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1 Introduction

The Standard Model of particle physics is one of the greatest triumphs of
physics. This theory is our best attempt to describe all the particles and
all the forces of nature... except gravity. It does a great job of fitting exper-
iments we can do in the lab. But physicists are dissatisfied with it. There
are three main reasons. First, it leaves out gravity: that force is described
by Einstein’s theory of general relativity, which has not yet been reconciled
with the Standard Model. Second, astronomical observations suggest that
there may be forms of matter not covered by the Standard Model-—most
notably, ‘dark matter’. And third, the Standard Model is complicated and
seemingly arbitrary. This goes against the cherished notion that the laws
of nature, when deeply understood, are simple and beautiful.

For the modern theoretical physicist, looking beyond the Standard Model
has been an endeavor both exciting and frustrating. Most modern attempts
are based on string theory. There are also other interesting approaches,
such as loop quantum gravity and theories based on noncommutative ge-
ometry. But back in the mid 1970’s, before any of these currently popular
approaches came to prominence, physicists pursued a program called ‘grand
unification’. This sought to unify the forces and particles of the Standard
Model using the mathematics of Lie groups, Lie algebras, and their repre-
sentations. Ideas from this era remain influential, because grand unification
is still one of the most fascinating attempts to find order and beauty lurking
within the Standard Model.

This paper is a gentle introduction to the group representations that
describe particles in the Standard Model and the most famous grand unified
theories. To make the material more approachable for mathematicians,
we deliberately limit our scope by not discussing particle interactions or
‘symmetry breaking’” — the way a theory with a large symmetry group
can mimic one with a smaller group. These topics lie at the very heart
of particle physics. But by omitting them, we can focus on ideas from
algebra that many mathematicians will find familiar, while introducing the
unfamiliar way that physicists use these ideas.

In fact, the essential simplicity of the representation theory involved
in the Standard Model and grand unified theories is quite striking. The



usual textbook approach to the Standard Model proceeds through gauge
theory and quantum field theory. While these subjects are very impor-
tant in modern mathematics, learning them is a major undertaking. We
have chosen to focus on the algebra of grand unified theories because many
mathematicians have the prerequisites to understand it with only a little
work.

For instance, corresponding to any type of ‘particle’ in particle physics
there is a basis vector in a finite-dimensional Hilbert space — that is, a
finite-dimensional complex vector space with an inner product. A full-
fledged treatment of particle physics requires quantum field theory, which
makes use of representations of a noncompact Lie group called the Poincaré
group on infinite-dimensional Hilbert spaces. To make this mathematically
precise involves a lot of analysis. In fact, no one has yet succeeded in giving
a mathematically rigorous formulation of the Standard Model! But by
neglecting the all-important topic of particle interactions, we can restrict
attention to finite-dimensional Hilbert spaces and avoid such complications.

The interested reader can learn quantum field theory from numerous
sources. The textbook by Peskin and Schroeder [22] is a standard, but we
have also found Zee’s book [28] useful for a quick overview. Srednicki’s
text [25] is clear about many details that other books gloss over — and
even better, it costs nothing! Of course, these books are geared toward
physicists. Ticciati [26] provides a nice introduction for mathematicians.

The mathematician interested in learning about gauge theory also has
plenty of options. There are many books for mathematicians specifically
devoted to the subject [2 I3, [[4] [M6]. Furthermore, all the quantum field
theory textbooks mentioned above discuss this subject.

Our treatment of gauge theory will be limited to one of the simplest
aspects: the study of unitary representations of a Lie group G on a finite-
dimensional Hilbert space V. Even better, we only need to discuss compact
Lie groups, which implies that V' can be decomposed as a direct sum of
irreducible representations, or irreps. All known particles are basis vectors
of such irreps. This decomposition thus provides a way to organize particles,
which physicists have been exploiting since the 1960s.

Now suppose V is also a representation of some larger Lie group, H, for
which G is a subgroup. Then, roughly speaking, we expect V' to have fewer
irreps as a representation of H than as a representation of G, because some
elements of H might mix G’s irreps. This, in essence, is what physicists
mean by ‘unification’: by introducing a larger symmetry group, the particles
are unified into larger irreps.

In this paper, we will give an account of the algebra behind the Standard
Model and three attempts at unification, known to physicists as the SU(5)
theory, the SO(10) theory, and the Pati-Salam model. All three date to the
mid-1970’s. The first two are known as grand unified theories, or GUTs,
because they are based on simple Lie groups, which are not products of
other groups. The Pati—Salam model is different: while it is called a GUT
by some authors, and does indeed involve unification, it is based on the Lie
group SU(2) x SU(2) x SU(4), which is merely semisimple.

It is important to note that none of these attempts at unification are
considered plausible today. The SU(5) theory predicts that protons will
decay more quickly than they do, and all three theories require certain
trends to hold among coupling constants (numbers which determine the



relative strengths of forces) that the data do not support.

Nonetheless, it is still very much worthwhile for mathematicians to study
grand unified theories. Even apart from their physical significance, these
theories are intrinsically beautiful and deep mathematical structures —
especially when one goes beyond the algebra described here and enters
the realm of dynamics. They also provide a nice way for mathematicians
to get some sense of the jigsaw puzzle that physicists are struggling to
solve. It is certainly hopeless trying to understand what physicists are
trying to accomplish with string theory before taking a good look at grand
unified theories. Finally, grand unified theories can be generalized by adding
‘supersymmetry’ — serious contenders to describe the real world. For a
recent overview of their prospects, see Pati [19, 20].

