed lepton ⇒ 3Y ∈ 6Z

Dividing by 3 and doing a little work, it is easy to see these are just saying:

Hypercharge relations
Case Hypercharge

Left-handed quark Y = even integer + 1
3

Left-handed lepton Y = odd integer
Right-handed quark Y = odd integer + 1

3

Right-handed lepton Y = even integer

Table 3: Hypercharge relations

Now it is easy to check that this indeed holds for every fermion in the standard
model. SU(5) passes the test, not despite the bizarre pattern followed by hyper-
charges, but because of it!

By this analysis, we have shown that Z6 acts trivially on the Standard Model
rep, so it is contained in the kernel of this rep. It is better than just a containment
though: Z6 is the entire kernel. Because of this, we could say that GSM/Z6 is the
‘true’ gauge group of the Standard Model. And because we now know that

GSM/Z6
∼= S(U(2)×U(3)) ↪→ SU(5),

it is almost as though this Z6 kernel, lurking inside GSM this whole time, was a
cryptic hint to try the SU(5) theory.

Of course, we still need to find a representation of SU(5) that extends the Stan-
dard Model representation. Luckily, there is a very beautiful choice that works:
the exterior algebra ΛC5. Since SU(5) acts on C5, it has a representation on ΛC5.
Our next goal is to check that pulling back this representation from SU(5) to GSM
using φ, we obtain the Standard Model representation F ⊕ F ∗.

As we do this, we will see another fruit of the SU(5) theory ripen. The triviality
of Z6 already imposed some structure on hypercharges, as outlined above in Table 3.
As we fit the fermions into ΛC5, we will see this is no accident: the hypercharges
have to be exactly what they are for the SU(5) theory to work.

To get started, our strategy will be to use the fact that, being representations
of compact Lie groups, both the fermions F ⊕F ∗ and the exterior algebra ΛC5 are
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completely reducible, so they can be written as a direct sum of irreps. We will then
match up these irreps one at a time.

The fermions are already written as a direct sum of irreps, so we need to work
on ΛC5. Now, any element g ∈ SU(5) acts as an automorphism of the exterior
algebra ΛC5:

g(v ∧ w) = gv ∧ gw
where v, w ∈ ΛC5. Since we know how g acts on the vectors in C5, and these
generate ΛC5, this rule is enough to tell us how g acts on all of ΛC5. This action
respects grades in ΛC5, so each exterior power in

ΛC5 ∼= Λ0C5 ⊕ Λ1C5 ⊕ Λ2C5 ⊕ Λ3C5 ⊕ Λ4C5 ⊕ Λ5C5

is a subrepresentation. In fact, these are all irreducible, so this is how ΛC5 breaks
up into irreps of SU(5). Upon restriction to GSM, some of these summands break
apart further into irreps of GSM.

Let us see how this works, starting with the easiest cases. Λ0C5 and Λ5C5

are both trivial irreps of GSM. There are two trivial irreps in the Standard Model
representation, namely 〈νR〉 and its dual 〈νL〉, where we use angle brackets to stand
for the Hilbert space spanned by a vector or collection of vectors. So, we could select
Λ0C5 = 〈νL〉 and Λ5C5 = 〈νR〉, or vice versa. At this juncture, we have no reason
to prefer one choice to the other.

Next let us chew on the next piece: the first exterior power, Λ1C5. We have

Λ1C5 ∼= C5

as vector spaces, and as representations of GSM. But what is C5 as a representation
of GSM? The Standard Model gauge group acts on C5 via the map

φ: (α, g, h) 7−→
(
α3g 0

0 α−2h

)
.

Clearly, this action preserves the splitting into the ‘isospin part’ and the ‘color part’
of C5:

C5 ∼= C2 ⊕ C3.

So, let us examine these two subrepresentations in turn:

• The C2 part transforms in the hypercharge 1 rep of U(1): that is, α acts as
multiplication by α3. It transforms according to the fundamental representa-
tion of SU(2), and the trivial representation of SU(3). This seems to describe
a left-handed lepton with hypercharge 1.

• The C3 part transforms in the hypercharge − 2
3 rep of U(1): that is, α acts

as multiplication by α−2. It transforms trivially under SU(2), and according
to the fundamental representation of SU(3). Table 1 shows that these are the
features of a right-handed down quark.

In short, as a rep of GSM, we have

C5 ∼= C1 ⊗ C2 ⊗ C ⊕ C− 2
3
⊗ C⊗ C3

and we have already guessed which particles these correspond to. The first summand
looks like a left-handed lepton with hypercharge 1, while the second is a right-handed
quark with hypercharge − 2

3 .
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Now this is problematic, because another glance at Table 1 reveals that there is
no left-handed lepton with hypercharge 1. The only particles with hypercharge 1
are the right-handed antileptons, which span the representation

〈
e+
R

νR

〉
∼= C1 ⊗ C2∗ ⊗ C.

But wait! SU(2) is unique among the SU(n)’s in that its fundamental rep C2 is
self-dual:

C2 ∼= C2∗.

This saves the day. As a rep of GSM, C5 becomes

C5 ∼= C1 ⊗ C2∗ ⊗ C ⊕ C− 2
3
⊗ C⊗ C3

so it describes the right-handed antileptons with hypercharge 1 and the right-handed
quarks with hypercharge − 2

3 . In other words:

Λ1C5 ∼= C5 ∼=
〈
e+
R

νR

〉
⊕ 〈dR〉

where we have omitted the color label on dR to save space. Take heed of this: 〈dR〉
is short for the vector space 〈drR, dgR, dbR〉, and it is three-dimensional.

Now we can use our knowledge of the first exterior power to compute the second
exterior power, by applying the formula

Λ2(V ⊕W ) ∼= Λ2V ⊕ (V ⊗W ) ⊕ Λ2W.

So, let us calculate! As reps of GSM we have

Λ2C5 ∼= Λ2(C1 ⊗ C2 ⊗ C ⊕ C− 2
3
⊗ C2 ⊗ C3)

∼= Λ2(C1⊗C2⊗C) ⊕ (C1⊗C2⊗C)⊗(C− 2
3
⊗C⊗C3) ⊕ Λ2(C− 2

3
⊗C⊗C3).

Consider the first summand, Λ2(C1 ⊗ C2 ⊗ C). As a rep of SU(2) this space
is just Λ2C2, which is the one-dimensional trivial rep, C. As a rep of SU(3) it is
also trivial. But as a rep of U(1), it is nontrivial. Inside it we are juxtaposing two
particles with hypercharge 1. Hypercharges add, just like charges, so the composite
particle, which consists of one particle and the other, has hypercharge 2. So, as a
representation of the Standard Model gauge group we have

Λ2(C1 ⊗ C2 ⊗ C) ∼= C2 ⊗ C⊗ C.

Glancing at Table 1 we see this matches the left-handed positron, e+
L . Note that the

hypercharges are becoming useful now, since they uniquely identify all the fermion
and antifermion representations, except for neutrinos.

Next consider the second summand:

(C1 ⊗ C2 ⊗ C)⊗ (C− 2
3
⊗ C⊗ C3).

Again, we can add hypercharges, so this representation of GSM is isomorphic to

C 1
3
⊗ C2 ⊗ C3.
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This is the space for left-handed quarks of hypercharge 1
3 , which from Table 1 is:

〈
uL
dL

〉

where once again we have suppressed the label for colors.
Finally, the third summand in Λ2C5 is

Λ2(C− 2
3
⊗ C⊗ C3).

This has isospin − 4
3 , so by Table 1 it had better correspond to the left-handed

antiup antiquark, which lives in the representation

C− 4
3
⊗ C⊗ C3∗.

Let us check. The rep Λ2(C− 2
3
⊗C⊗C3) is trivial under SU(2). As a rep of SU(3)

it is the same as Λ2C3. But because SU(3) preserves the volume form on C3, taking
Hodge duals gives an isomorphism

ΛpC3 ∼= (Λ3−pC3)∗

so we have
Λ2C3 ∼= (Λ1C3)∗ ∼= C3∗

which is just what we need to show

Λ2(C− 2
3
⊗ C3) ∼= C− 4

3
⊗ C⊗ C3∗ ∼= 〈uL〉.

In summary, the following pieces of the Standard Model rep sit inside Λ2C5:

Λ2C5 ∼= 〈e+
L〉 ⊕

〈
uL
dL

〉
⊕ 〈uL〉

We are almost done. Because SU(5) preserves the canonical volume form on C5,
taking Hodge duals gives an isomorphism between

ΛpC5 ∼= (Λ5−pC5)∗

as representations of SU(5). Thus given our results so far:

Λ0C5 ∼= 〈νL〉

Λ1C5 ∼=
〈
e+
R

νR

〉
⊕ 〈dR〉

Λ2C5 ∼= 〈e+
L〉 ⊕

〈
uL
dL

〉
⊕ 〈uL〉

we automatically get the antiparticles of these upon taking Hodge duals,

Λ3C5 ∼= 〈e−R〉 ⊕
〈
dR
uR

〉
⊕ 〈uR〉

Λ4C5 ∼=
〈
νL
e−L

〉
⊕ 〈dL〉

Λ5C5 ∼= 〈νR〉.
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So ΛC5 ∼= F ⊕ F ∗, as desired.
How does all this look in terms of the promised binary code? Remember, a 5-bit

code is short for a wedge product of basis vectors u, d, r, g, b ∈ C5. For example,
01101 corresponds to d∧r∧b. And now that we have found an isomorphism ΛC5 ∼=
F ⊕F ∗, each of these wedge products corresponds to a fermion or antifermion. How
does this correspondence go, exactly?

First consider the grade-one part Λ1C5 ∼= C2 ⊕ C3. This has basis vectors
called u, d, r, g, and b. We have seen that the subspace C2, spanned by u and d,
corresponds to 〈

e+
R

νR

〉
.

The top particle here has isospin up, while the bottom one has isospin down, so we
must have e+

R = u and νR = d. Likewise, the subspace C3 spanned by r, g and b
corresponds to

〈dR〉 = 〈drR, dgR, dbR〉.
Thus we must have dcR = c, where c runs over the colors r, g, b.

Next consider the grade-two part:

Λ2C5 ∼= 〈e+
L〉 ⊕

〈
uL
dL

〉
⊕ 〈uL〉.

Here e+
L lives in the one-dimensional Λ2C2 rep of SU(2), which is spanned by the

vector u ∧ d. Thus, e+
L = u ∧ d. The left-handed quarks live in the C2 ⊗ C3 rep

of SU(2)× SU(3), which is spanned by vectors that consist of one isospin and one
color. We must have ucL = u ∧ c and dcL = d ∧ c, where again c runs over all the
colors r, g, b. And now for the tricky part: the uL quarks live in the Λ2C3 rep of
SU(3), but this is isomorphic to the fundamental representation of SU(3) on C3∗,
which is spanned by antired, antired and antiblue:

r = g ∧ b, g = b ∧ r, b = r ∧ g.

These vectors form the basis of Λ2C3 that is dual to r, g, and b under Hodge duality
in ΛC3. So we must have

ucL = c

where c can be any anticolor. Take heed of the fact that c is grade 2, even though
it may look like grade 1.

To work out the other grades, note that Hodge duality corresponds to switching
0’s and 1’s in our binary code. For instance, the dual of 01101 is 10010: or written
in terms of basis vectors, the dual of d∧ r ∧ b is u∧ g. Thus given the binary codes
for the first few exterior powers:

Λ0C5 Λ1C5 Λ2C5

νL = 1 e+
R = u e+

L = u ∧ d
νR = d ucL = u ∧ c
dcR = c dcL = d ∧ c

ucL = c

taking Hodge duals gives the binary codes for the rest:
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Λ3C5 Λ4C5 Λ5C5

e−R = r ∧ g ∧ b e−L = d ∧ r ∧ g ∧ b νR = u ∧ d ∧ r ∧ g ∧ b
ucR = d ∧ c νL = u ∧ r ∧ g ∧ b
d
c

R = u ∧ c d
c

L = u ∧ d ∧ c
ucR = u ∧ d ∧ c

Putting these together, we get the binary code for every particle and antiparticle
in the first generation of fermions. To save space, let us omit the wedge product
symbols:

The Binary Code for SU(5)
Λ0C5 Λ1C5 Λ2C5 Λ3C5 Λ4C5 Λ5C5

νL = 1 e+
R = u e+

L = ud e−R = rgb e−L = drgb νR = udrgb

νR = d ucL = uc ucR = dc νL = urgb

dcR = c dcL = dc d
c

R = uc d
c

L = udc

ucL = c ucR = udc

Table 4: Binary code for first-generation fermions, where c = r, g, b and c = gb, br, rg

Now we can see a good, though not decisive, reason to choose Λ0C5 ∼= νL. With
this choice, and not the other, we get left-handed particles in the even grades, and
right-handed particles in the odd grades. We choose to have this pattern now, but
later on we need it.

Table 4 defines a linear isomorphism f :F ⊕ F ∗ → ΛC5 in terms of the basis
vectors, so the equations in this table are a bit of an exaggeration. When we write
say, e+

R = u, we really mean f(e+
R) = u. This map f is an isomorphism between

representations of GSM. It tells us how these representations are the ‘same’.
More precisely, we mean these representations are the same when we identify

S(U(2)×U(3)) with GSM/Z6 using the isomorphism induced by φ. In general, we
can think of a unitary representation as a Lie group homomorphism

G→ U(V )

where V is a finite-dimensional Hilbert space and U(V ) is the Lie group of unitary
operators on V . In this section we have been comparing two unitary representations:
an ugly, complicated representation of GSM:

GSM → U(F ⊕ F ∗)

and a nice, beautiful representation of SU(5):

SU(5)→ U(ΛC5).

We built a homomorphism
φ:GSM → SU(5),
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so it is natural to wonder if is there a fourth homomorphism

U(F ⊕ F ∗)→ U(ΛC5)

such that this square:

GSM
φ //

��

SU(5)

��
U(F ⊕ F ∗) // U(ΛC5)

commutes.
Indeed, we just showed this! We have seen that there exists a unitary operator

from the Standard Model rep to ΛC5, say

f :F ⊕ F ∗ ∼→ ΛC5,

such that the induced isomorphism of the unitary groups,

U(f): U(F ⊕ F ∗) ∼→ U(ΛC5),

makes the above square commute. So, let us summarize this result as a theorem:

Theorem 1. The following square commutes:

GSM
φ //

��

SU(5)

��
U(F ⊕ F ∗) U(f) // U(ΛC5)

where the left vertical arrow is the Standard Model representation and the right one
is the natural representation of SU(5) on the exterior algebra of C5.

3.2 The Spin(10) Theory

We now turn our attention to another grand unified theory. Physicists call it the
‘SO(10) theory’, but we shall call it the Spin(10) theory, because the Lie group
involved is really Spin(10), the double cover of SO(10). This theory appeared in
a 1974 paper by Georgi [10], shortly after his paper with Glashow on the SU(5)
theory. However, Georgi has said that he conceived of the Spin(10) theory first.
See Zee [40], Chapter VII.7, for a concise and readable account.

The SU(5) GUT has helped us explain the pattern of hypercharges in the Stan-
dard Model, and thanks to the use of the exterior algebra, ΛC5, we can interpret it
in terms of a binary code. This binary code explains another curious fact about the
Standard Model. Specifically, why is the number of fermions a power of 2? There
are 16 fermions, and 16 antifermions, which makes the Standard Model rep have
dimension

dim(F ⊕ F ∗) = 25 = 32.

With the binary code interpretation, it could not be any other way.
In actuality, however, the existence of a right-handed neutrino (or its antipar-

ticle, the left-handed antineutrino) has been controversial. Because it transforms
trivially in the Standard Model, it does not interact with anything except perhaps
the Higgs.
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The right-handed neutrino certainly improves the aesthetics of the SU(5) theory.
When we include this particle (and its antiparticle), we obtain the rep

Λ0C5 ⊕ Λ1C5 ⊕ Λ2C5 ⊕ Λ3C5 ⊕ Λ4C5 ⊕ Λ5C5

which is all of ΛC5, whereas without this particle we would just have

Λ1C5 ⊕ Λ2C5 ⊕ Λ3C5 ⊕ Λ4C5

which is much less appealing—it wants to be ΛC5, but it comes up short.
More importantly, there is increasing indirect evidence from experimental par-

ticle physics that right-handed neutrinos do exist. For details, see Pati [27]. If
this is true, the number of fermions really could be 16, and we have a ready-made
explanation for that number in the binary code.

However, this creates a new mystery. The SU(5) works nicely with the repre-
sentation ΛC5, but SU(5) does not require this. It works just fine with the smaller
rep

Λ1C5 ⊕ Λ2C5 ⊕ Λ3C5 ⊕ Λ4C5.

It would be nicer to have a theory that required us to use all of ΛC5. Better yet, if
our new GUT were an extension of SU(5), the beautiful explanation of hypercharges
would live on in our new theory. With luck, we might even get away with using the
same underlying vector space, ΛC5. Could it be that the SU(5) GUT is only the
beginning of the story? Could unification go on, with a grand unified theory that
extends SU(5) just as SU(5) extended the Standard Model?

Let us look for a group that extends SU(5) and has an irrep whose dimension is
some power of 2. The dimension is a big clue. What representations have dimensions
that are powers of 2? Spinors.

What are spinors? They are certain representations of Spin(n), the double cover
of the rotation group in n dimensions, which do not factor through the quotient
SO(n). Their dimensions are always a power of two. We build them by exhibiting
Spin(n) as a subgroup of a Clifford algebra. Recall that the Clifford algebra Cliffn
is the associative algebra freely generated by Rn with relations

vw + wv = −2〈v, w〉.

If we take products of pairs of unit vectors in Rn inside this algebra, these generate
the group Spin(n): multiplication in this group coincides with multiplication in
the Clifford algebra. Using this fact, we can get representations of Spin(2n) from
modules of Cliffn.

We can use this method to get a rep of Spin(10) on ΛC5 that extends the rep
of SU(5) on this space. In fact, quite generally Cliff2n acts on ΛCn. Then, because

Spin(2n) ↪→ Cliff2n,

ΛCn becomes a representation of Spin(2n), called the Dirac spinor representa-
tion.

To see this, we use operators on ΛCn called ‘creation and annihilation opera-
tors’. Let e1, . . . , en be the standard basis for Cn. Each of these gives a creation
operator:

a∗j : ΛCn → ΛCn
ψ 7→ ej ∧ ψ.
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We use the notation a∗j because ΛCn is a Hilbert space, so a∗j is the adjoint of some
other operator

aj : ΛCn → ΛCn,

which is called an annihilation operator.
In physics, we can think of the basis vectors ej as particles. For example, in

the binary code approach to the SU(5) theory we imagine five particles from which
the observed particles in the Standard Model are composed: up, down, red, green
and blue. Taking the wedge product with ej ‘creates a particle’ of type j, while the
adjoint ‘annihilates a particle’ of type j.

It may seem odd that creation is the adjoint of annihilation, rather than its
inverse. One reason for this is that the creation operator, a∗j , has no inverse. In
some sense, its adjoint aj is the best substitute.

This adjoint does do what want, which is to delete any particle of type j. Explic-
itly, it deletes the ‘first’ occurrence of ej from any basis element, bringing out any
minus signs we need to make this respect the antisymmetry of the wedge product:

aj(ei1 ∧ · · · ∧ eip) = (−1)k+1ei1 ∧ · · · ∧ eik−1
∧ eik+1

· · · ∧ eip , if j = ik.

And if no particle of type j appears, we get zero.
Now, whenever we have an inner product space like Cn, we get an inner product

on ΛCn. The fastest, if not most elegant, route to this inner product is to remember
that, given an orthonormal basis e1, . . . , en for Cn, the induced basis, consisting of
elements of the form ei1 ∧ · · · ∧ eip , should be orthonormal in ΛCn. But choosing
an orthonormal basis defines an inner product, and in this case it defines an inner
product on the whole exterior algebra, one that reduces to the usual one for the
grade one elements, Λ1Cn ∼= Cn.

It is with respect to this inner product on ΛCn that aj and a∗j are adjoint. That
is, they satisfy

〈v, ajw〉 = 〈a∗jv, w〉
for any elements v, w ∈ ΛCn. Showing this from the definitions we have given is a
straightforward calculation, which we leave to the reader.

These operators satisfy the following relations:

{aj , ak} = 0

{a∗j , a∗k} = 0

{aj , a∗k} = δjk

where curly brackets denote the anticommutator of two linear operators, namely
{a, b} = ab+ ba.

As an algebra, Cliff2n is generated by the standard basis vectors of R2n. Let us
call the elements of Cliff2n corresponding to these basis vectors γ1, . . . , γ2n. From
the definition of the Clifford algebra, it is easy to check that

{γk, γ`} = −2δk`.

In other words, the elements γk are anticommuting square roots of −1. So, we
can turn ΛCn into a Cliff2n-module by finding 2n linear operators on ΛCn that
anticommute and square to −1. We build these from the raw material provided by
aj and a∗j . Indeed, it is easy to see that

φj = i(aj + a∗j )

πj = aj − a∗j
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do the trick. Now we can map γ1, . . . , γ2n to these operators, in any order, and ΛCn
becomes a Cliff2n-module as promised.

Now for n > 1 we may define Spin(2n) to be the universal cover of SO(2n), with
group structure making the covering map

Spin(2n)

p

��
SO(2n)

into a homomorphism. This universal cover is a double cover, because the funda-
mental group of SO(2n) is Z2 for n in this range.

This construction of Spin(2n) is fairly abstract. Luckily, we can realize Spin(2n)
as the multiplicative group in Cliff2n generated by products of pairs of unit vectors.
This gives us the inclusion

Spin(2n) ↪→ Cliff2n

we need to make ΛCn into a representation of Spin(2n). From this, one can show
that the Lie algebra so(2n) is generated by the commutators of the γj . Because we
know how to map each γj to an operator on ΛCn, this gives us an explicit formula
for the action of so(2n) on ΛCn. Each γj changes the parity of the grades, and
their commutators do this twice, restoring grade parity. Thus, so(2n) preserves the
parity of the grading on ΛCn, and Spin(2n) does the same. This breaks ΛCn into
two subrepresentations:

ΛCn = ΛevCn ⊕ ΛoddCn

where ΛevCn is the direct sum of the even-graded parts:

ΛevCn = Λ0Cn ⊕ Λ2Cn ⊕ · · ·

while ΛoddCn is the sum of the odd-graded parts:

ΛoddCn = Λ1Cn ⊕ Λ3Cn ⊕ · · · .

In fact, both these representations of Spin(2n) are irreducible, and Spin(2n) acts
faithfully on their direct sum ΛCn. Elements of these two irreps of Spin(2n) are
called left- and right-handed Weyl spinors, respectively, while elements of ΛCn
are called Dirac spinors.

All this works for any n, but we are especially interested in the case n = 5.
The big question is: does the Dirac spinor representation of Spin(10) extend the
obvious representation of SU(5) on ΛC5? Or, more generally, does the Dirac spinor
representation of Spin(2n) extend the representation of SU(n) on ΛCn?

Remember, we can think of a unitary representation as a group homomorphism

G→ U(V )

where V is the Hilbert space on which G acts as unitary operators. Here we are
concerned with two representations. One of them is the familiar representation of
SU(n) on ΛCn:

ρ: SU(n)→ U(ΛCn),

which acts as the fundamental rep on Λ1Cn ∼= Cn and respects wedge products.
The other is the representation of Spin(2n) on the Dirac spinors, which happen to
form the same vector space ΛCn:

ρ′: Spin(2n)→ U(ΛCn).
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Our big question is answered affirmatively by this theorem, which can be found in
a classic paper by Atiyah, Bott and Shapiro [2]:

Theorem 2. There exists a Lie group homomorphism ψ that makes this triangle
commute:

SU(n)
ψ //

ρ
%%KKKKKKKKK

Spin(2n)

ρ′

��
U(ΛCn)

Proof. The complex vector space Cn has an underlying real vector space of
dimension 2n, and the real part of the usual inner product on Cn gives an inner
product on this underlying real vector space, so we have an inclusion U(n) ↪→ O(2n).
The connected component of the identity in O(2n) is SO(2n), and U(n) is connected,
so this gives an inclusion U(n) ↪→ SO(2n) and thus SU(n) ↪→ SO(2n). Passing to
Lie algebras, we obtain an inclusion su(n) ↪→ so(2n). A homomorphism of Lie
algebras gives a homomorphism of the corresponding simply-connected Lie groups,
so this in turn gives the desired map ψ: SU(n)→ Spin(2n).

Next we must check that ψ makes the above triangle commute. Since all the
groups involved are connected, it suffices to check that this diagram

su(n)
dψ //

dρ $$IIIIIIIII
so(2n)

dρ′

��
u(ΛCn)

commutes. Since the Dirac representation dρ′ is defined in terms of creation and
annihilations operators, we should try to express dρ this way. To do so, we will
need a good basis for su(n). Remember,

su(n) = {n× n traceless skew-adjoint matrices over C}.

If Ejk denotes the matrix with 1 in the jkth entry and 0 everywhere else, then the
traceless skew-adjoint matrices have this basis:

Ejk −Ekj j > k
i(Ejk +Ekj) j > k
i(Ejj −Ej+1,j+1) j = 1, . . . , n− 1.

For example, su(2) has the basis

(
0 −1
1 0

) (
0 i
i 0

) (
i 0
0 −i

)

and our basis for su(n) simply generalizes this.
Now, it is easy to guess a formula for dρ in terms of creation and annihilation

operators. After all, the elementary matrix Ejk satisfies

Ejk(e`) =

{
ej if ` = k
0 if ` 6= k
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and a∗jak acts the same way on Λ1Cn ⊆ ΛCn. So, we certainly have

dρ (Ejk −Ekj) = a∗jak − a∗kaj
dρ (i(Ejk +Ekj)) = i(a∗jak + a∗kaj)

dρ (i(Ejj −Ej+1,j+1)) = i(a∗jaj − a∗j+1aj+1)

on the subspace Λ1Cn. But do these operators agree on the rest of ΛCn? Remember,
ρ preserves wedge products:

ρ(x)(v ∧ w) = ρ(x)v ∧ ρ(x)w

for all x ∈ SU(n). Differentiating this condition, we see that su(n) must act as
derivations:

dρ(X)(v ∧ w) = dρ(X)v ∧ w + v ∧ dρ(X)w

for all X ∈ su(n). Derivations of ΛCn are determined by their action on Λ1Cn. So,
dρ will be given on all of ΛCn by the above formulas if we can show that

a∗jak − a∗kaj , i(a∗jak + a∗kaj), and i(a∗jaj − a∗j+1aj+1)

are derivations.
Now, the annihilation operators are a lot like derivations: they are antideriva-

tions. That is, if v ∈ ΛpCn and w ∈ ΛqCn, then

aj(v ∧ w) = ajv ∧ w + (−1)pv ∧ ajw.

However, the creation operators are nothing like derivations. They satisfy

a∗j (v ∧ w) = a∗jv ∧ w = (−1)pv ∧ a∗jw,

because a∗j acts by wedging with ej , and moving this through v introduces p minus
signs. Luckily, this relation combines with the previous one to make the composites
a∗jak into derivations for every j and k. We leave this for the reader to check.

So, dρ can really be expressed in terms of annihilation and creation operators
as above. Checking that

su(n)
dψ //

dρ $$IIIIIIIII
so(2n)

dρ′

��
u(ΛCn)

commutes is now a straightforward but somewhat tedious job, which we leave to
the dedicated reader. ut

This theorem had a counterpart for the SU(5) GUT—namely, Theorem 1. There
we saw a homomorphism φ that showed us how to extend the Standard Model group
GSM to SU(5), and made this square commute:

GSM
φ //

��

SU(5)

��
U(F ⊕ F ∗) U(f) // U(ΛC5)
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Now ψ says how to extend SU(5) further to Spin(10), and makes this square com-
mute:

SU(5)
ψ //

ρ

��

Spin(10)

ρ′

��
U(ΛC5)

1 // U(ΛC5)

We can put these squares together to get this commutative diagram:

GSM
ψφ //

��

Spin(10)

��
U(F ⊕ F ∗) U(f) // U(ΛC5)

This diagram simply says that Spin(10) is a GUT: it extends the Standard Model
group GSM in a way that is compatible with the Standard Model representation,
F ⊕F ∗. In Section 3.1, all the hard work lay in showing the representations F ⊕F ∗
and ΛC5 of GSM were the same. Here, we do not have to do that. We just showed
that Spin(10) extends SU(5). Since SU(5) already extended GSM, Spin(10) extends
that, too.

3.3 The Pati–Salam Model

Next we turn to a unified theory that is not so ‘grand’: its gauge group is not a simple
Lie group, as it was for the SU(5) and Spin(10) theories. This theory is called the
Pati–Salam model, after its inventors [28]; it has gauge group SU(2)×SU(2)×SU(4),
which is merely semisimple.

We might imagine the SU(5) theory as an answer to this question:

Why are the hypercharges in the Standard Model what they are?

The answer it provides is something like this:

Because SU(5) is the actual gauge group of the world, acting on the
representation ΛC5.

But there are other intriguing patterns in the Standard Model that SU(5) does not
explain—and these lead us in different directions.

First, there is a strange similarity between quarks and leptons. Each generation
of fermions in the Standard Model has two quarks and two leptons. For example,
in the first generation we have the quarks u and d, and the leptons ν and e−. The
quarks come in three ‘colors’: this is a picturesque way of saying that they transform
in the fundamental representation of SU(3) on C3. The leptons, on the other hand,
are ‘white’: they transform in the trivial representation of SU(3) on C.

Representations of SU(3)
Particle Representation
Quark C3

Lepton C

Could the lepton secretly be a fourth color of quark? Maybe it could in a theory
where the SU(3) color symmetry of the Standard Model is extended to SU(4).
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Of course this larger symmetry would need to be broken to explain the very real
difference between leptons and quarks.

Second, there is a strange difference between left- and right-handed fermions.
The left-handed ones participate in the weak force governed by SU(2), while the
right-handed ones do not. Mathematically speaking, the left-handed ones live in a
nontrivial representation of SU(2), while the right-handed ones live in a trivial one.
The nontrivial one is C2, while the trivial one is C⊕ C:

Representations of SU(2)
Particle Representation
Left-handed fermion C2

Right-handed fermion C⊕ C

But there is a suspicious similarity between C2 and C⊕C. Could there be another
copy of SU(2) that acts on the right-handed particles? Again, this ‘right-handed’
SU(2) would need to be broken, to explain why we do not see a ‘right-handed’
version of the weak force that acts on right-handed particles.

Following Pati and Salam, let us try to sculpt a theory that makes these ideas
precise. In the last two sections, we saw some of the ingredients we need to make
a grand unified theory: we need to extend the symmetry group GSM to a larger
group G using an inclusion

GSM ↪→ G

(up to some discrete kernel), and we need a representation V of G which reduces
to the Standard Model representation when restricted to GSM:

F ⊕ F ∗ ∼= V.

We can put all these ingredients together into a diagram

GSM
//

��

G

��
U(F ⊕ F ∗) ∼ // U(V )

which commutes only when our G theory works out.
We now use the same methods to chip away at our current challenge. We asked

if leptons correspond to a fourth color. We already know that every quark comes
in three colors, r, g, and b, which form a basis for the vector space C3. This is the
fundamental representation of SU(3), the color symmetry group of the Standard
Model. If leptons correspond to a fourth color, say ‘white’, then we should use the
colors r, g, b and w, as a basis for the vector space C4. This is the fundamental
representation of SU(4), so let us take that group to describe color symmetries in
our new GUT.

Now SU(3) has an obvious inclusion into SU(4), using block diagonal matrices:

g 7→
(
g 0
0 1

)

When restricted to this subgroup, the fundamental representation C4 breaks into a
direct sum of irreps:

C4 ∼= C3 ⊕ C.
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These are precisely the irreps of SU(3) that describe quarks and leptons. For anti-
quarks and antileptons we can use

C4∗ ∼= C3∗ ⊕ C.

It looks like we are on the right track.
We can do even better if we start with the splitting

C4 ∼= C3 ⊕ C.

Remember that when we studied SU(5), the splitting

C5 ∼= C2 ⊕ C3

had the remarkable effect of introducing U(1), and thus hypercharge, into SU(5)
theory. This was because the subgroup of SU(5) that preserves this splitting is
larger than SU(2)× SU(3), roughly by a factor of U(1):

(U(1)× SU(2)× SU(3))/Z6
∼= S(U(2) ×U(3))

It was this factor of U(1) that made SU(5) theory so fruitful.
So, if we choose a splitting C4 ∼= C3 ⊕C, we should again look at the subgroup

that preserves this splitting. Namely:

S(U(3) ×U(1)) ⊆ SU(4).

Just as in the SU(5) case, this group is bigger than SU(3) × SU(1), roughly by a
factor of U(1). And again, this factor of U(1) is related to hypercharge!

This works very much as it did for SU(5). We want a map

U(1)× SU(3)→ SU(4)

and we already have one that works for the SU(3) part:

SU(3) → SU(4)

h 7→
(
h 0
0 1

)

So, we just need to include a factor of U(1) that commutes with everything in the
SU(3) subgroup. Elements of SU(4) that do this are of the form

(
α 0
0 β

)

where α stands for the 3× 3 identity matrix times the complex number α ∈ U(1),
and similarly for β in the 1× 1 block. For the above matrix to lie in SU(4), it must
have determinant 1, so α3β = 1. Thus we must include U(1) using matrices of this
form: (

α 0
0 α−3

)
.

This gives our map:

U(1)× SU(3) → SU(4)

(α, h) 7→
(
αh 0
0 α−3

)
.
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If we let U(1) × SU(3) act on C4 ∼= C3 ⊕ C via this map, the ‘quark part’ C3

transforms as though it has hypercharge 1
3 : that is, it gets multiplied by a factor

of α. Meanwhile, the ‘lepton part’ C transforms as though it has hypercharge −1,
getting multiplied by a factor of α−3. So, as a representation of U(1) × SU(3), we
have

C4 ∼= C 1
3
⊗ C3 ⊕ C−1 ⊗ C.

A peek at Table 1 reveals something nice. This is exactly how the left-handed
quarks and leptons in the Standard Model transform under U(1)× SU(3)!

The right-handed leptons do not work this way. That is a problem we need to
address. But this brings us to our second question, which was about the strange
difference between left- and right-handed particles.

Remember that in the Standard Model, the left-handed particles live in the
fundamental rep of SU(2) on C2, while the right-handed ones live in the trivial rep
on C ⊕ C. Physicists write this by grouping left-handed particles into ‘doublets’,
while leaving the right-handed particles as ‘singlets’:

(
νL
e−L

)
νR
e−R

.

But there is a suspicious similarity between C2 and C⊕C. Could there be another
copy of SU(2) that acts on the right-handed particles? Physically speaking, this
would mean that the left- and right-handed particles both form doublets:

(
νL
e−L

) (
νR
e−R

)

but under the actions of different SU(2)’s. Mathematically, this would amount to
extending the representations of the ‘left-handed’ SU(2):

C2 C⊕ C

to representations of SU(2)× SU(2):

C2 ⊗ C C⊗ C2

where the first copy of SU(2) acts on the first factor in these tensor products, while
the second copy acts on the second factor. The first copy of SU(2) is the ‘left-handed’
one familiar from the Standard Model. The second copy is a new ‘right-handed’
one.

If we restrict these representations to the ‘left-handed’ SU(2) subgroup, we ob-
tain:

C2 ⊗ C ∼= C2

C⊗ C2 ∼= C⊕ C.

These are exactly the representations of SU(2) that appear in the Standard Model.
It looks like we are on the right track!

Now let us try to combine these ideas into a theory with symmetry group SU(2)×
SU(2)×SU(4). We have seen that letting SU(4) act on C4 is a good way to unify our
treatment of color for all the left-handed fermions. Similarly, the dual representation
on C4∗ is good for their antiparticles. So, we will tackle color by letting SU(4) act
on the direct sum C4 ⊕ C4∗. This space is 8-dimensional. We have also seen that
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letting SU(2)×SU(2) act on C2⊗C⊕C⊗C2 is a good way to unify our treatment
of isospin for left- and right-handed fermions. This space is 4-dimensional.

Since 8× 4 = 32, and the Standard Model representation is 32-dimensional, let
us take the tensor product

V =
(
(C2 ⊗ C) ⊕ (C⊗ C2)

)
⊗
(
C4 ⊕ C4∗).

This becomes a representation of SU(2)× SU(2)× SU(4), which we call the Pati–
Salam representation. To obtain a theory that extends the Standard Model, we
also need a way to map GSM to SU(2)× SU(2)× SU(4), such that pulling back V
to a representation of GSM gives the Standard model representation.

How can we map GSM to SU(2)×SU(2)×SU(4)? There are several possibilities.
Our work so far suggests this option:

U(1)× SU(2)× SU(3) → SU(2)× SU(2)× SU(4)

(α, g, h) 7→
(
g, 1,

(
αh 0
0 α−3

))

Let us see what this gives. The Pati–Salam representation of SU(2) × SU(2)×
SU(4) is a direct sum of four irreducibles:

V ∼= C2⊗C⊗C4 ⊕ C⊗C2⊗C4 ⊕ C2 ⊗C⊗C4∗ ⊕ C⊗C2 ⊗C4∗.

We hope the first two will describe left- and right-handed fermions, so let us give
them names that suggest this:

FL = C2 ⊗ C⊗ C4,

FR = C⊗ C2 ⊗ C4.

The other two are the duals of the first two, since the 2-dimensional irrep of SU(2)
is its own dual:

F ∗L = C2 ⊗ C⊗ C4∗,

F ∗R = C⊗ C2 ⊗ C4∗.

Given our chosen map from GSM to SU(2) × SU(2)× SU(4), we can work out
which representations of the GSM these four spaces give. For example, consider
FL. We have already seen that under our chosen map,

C4 ∼= C 1
3
⊗ C3 ⊕ C−1 ⊗ C

as representations of U(1)× SU(3), while

C2 ⊗ C ∼= C2

as representations of the left-handed SU(2). So, as representations of GSM we have

FL ∼= C 1
3
⊗ C2 ⊗ C3 ⊕ C−1 ⊗ C2 ⊗ C.

Table 1 shows that these indeed match the left-handed fermions.
If we go ahead and do the other four cases, we see that everything works except

for the hypercharges of the right-handed particles—and their antiparticles. Here we
just show results for the particles:
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The Pati–Salam Model — First Try
Particle Hypercharge: predicted Hypercharge: actual

(
νL
e−L

)
−1 −1

(
uL
dL

)
1
3

1
3

νR −1 0

e−R −1 −2

uR
1
3

4
3

dR
1
3 − 2

3

The problem is that the right-handed particles are getting the same hypercharges
as their left-handed brethren. To fix this problem, we need a more clever map from
GSM to SU(2)×SU(2)×SU(4). This map must behave differently on the U(1) factor
of GSM, so the hypercharges come out differently. And it must take advantage of
the right-handed copy of SU(2), which acts nontrivially only on the right-handed
particles. For example, we can try this map:

U(1)× SU(2)× SU(3) → SU(2)× SU(2)× SU(4)

(α, g, h) 7→
(
g,

(
αk 0
0 α−k

)
,

(
αh 0
0 α−3

))

for any integer k. This will not affect the above table except for the hypercharges
of right-handed particles. It will add k/3 to the hypercharges of the ‘up’ particles
in right-handed doublets (νR and uR), and subtract k/3 from the ‘down’ ones (e−R
and dR). So, we obtain these results:

The Pati–Salam Model — Second Try
Particle Hypercharge: predicted Hypercharge: actual

(
νL
e−L

)
−1 −1

(
uL
dL

)
1
3

1
3

νR −1 + k
3 0

e−R −1− k
3 −2

uR
1
3 + k

3
4
3

dR
1
3 − k

3 − 2
3

Miraculously, all the hypercharges match if we choose k = 3. So, let us use this
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map:

β: U(1)× SU(2)× SU(3) → SU(2)× SU(2)× SU(4)

(α, g, h) 7→
(
g,

(
α3 0
0 α−3

)
,

(
αh 0
0 α−3

))
.

When we take the Pati–Salam representation of SU(2) × SU(2) × SU(4) and pull
it back along this map β, we obtain the Standard Model representation. As in
Section 3.1, we use complete reducibility to see this, but we can be more concrete.
We saw in Table 4 how we can specify the intertwining map precisely by using a
specific basis, which for ΛC5 results in the binary code.

Similarly, we can create a kind of ‘Pati–Salam code’ to specify an isomorphism
of Hilbert spaces

`:F ⊕ F ∗ →
(
(C2 ⊗ C) ⊕ (C⊗ C2)

)
⊗
(
C4 ⊕ C4∗),

and doing this provides a nice summary of the ideas behind the Pati–Salam model.
We take the space C2 ⊗ C to be spanned by uL and dL, the left-isospin up and
left-isospin down states. Similarly, the space C⊗C2 has basis uR and dR, called
right-isospin up and right-isospin down. Take care not to confuse these with
the similarly named quarks. These have no color, and only correspond to isospin.

The color comes from C4 of course, which we already decreed to be spanned by
r, g, b and w. For antiparticles, we also require anticolors, which we take to be the
dual basis r, g, b and w, spanning C4∗.

It is now easy, with our knowledge of how the Pati–Salam model is to work, to
construct this code. Naturally, the left-handed quark doublet corresponds to the
left-isospin up and down states, which come in all three colors c = r, g, b:

ucL = uL ⊗ c dcL = dL ⊗ c.
The corresponding doublet of left-handed leptons is just the ‘white’ version of this:

νL = uL ⊗ w e−L = dL ⊗ w.
The right-handed fermions are the same, but with R’s instead of L’s. Thus we get
the Pati–Salam code for the fermions:

FL FR
νL = uL ⊗ w νR = uR ⊗ w
e−L = dL ⊗ w e−R = dR ⊗ w
ucL = uL ⊗ c ucR = uR ⊗ c
dcL = dL ⊗ c dcR = dR ⊗ c

The result is very similar for the antifermions in F ∗L and F ∗R, but watch out: taking
antiparticles swaps up and down, and also swaps left and right, so the particles in
F ∗L are right-handed, despite the subscript L, while those in F ∗R are left-handed.
This is because it is the right-handed antiparticles that feel the weak force, which
in terms of representation theory means they are nontrivial under the left SU(2).
So, the Pati–Salam code for the antifermions is this:

F ∗L F ∗R
e+
R = uL ⊗ w e+

L = uR ⊗ w
νR = dL ⊗ w νL = dR ⊗ w
d
c

R = uL ⊗ c d
c

L = uR ⊗ c
ucR = dL ⊗ c ucL = dR ⊗ c
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Putting these together we get the full Pati–Salam code:

The Pati–Salam Code
FL FR F ∗L F ∗R

νL = uL ⊗ w νR = uR ⊗ w e+
R = uL ⊗ w e+

L = uR ⊗ w
e−L = dL ⊗ w e−R = dR ⊗ w νR = dL ⊗ w νL = dR ⊗ w
ucL = uL ⊗ c ucR = uR ⊗ c d

c

R = uL ⊗ c d
c

L = uR ⊗ c
dcL = dL ⊗ c dcR = dR ⊗ c ucR = dL ⊗ c ucL = dR ⊗ c

Table 5: Pati–Salam code for first-generation fermions, where c = r, g, b and c =
r, b, g.

This table defines an isomorphism of Hilbert spaces

`:F ⊕ F ∗ →
(
(C2 ⊗ C) ⊕ (C⊗ C2)

)
⊗
(
C4 ⊕ C4∗)

so where it says, for example, νL = uL ⊗ w, that is just short for `(νL) = uL ⊗ w.
This map ` is also an isomorphism between representations of GSM. It tells us how
these representations are the ‘same’, just as the map h did for F ⊕ F ∗ and ΛC5 at
the end of Section 3.1.

As with SU(5) and Spin(10), we can summarize all the results of this section in
a commutative square:

Theorem 3. The following square commutes:

GSM
β //

��

SU(2)× SU(2)× SU(4)

��
U(F ⊕ F ∗) U(`) // U

((
(C2 ⊗ C)⊕ (C⊗ C2)

)
⊗
(
C4 ⊕ C4∗))

where the left vertical arrow is the Standard Model representation and the right one
is the Pati–Salam representation.

The Pati–Salam representation and especially the homomorphism β look less
natural than the representation of SU(5) on ΛC5 and the homomorphism φ:GSM →
SU(5). But appearances can be deceiving: in the next section we shall see a more
elegant way to describe them.

3.4 The Route to Spin(10) via Pati–Salam

In the last section, we showed how the Pati–Salam model answers two questions
about the Standard Model:

Why are quarks and leptons so similar? Why are left and right so
different?

We were able to describe leptons as a fourth color of quark, ‘white’, and treat
right-handed and left-handed particles on a more equal footing. Neither of these
ideas worked on its own, but together, they made a full-fledged extension of the
Standard Model, much like SU(5) and Spin(10), but based on seemingly different
principles.
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Yet thinking of leptons as ‘white’ should be strangely familiar, not just from the
Pati–Salam perspective, but from the binary code that underlies both the SU(5)
and the Spin(10) theories. There, leptons were indeed white: they all have color
r ∧ g ∧ b ∈ ΛC5.

Alas, while SU(5) hints that leptons might be a fourth color, it does not deliver
on this. The quark colors

r, g, b ∈ Λ1C5

lie in a different irrep of SU(5) than does r ∧ g ∧ b ∈ Λ3C5. So, leptons in the
SU(5) theory are white, but unlike the Pati–Salam model, this theory does not
unify leptons with quarks.

Yet SU(5) theory is not the only game in town when it comes to the binary
code. We also have Spin(10), which acts on the same vector space as SU(5). As
a representation of Spin(10), ΛC5 breaks up into just two irreps: the even grades,
ΛevC5, which contain the left-handed particles and antiparticles:

ΛevC5 ∼= 〈νL〉 ⊕ 〈e+
L〉 ⊕

〈
uL
dL

〉
⊕ 〈uL〉 ⊕

〈
νL
e−L

〉
⊕ 〈dL〉

and the odd grades ΛoddC5, which contain the right-handed particles and antipar-
ticles:

ΛoddC5 ∼= 〈νR〉 ⊕ 〈e−R〉 ⊕
〈
dR
uR

〉
⊕ 〈uR〉 ⊕

〈
e+
R

νR

〉
⊕ 〈dR〉.

Unlike SU(5), the Spin(10) GUT really does unify r ∧ g ∧ b with the colors r, g and
b, because they both live in the irrep ΛoddC5.

In short, it seems that the Spin(10) GUT, which we built as an extension of the
SU(5) GUT, somehow managed to pick up this feature of the Pati–Salam model.
How does Spin(10) relate to Pati–Salam’s gauge group SU(2) × SU(2) × SU(4),
exactly? In general, we only know there is a map SU(n) → Spin(2n), but in low
dimensions, there is much more, because some groups coincide:

Spin(3) ∼= SU(2)

Spin(4) ∼= SU(2)× SU(2)

Spin(5) ∼= Sp(2)

Spin(6) ∼= SU(4)

What really stands out is this:

SU(2)× SU(2)× SU(4) ∼= Spin(4)× Spin(6).

This brings out an obvious relationship between the Pati–Salam model and the
Spin(10) theory, because the inclusion SO(4)×SO(6) ↪→ SO(10) lifts to the universal
covers, so we get a homomorphism

η: Spin(4)× Spin(6)→ Spin(10).

A word of caution is needed here. While η is the lift of an inclusion, it is not an
inclusion itself: it is two-to-one. This is because the universal cover Spin(4)×Spin(6)
of SO(4)× SO(6) is a four-fold cover, being a double cover on each factor.

So we can try to extend the symmetries SU(2) × SU(2) × SU(4) to Spin(10),
though this can only work if the kernel of η acts trivially on the Pati–Salam repre-
sentation. What is this representation like? There is an obvious representation of
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Spin(4) × Spin(6) that extends to a Spin(10) rep. Both Spin(4) and Spin(6) have
Dirac spinor representations, so their product Spin(4)×Spin(6) has a representation
on ΛC2 ⊗ ΛC3. And in fact, the obvious map

g: ΛC2 ⊗ ΛC3 → ΛC5

given by
v ⊗ w 7→ v ∧ w

is an isomorphism compatible with the actions of Spin(4) × Spin(6) on these two
spaces. More concisely, this square:

Spin(4)× Spin(6)
η //

��

Spin(10)

��
U(ΛC2 ⊗ ΛC3)

U(g) // U(ΛC5)

commutes.
We will prove this in a moment. First though, we must check that this rep-

resentation of Spin(4) × Spin(6) is secretly just another name for the Pati–Salam
representation of SU(2)× SU(2)× SU(4) on the space we discussed in Section 3.3:

(
(C2 ⊗ C) ⊕ (C⊗ C2)

)
⊗
(
C4 ⊕ C4∗).

Checking this involves choosing an isomorphism between SU(2) × SU(2) × SU(4)
and Spin(4)× Spin(6). Luckily, we can choose one that works:

Theorem 4. There exists an isomorphism of Lie groups

α: SU(2)× SU(2)× SU(4)→ Spin(4)× Spin(6)

and a unitary operator

k:
(
(C2 ⊗ C)⊕ (C⊗ C2)

)
⊗
(
C4 ⊕ C4∗) → ΛC2 ⊗ ΛC3

that make this square commute:

SU(2)× SU(2)× SU(4)
α //

��

Spin(4)× Spin(6)

��
U
((

(C2 ⊗ C)⊕ (C⊗ C2)
)
⊗
(
C4 ⊕ C4∗)) U(k) // U(ΛC2 ⊗ ΛC3)

where the left vertical arrow is the Pati–Salam representation and the right one is
a tensor product of Dirac spinor representations.

Proof. We can prove this in pieces, by separately finding a unitary operator

(C2 ⊗ C)⊕ (C⊗ C2) ∼= ΛC2

that makes this square commute:

SU(2)× SU(2)
∼ //

��

Spin(4)

��
U(C2 ⊗ C⊕ C⊗ C2)

∼ // U(ΛC2)
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and a unitary operator
C4 ⊕ C4∗ ∼= ΛC3

that make this square:

SU(4)
∼ //

��

Spin(6)

��
U(C4 ⊕ C4∗)

∼ // U(ΛC3)

commute.
First, the Spin(6) piece. It suffices to show that the Dirac spinor rep of Spin(6) ∼=

SU(4) on ΛC3 is isomorphic to C4⊕C4∗ as a rep of SU(4). We start with the action
of Spin(6) on ΛC3. This breaks up into irreps:

ΛC3 ∼= ΛevC3 ⊕ ΛoddC3

called the left-handed and right-handed Weyl spinors, and these are dual
to each other because 6 = 2 mod 4, by a theorem that can be found in Adams’
lectures [1]. Call these representations

ρev: Spin(6)→ U(ΛevC3), ρodd: Spin(6)→ U(ΛoddC3).

Since these reps are dual, it suffices just to consider one of them, say ρodd.
Passing to Lie algebras, we have a homomorphism

dρodd: so(6)→ u(ΛoddC3) ∼= u(4) ∼= u(1)⊕ su(4).

Homomorphic images of semisimple Lie algebras are semisimple, so the image of
so(6) must lie entirely in su(4). In fact so(6) is simple, so this nontrivial map must
be an injection

dρodd: so(6)→ su(4),

and because the dimension is 15 on both sides, this map is also onto. Thus dρodd is
an isomorphism of Lie algebras, so ρodd is an isomorphism of the simply connected
Lie groups Spin(6) and SU(4):

ρodd: Spin(6)→ SU(ΛoddC3) ∼= SU(4).

Furthermore, under this isomorphism

ΛoddC3 ∼= C4

as a representation of SU(ΛoddC3) ∼= SU(4). Taking duals, we obtain an isomor-
phism

ΛevC3 ∼= C4∗

Putting these together, we get an isomorphism C4 ⊕ C4∗ ∼= ΛC3 that makes this
square commute:

Spin(6)

��

ρodd // SU(4)

��
U(ΛC3) // U(C4 ⊕ C4∗)

which completes the proof for Spin(6).
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Next, the Spin(4) piece. It suffices to show that the spinor rep ΛC2 of Spin(4) ∼=
SU(2) × SU(2) is isomorphic to C2 ⊗ C ⊕ C⊗ C2 as a rep of SU(2)× SU(2). We
start with the action of Spin(4) on ΛC2. This again breaks up into irreps:

ΛC2 ∼= ΛoddC2 ⊕ ΛevC2.

Again we call these representations

ρev: Spin(4)→ U(ΛevC2), ρodd: Spin(4)→ U(ΛoddC2).

First consider ρev. Passing to Lie algebras, this gives a homomorphism

dρev: so(4)→ u(ΛevC2) ∼= u(2) ∼= u(1)⊕ su(2)

Homomorphic images of semisimple Lie algebras are semisimple, so the image of
so(4) must lie entirely in su(2). Similarly, dρodd also takes so(4) to su(2):

dρodd: so(4)→ su(2)

and we can combine these maps to get

dρodd ⊕ dρev: so(4)→ su(2)⊕ su(2),

which is just the derivative of Spin(4)’s representation on ΛC2. Since this repre-
sentation is faithful, the map dρodd ⊕ dρev of Lie algebras is injective. But the
dimensions of so(4) and su(2)⊕ su(2) agree, so dρodd⊕ dρev is also onto. Thus it is
an isomorphism of Lie algebras. This implies that ρodd ⊕ ρev is an isomorphism of
the simply connected Lie groups Spin(4) and SU(2)× SU(2)

ρodd ⊕ ρev: Spin(4)→ SU(ΛoddC2)× SU(ΛevC2) ∼= SU(2)× SU(2)

under which SU(2)× SU(2) acts on ΛoddC2 ⊕ΛevC2. The left factor of SU(2) acts
irreducibly on ΛoddC2, which the second factor is trivial on. Thus ΛoddC2 ∼= C2⊗C
as a rep of SU(2)×SU(2). Similarly, ΛevC2 ∼= C⊗C2 as a rep of this group. Putting
these together, we get an isomorphism C2 ⊗ C ⊕ C ⊗ C2 ∼= ΛC2 that makes this
square commute:

Spin(4)

��

ρev⊕ρodd // SU(2)× SU(2)

��
U(ΛC2) // U(C2 ⊗ C⊕ C⊗ C2)

which completes the proof for Spin(4). ut

In the proof of the preceding theorem, we merely showed that there exists an
isomorphism

k:
(
(C2 ⊗ C)⊕ (C⊗ C2)

)
⊗
(
C4 ⊕ C4∗)→ ΛC2 ⊗ ΛC3

making the square commute. We did not say exactly what k was. In the proof, we
built it after quietly choosing three unitary operators, giving these isomorphisms:

C2 ⊗ C ∼= ΛoddC2, C⊗ C2 ∼= ΛevC2, C4 ∼= ΛoddC3.

Since the remaining map ΛevC3 ∼= C4∗ is determined by duality, these three oper-
ators determine k, and they also determine the Lie group isomorphism α via the
construction in our proof.
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There is, however, a specific choice for these unitary operators that we prefer,
because this choice makes the particles in the Pati–Salam representation ΛC2⊗ΛC3

look almost exactly like those in the SU(5) representation ΛC5.
First, since C2 = Λ1C2 = ΛoddC2 is spanned by u and d, the (left-handed)

isospin states of the Standard Model, we really ought to identify the left-isospin
states uL and dL of the Pati–Salam model with these. So, we should use this
unitary operator:

C2 ⊗ C ∼−→ ΛoddC2

uL 7→ u
dL 7→ d.

Next, we should use this unitary operator for right-isospin states:

C⊗ C2 ∼−→ ΛevC2

uR 7→ u ∧ d
dR 7→ 1.

Why? Because the right-isospin up particle is the right-handed neutrino νR, which
corresponds to u ∧ d ∧ r ∧ g ∧ b in the SU(5) theory, but uR ⊗w in the Pati–Salam
model. This suggests that u ∧ d and uR should be identified.

Finally, because C3 is spanned by the colors r, g and b, while C4 is spanned by
the colors r, g, b and w, we really ought to use this unitary operator:

C4 ∼−→ ΛoddC3

r 7→ r
g 7→ g
b 7→ b
w 7→ r ∧ g ∧ b

Dualizing this, we get the unitary operator

C4∗ ∼−→ ΛevC3

r 7→ g ∧ b
g 7→ b ∧ r
b 7→ r ∧ g
w 7→ 1

These choices determine the unitary operator

k:
(
(C2 ⊗ C)⊕ (C⊗ C2)

)
⊗
(
C4 ⊕ C4∗)→ ΛC2 ⊗ ΛC3.

With this specific choice of k, we can combine the commutative squares built in
Theorems 3 and 4:

GSM
β //

��

SU(2)× SU(2)× SU(4)
α //

��

Spin(4)× Spin(6)

��
U(F ⊕ F ∗) U(`) // U

((
(C2 ⊗ C)⊕ (C⊗ C2)

)
⊗
(
C4 ⊕ C4∗)) U(k) // U(ΛC5)

to obtain the following result:
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Theorem 5. Taking θ = αβ and h = k`, the following square commutes:

GSM
θ //

��

Spin(4)× Spin(6)

��
U(F ⊕ F ∗) U(h) // U(ΛC2 ⊗ ΛC3)

where the left vertical arrow is the Standard Model representation and the right one
is a tensor product of Dirac spinor representations.

The map h, which tells us how to identify F ⊕ F ∗ and ΛC2 ⊗ ΛC3, is given by
applying k to the ‘Pati–Salam code’ in Table 5. This gives a binary code for the
Pati–Salam model:

The Binary Code for Pati–Salam

ΛoddC2 ⊗ ΛoddC3 ΛevC2 ⊗ ΛoddC3 ΛoddC2 ⊗ ΛevC3 ΛevC2 ⊗ ΛevC3

νL = u⊗ rgb νR = ud⊗ rgb e+
R = u⊗ 1 e+

L = ud⊗ 1
e−L = d⊗ rgb e−R = 1⊗ rgb νR = d⊗ 1 νL = 1⊗ 1

ucL = u⊗ c ucR = ud⊗ c d
c

R = u⊗ c d
c

L = ud⊗ c
dcL = d⊗ c dcR = 1⊗ c ucR = d⊗ c ucL = 1⊗ c

Table 6: Pati–Salam binary code for first-generation fermions, where c = r, g, b and
c = gb, br, rg.

We have omitted wedge product symbols to save space. Note that if we apply the
obvious isomorphism

g: ΛC2 ⊗ ΛC3 → ΛC5

given by
v ⊗ w 7→ v ∧ w

then the above table does more than merely resemble Table 4, which gives the
binary code for the SU(5) theory. The two tables become identical!

This fact is quite intriguing. We will explore its meaning in the next section.
But first, let us start by relating the Pati–Salam model to the Spin(10) theory:

Theorem 6. The following square commutes:

Spin(4)× Spin(6)
η //

��

Spin(10)

��
U(ΛC2 ⊗ ΛC3)

U(g) // U(ΛC5)

where the right vertical arrow is the Dirac spinor representation, the left one is the
tensor product of Dirac spinor representations, and

η: Spin(4)× Spin(6)→ Spin(10)

is the homomorphism lifting the inclusion of SO(4)× SO(6) in SO(10).
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Proof. At the Lie algebra level, we have the inclusion

so(4)⊕ so(6) ↪→ so(10)

by block diagonals, which is also just the differential of the inclusion SO(4) ×
SO(6) ↪→ SO(10) at the Lie group level. Given how the spinor reps are defined
in terms of creation and annihilation operators, it is easy to see that

so(4)⊕ so(6) � � //

��

so(10)

��
gl(ΛC2 ⊗ ΛC3)

gl(g) // gl(ΛC5)

commutes, because g is an intertwining operator between representations of so(4)⊕
so(6). That is because the so(4) part only acts on ΛC2, while the so(6) part only
acts on ΛC3.

But these Lie algebras act by skew-adjoint operators, so really

so(4)⊕ so(6) � � //

��

so(10)

��
u(ΛC2 ⊗ ΛC3)

u(g) // u(ΛC5)

commutes. Since the so(n)’s and their direct sums are semisimple, so are their
images. Therefore, their images live in the semisimple part of the unitary Lie
algebras, which is just another way of saying the special unitary Lie algebras. We
get that

so(4)⊕ so(6)
� � //

��

so(10)

��
su(ΛC2 ⊗ ΛC3)

su(g) // su(ΛC5)

commutes, and this gives a commutative square in the world of simply connected
Lie groups:

Spin(4)× Spin(6)
η //

��

Spin(10)

��
SU(ΛC2 ⊗ ΛC3)

SU(g) // SU(ΛC5)

This completes the proof. ut

This result shows us how to reach the Spin(10) theory, not through the SU(5)
theory, but through the Pati–Salam model. For physics texts that treat this issue,
see for example Zee [40] and Ross [31].

3.5 The Question of Compatibility

We now have two routes to the Spin(10) theory. In Section 3.2 we saw how to reach
it via the SU(5) theory:
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GSM
φ //

��

SU(5)
ψ //

��

Spin(10)

��
U(F ⊕ F ∗) U(f) // U(ΛC5)

1 // U(ΛC5)

More Unification
///o/o/o

Our work in that section and in Section 3.1 showed that this diagram commutes,
which is a way of saying that the Spin(10) theory extends the Standard Model.

In Section 3.4 we saw another route to the Spin(10) theory, which goes through
Spin(4)× Spin(6):

GSM
θ //

��

Spin(4)× Spin(6)
η //

��

Spin(10)

��
U(F ⊕ F ∗) U(h) // U(ΛC2 ⊗ ΛC3)

U(g) // U(ΛC5)

More Unification
///o/o/o

Our work in that section and Section 3.3 showed that this diagram commutes as
well. So, we have another way to extend the Standard Model and get the Spin(10)
theory.

Drawing these two routes to Spin(10) together gives us a cube:

GSM
φ //

θ

vvmmmmmmmmmmmmm

��

SU(5)

ψ

yyssssssssss

��

Spin(4)× Spin(6)
η //

��

Spin(10)

��

U(F ⊕ F ∗) U(f) //

U(h)

vvmmmmmmmmmmmmm
U(ΛC5)

1

yyssssssssss

U(ΛC2 ⊗ ΛC3)
U(g) // U(ΛC5)

Are these two routes to Spin(10) theory the same? That is, does the cube commute?

Theorem 7. The cube commutes.

Proof. We have already seen in Sections 3.1-3.4 that the vertical faces commute.
So, we are left with two questions involving the horizontal faces. First: does the
top face of the cube

GSM
φ //

θ

wwoooooooooooo
SU(5)

ψ

yyttttttttt

Spin(4)× Spin(6)
η // Spin(10)
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commute? In other words: does a symmetry in GSM go to the same place in
Spin(10) no matter how we take it there? And second: does the bottom face of the
cube commute? In other words: does this triangle:

F ⊕ F ∗ f //

h

��

ΛC5

ΛC2 ⊗ ΛC3

g

99rrrrrrrrrr

commute?
In fact they both do, and we can use our affirmative answer to the second

question to settle the first. As we remarked in Section 3.4, applying the map g to
the Pati–Salam binary code given in Table 6, we get the SU(5) binary code given in
Table 4. Thus, the linear maps f and gh agree on a basis, so this triangle commutes:

F ⊕ F ∗ f //

h

��

ΛC5

ΛC2 ⊗ ΛC3

g

99rrrrrrrrrr

This in turn implies that the bottom face of the cube commutes, from which we see
that the two maps from GSM to U(ΛC5) going around the bottom face are equal:

GSM

&&NNNNNNNNNNN

U(F ⊕ F ∗) U(f) //

U(h)

��

U(ΛC5)

1

��
U(ΛC2 ⊗ ΛC3)

U(g) // U(ΛC5)

The work of Section 3.1 through Section 3.4 showed that the vertical faces of
the cube commute. We can thus conclude from diagrammatic reasoning that the
two maps from GSM to U(ΛC5) going around the top face are equal:

GSM
φ //

θ

��

SU(5)

ψ

��
Spin(4)× Spin(6)

η // Spin(10)

%%KKKKKKKKKK

U(ΛC5)

Since the Dirac spinor representation is faithful, the map Spin(10) → U(ΛC5) is
injective. This means we can drop it from the above diagram, and the remaining
square commutes. But this is exactly the top face of the cube. So, the proof is
done. ut
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4 Conclusion

We have studied three different grand unified theories: the SU(5), Spin(4)×Spin(6)
and Spin(10) theories. The SU(5) and Spin(4) × Spin(6) theories were based on
different visions about how to extend the Standard Model. However, we saw that
both of these theories can be extended to the Spin(10) theory, which therefore unites
these visions.

The SU(5) theory is all about treating isospin and color on an equal footing: it
combines the two isospins of C2 with the three colors of C3, and posits an SU(5)
symmetry acting on the resulting C5. The particles and antiparticles in a single
generation of fermions are described by vectors in ΛC5. So, we can describe each of
these particles and antiparticles by a binary code indicating the presence or absence
of up, down, red, green and blue.

In doing so, the SU(5) theory introduces unexpected relationships between mat-
ter and antimatter. The irreducible representations of SU(5)

Λ0C5 ⊕ Λ1C5 ⊕ Λ2C5 ⊕ Λ3C5 ⊕ Λ4C5 ⊕ Λ5C5

unify some particles we normally consider to be ‘matter’ with some we normally
consider ‘antimatter’, as in

Λ1C5 ∼=
〈
e+
R

νR

〉
⊕ 〈dR〉.

In the Standard Model representation, we can think of the matter-antimatter dis-
tinction as a Z2-grading, because the Standard Model representation F ⊕F ∗ splits
into F and F ∗. By failing to respect this grading, the SU(5) symmetry group fails
to preserve the usual distinction between matter and antimatter.

But the Standard Model has another Z2-grading that SU(5) does respect. This
is the distinction between left- and right-handedness. Remember, the left-handed
particles and antiparticles live in the even grades:

ΛevC5 ∼= 〈νL〉 ⊕ 〈e+
L〉 ⊕

〈
uL
dL

〉
⊕ 〈uL〉 ⊕

〈
νL
e−L

〉
⊕ 〈dL〉

while the right-handed ones live in the odd grades:

ΛoddC5 ∼= 〈νR〉 ⊕ 〈e−R〉 ⊕
〈
dR
uR

〉
⊕ 〈uR〉 ⊕

〈
e+
R

νR

〉
⊕ 〈dR〉.

The action of SU(5) automatically preserves this Z2-grading, because it comes from
the Z-grading on ΛC5, which SU(5) already respects.

This characteristic of the SU(5) theory lives on in its extension to Spin(10).
There, the distinction between left and right is the only distinction among parti-
cles and antiparticles that Spin(10) knows about, because ΛevC5 and ΛoddC5 are
irreducible. This says the Spin(10) theory unifies all left-handed particles and an-
tiparticles, and all right-handed particles and antiparticles.

In contrast, the Spin(4)× Spin(6) theory was all about adding a fourth ‘color’,
w, to represent leptons, and restoring a kind of symmetry between left and right
by introducing a right-handed SU(2) that treats right-handed particles like the left-
handed SU(2) treats left-handed particles.

Unlike the SU(5) theory, the Spin(4)×Spin(6) theory respects both Z2-gradings
in the Standard Model: the matter-antimatter grading, and the right-left grading.
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The reason is that Spin(4) × Spin(6) respects the Z2 × Z2-grading on ΛC2 ⊗ ΛC3,
and we have:

FL ∼= ΛoddC2 ⊗ ΛoddC3

FR ∼= ΛevC2 ⊗ ΛoddC3

F ∗L ∼= ΛoddC2 ⊗ ΛevC3

F ∗R ∼= ΛevC2 ⊗ ΛevC3

Moreover, the matter-antimatter grading and the right-left grading are all that
Spin(4) × Spin(6) respects, since each of the four spaces listed is an irrep of this
group.

When we extend Spin(4)×Spin(6) to the Spin(10) theory, we identify ΛC2⊗ΛC3

with ΛC5. Then the Z2 × Z2-grading on ΛC2 ⊗ ΛC3 gives the Z2-grading on ΛC5

using addition in Z2. This sounds rather technical, but it is as simple as “even +
odd = odd”:

ΛoddC5 ∼=
(
ΛevC2 ⊗ ΛoddC3

)
⊕
(
ΛoddC2 ⊗ ΛevC3

) ∼= FR ⊕ F ∗L

and “odd + odd = even”, “even + even = even”:

ΛevC5 ∼=
(
ΛoddC2 ⊗ ΛoddC3

)
⊕
(
ΛevC2 ⊗ ΛevC3

) ∼= FL ⊕ F ∗R.

Recall that FR ⊕ F ∗L consists of all the fermions and antifermions that are right-
handed, while FL ⊕ F ∗R consists of the left-handed ones.

Furthermore, the two routes to the Spin(10) theory that we have described, one
going through SU(5) and the other through Spin(4) × Spin(6), are compatible. In
other words, this cube commutes:

GSM
φ //

θ

vvmmmmmmmmmmmmm

��

SU(5)

ψ

yyssssssssss

��

Spin(4)× Spin(6)
η //

��

Spin(10)

��

U(F ⊕ F ∗) U(f) //

U(h)

vvmmmmmmmmmmmmm
U(ΛC5)

1

yyssssssssss

U(ΛC2 ⊗ ΛC3)
U(g) // U(ΛC5)

So, all four theories fit together in an elegant algebraic pattern. What this means
for physics—if anything—remains unknown. Yet we cannot resist feeling that it
means something, and we cannot resist venturing a guess: the Standard Model is
exactly the theory that reconciles the visions built into the SU(5) and Spin(4) ×
Spin(6) theories.

What this might mean is not yet precise, but since all these theories involve
symmetries and representations, the ‘reconciliation’ must take place at both those
levels—and we can see this in a precise way. First, at the level of symmetries, our
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Lie groups are related by the commutative square of homomorphisms:

GSM
φ //

θ

��

SU(5)

ψ

��
Spin(4)× Spin(6)

η // Spin(10)

Because this commutes, the image of GSM lies in the intersection of the images
of Spin(4) × Spin(6) and SU(5) inside Spin(10). But we claim it is precisely that
intersection!

To see this, first recall that the image of a group under a homomorphism is just
the quotient group formed by modding out the kernel of that homomorphism. If
we do this for each of our homomorphisms above, we get a commutative square of
inclusions:

GSM/Z6
� � //

� _

��

SU(5)� _

��Spin(4)× Spin(6)

Z2

� � // Spin(10)

This implies that

GSM/Z6 ⊆ SU(5) ∩
(

Spin(4)× Spin(6)

Z2

)

as subgroups of Spin(10). To make good on our claim, we must show these subgroups
are equal:

GSM/Z6 = SU(5) ∩
(

Spin(4)× Spin(6)

Z2

)
.

In other words, our commutative square of inclusions is a ‘pullback square’.
As a step towards showing this, first consider what happens when we pass from

the spin groups to the rotation groups. We can accomplish this by modding out by
an additional Z2 above. We get another commutative square of inclusions:

GSM/Z6
� � //

� _

��

SU(5)� _

��
SO(4)× SO(6) � � // SO(10)

Here the reader may wonder why we could quotient (Spin(4) × Spin(6))/Z2 and
Spin(10) by Z2 without having to do the same for their respective subgroups,
GSM/Z6 and SU(5). It is because Z2 intersects both of those subgroups triv-
ially. We can see this for SU(5) because we know the inclusion SU(5) ↪→ Spin(10)
is just the lift of the inclusion SU(5) ↪→ SO(10) to universal covers, so it makes this
diagram commute:

SU(5) � � //
� r

%%JJJJJJJJJ
Spin(10)

p

��
SO(10)
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But this means that SU(5) intersects Z2 = ker p in only the identity. The subgroup
GSM/Z6 therefore intersects Z2 trivially as well.

Now, let us show:

Theorem 8. GSM/Z6 = SU(5) ∩ (SO(4)× SO(6)) ⊆ SO(10).

Proof. We can prove this in the same manner that we showed, in Section 3.1,
that

GSM/Z6
∼= S(U(2)×U(3)) ⊆ SU(5)

is precisely the subgroup of SU(5) that preserves the 2+3 splitting of C5 ∼= C2⊕C3.
To begin with, the group SO(10) is the group of orientation-preserving symme-

tries of the 10-dimensional real inner product space R10. But R10 is suspiciously like
C5, a 5-dimensional complex inner product space. Indeed, if we forget the complex
structure on C5, we get an isomorphism C5 ∼= R10, a real inner product space with
symmetries SO(10). We can consider the subgroup of SO(10) that preserves the
original complex structure. This is U(5) ⊆ SO(10). If we further pick a volume
form on C5, i.e. a nonzero element of Λ5C5, and look at the symmetries fixing that
volume form, we get a copy of SU(5) ⊆ SO(10).

Then we can pick a 2 + 3 splitting on C5 ∼= C2 ⊕ C3. The subgroup of SU(5)
that also preserves this is

S(U(2)× U(3)) ↪→ SU(5) ↪→ SO(10).

These inclusions form the top and right sides of our square:

GSM/Z6
� � //

� _

��

SU(5)� _

��
SO(4)× SO(6)

� � // SO(10)

We can also reverse the order of these processes. Imposing a 2 + 3 splitting on
C5 yields a 4 + 6 splitting on the underlying real vector space, R10 ∼= R4 ⊕ R6.
The subgroup of SO(10) that preserves this splitting is S(O(4) × O(6)): the block
diagonal matrices with 4× 4 and 6 × 6 orthogonal blocks and overall determinant
1. The connected component of this subgroup is SO(4)× SO(6).

The direct summands in R4⊕R6 came from forgetting the complex structure on
C2⊕C3. The subgroup of S(O(4)×O(6)) preserving the original complex structure
is U(2) × U(3), and the subgroup of this that also fixes a volume form on C5 is
S(U(2) × U(3)). This group is connected, so it must lie entirely in the connected
component of the identity, and we get the inclusions:

S(U(2)×U(3)) ↪→ SO(4)× SO(6) ↪→ SO(10).

These maps form the left and bottom sides of our square.
It follows that GSM/Z6 is precisely the subgroup of SO(10) that preserves a

complex structure on R10, a chosen volume form on the resulting complex vector
space, and a 2 + 3 splitting on this space. But this 2 + 3 splitting is the same as a
compatible 4 + 6 splitting of R10, one in which each summand is a complex vector
subspace as well as a real subspace. This means that

GSM/Z6 = SU(5) ∩ S(O(4)×O(6)) ⊆ SO(10),
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and since GSM/Z6 is connected,

GSM/Z6 = SU(5) ∩ (SO(4)× SO(6)) ⊆ SO(10)

as desired. ut

From this, a little diagram chase proves our earlier claim:

Theorem 9. GSM/Z6 = SU(5) ∩ (Spin(4)× Spin(6)) /Z2 ⊆ Spin(10).

Proof. By now we have built the following commutative diagram:

GSM/Z6
� � φ̃ //

� _

θ̃

��

SU(5)� _

ψ

��
(Spin(4)× Spin(6))/Z2

� � η̃ //

q

��

Spin(10)

p

��
SO(4)× SO(6) � � i // SO(10)

where both the bottom vertical arrows are two-to-one, but the composite vertical
maps qθ̃ and pψ are one-to-one. Our previous theorem says that the big square
with qθ̃ and pψ as vertical sides is a pullback. Now we must show that the upper
square is also a pullback. So, suppose we are given g ∈ (Spin(4)× Spin(6))/Z2 and
g′ ∈ SU(5) with

η̃(g) = ψ(g′).

We need to show there exists x ∈ GSM/Z6 such that

θ̃(x) = g, φ̃(x) = g′.

Now, we know that
iq(g) = pη̃(g) = pψ(g′)

so since the big square is a pullback, there exists x ∈ GSM/Z6 with

qθ̃(x) = q(g), φ̃(x) = g′.

The second equation is half of what we need to show. So, we only need to check
that the first equation implies θ̃(x) = g.

The kernel of q consists of two elements, which we will simply call ±1. Since
qθ̃(x) = q(g), we know

±θ̃(x) = g.

Since η̃(g) = ψ(g′), we thus have

η̃(±θ̃(x)) = ψ(g′) = ψφ̃(x).

The one-to-one map η̃ sends the kernel of q to the kernel of p, which consists of
two elements that we may again call ±1. So, ±η̃θ̃(x) = ψφ̃(x). On the other hand,
since the top square commutes we know η̃θ̃(x) = ψφ̃(x). Thus the element ±1 must
actually be 1, so g = θ̃(x) as desired. ut
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In short, the Standard Model has precisely the symmetries shared by both the
SU(5) theory and the Spin(4)× Spin(6) theory. Now let us see what this means for
the Standard Model representation.

We can ‘break the symmetry’ of the Spin(10) theory in two different ways. In
the first way, we start by picking the subgroup of Spin(10) that preserves the Z-
grading and volume form in ΛC5. This is SU(5). Then we pick the subgroup of
SU(5) that respects the splitting of C5 into C2⊕C3. This subgroup is the Standard
Model gauge group, modulo a discrete subgroup, and its representation on ΛC5 is
the Standard Model representation.

We can draw this symmetry breaking process in the following diagram:

GSM
φ //

��

SU(5)
ψ //

��

Spin(10)

��
U(F ⊕ F ∗) U(f) // U(ΛC5)

1 // U(ΛC5)

oo splitting
/o/o/o/o/o/o/o/o oo grading and

volume form
/o/o/o/o/o/o/o/o

The SU(5) theory shows up as a ‘halfway house’ here.
We can also break the symmetry of Spin(10) in a way that uses the Spin(4) ×

Spin(6) theory as a halfway house. We do essentially the same two steps as before,
but in the reverse order! This time we start by picking the subgroup of Spin(10) that
respects the splitting of R10 as R4⊕R6. This subgroup is Spin(4)×Spin(6) modulo
a discrete subgroup. The two factors in this subgroup act separately on the factors
of ΛC5 ∼= ΛC2⊗ΛC3. Then we pick the subgroup of Spin(4)×Spin(6) that respects
the Z-grading and volume form on ΛC5. This subgroup is the Standard Model
gauge group, modulo a discrete subgroup, and its representation on ΛC2 ⊗ ΛC3 is
the Standard Model representation.

We can draw this alternate symmetry breaking process in the following diagram:

GSM
θ //

��

Spin(4)× Spin(6)
η //

��

Spin(10)

��
U(F ⊕ F ∗) U(h) // U(ΛC2 ⊗ ΛC3)

U(g) // U(ΛC5)

oo grading and

volume form
/o/o/o/o/o/o/o/o/o/o/o oo splitting

/o/o/o/o/o/o/o/o/o/o/o

Will these tantalizing patterns help us understand physics beyond the Standard
Model? Only time will tell.
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