This is how we shall proceed. First, in Section ] we describe the Stan-
dard Model. After a brief hello to the electron and photon, we explain some
nuclear physics in Section EZJl We start with Heisenberg’s old attempt to
think of the proton and neutron as two states of a single particle, the ‘nu-
cleon’, described by a 2-dimensional representation of SU(2). Gauge theory
traces its origins back to this notion.

After this warmup we tour the Standard Model in its current form. In
Section we describe the particles called ‘fundamental fermions’, which
constitute matter. In Section we describe the particles called ‘gauge
bosons’, which carry forces. Apart from the elusive Higgs boson, all par-
ticles in the Standard Model are of these two kinds. In Section 4] we
give a more mathematical treatment of these ideas: the gauge bosons are
determined by the Standard Model gauge group

Gy = U(1) x SU2) x SU(3),

while the fundamental fermions and their antiparticles are basis vectors of
a highly reducible representation of this group, which we denote as F'& F'™*.

Amazingly, using gauge theory and quantum field theory, plus the ‘Higgs
mechanism’ for symmetry breaking, we can recover the dynamical laws
obeyed by these particles from the representation of Gqyy on F'® F™*. This
information is enough to decode the physics of these particles and make
predictions about what is seen in the gigantic accelerators that experimental
physicists use to probe the natural world at this tiny scale.

Unfortunately, to explain all this would go far beyond the modest goals
of this paper. For the interested reader, there are many excellent accounts
of the Standard Model where they can go to learn the dynamics after getting
a taste of the algebra here. See, for example, Griffiths [ for a readable
introduction to basic particle physics, Huang [I0] for an especially self-
contained account, and Okun [I7] for more details on the phenomena. The
books by Lee [I1], Grotz and Klapdor [§] are also favorites of ours. The
history of particle physics is also fascinating. For this, try the popular
account of Crease and Mann [4], the more detailed treatments by Segre [24],
or the still more detailed one by Pais [I8].

Having acquainted the reader with the Standard Model of particle physics
in Section Bl we then go on to talk about grand unified theories in Sec-
tion These theories go beyond the Standard Model by ‘extending’ the
gauge group. That is, we pick a way to include
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the gauge group of the Standard Model in some larger group G, and we
will give G a representation V' which reduces to the Standard Model repre-
sentation F' & F* when we restrict it to Gg)j. We shall describe how this
works for the SU(5) theory (Section Bl), the SO(10) theory (Section B2),
and the Pati-Salam model (Section B3]).

Of course, since we do not discuss the dynamics, a lot will go unsaid
about these GUTs. For more information, see the textbooks on grand
unified theories by Ross [23] and Mohapatra [12].

As we proceed, we explain how the SU(5) theory and the Pati-Salam
model are based on two distinct visions about how to extend the Standard
Model. However, we will see that the SO(10) theory is an extension of both
the SU(5) theory (Section B2)) and the Pati-Salam model (Section BAI).
Moreover, these two routes to the SO(10) theory are compatible in a precise
sense: we get a commuting square of groups, and a commutating square of
representations, which fit together to form a commuting cube (Section B3).

In Section Hl we conclude by discussing what this means for physics:
namely, how the Standard Model reconciles the two visions of physics lying
behind the SU(5) theory and the Pati-Salam model. In a sense, it is the
intersection of the SU(5) theory and the Pati-Salam model within their
common unification, SO(10).

2 The Standard Model

Today, most educated people know that the world is made of atoms, and
that atoms, in turn, are made of electrons, protons, and neutrons. The elec-
trons orbit a dense nucleus made of protons and neutrons, and as the out-
ermost layer of any atom’s structure, they are responsible for all chemistry.
They are held close to the nucleus by electromagnetic forces: The electrons
carry a negative electric charge, and protons carry a positive charge. Oppo-
sites charges attract, and this keeps the electrons and the nucleus together.

At one point in time, electrons, protons, and neutrons were all be-
lieved to be fundamental and without any constituent parts, just as atoms
themselves were once believed to be, before the discovery of the electron.
Electrons are the only one of these subatomic particles still considered fun-
damental, and it is with this venerable particle that we begin a table of
the basic constituents of matter, called ‘fundamental fermions’. We will see
more soon.

| Fundamental Fermions (first try) |
Name Symbol Charge
Electron e~ -1

Since the electron is charged, it participates in electromagnetic interac-
tions. From the modern perspective of quantum field theory, electromag-
netic interactions are mediated by the exchange of virtual photons, particles
of light that we never see in the lab, but whose effects we witness whenever
like charges are repelled or opposite charges are attracted. We depict this
process on a diagram:



Here, time runs along the axis going up the page. Two electrons come
in, exchange a photon, and leave, slightly repelled from each other by the
process.

The photon is our next example of a fundamental particle, though it
is of a different character than the electron and quarks. As a mediator of
forces, the photon is known as a gauge boson in modern parlance. It is
massless, and interacts only with charged particles, though it carries no
charge itself. So, we begin our list of gauge bosons as follows:

| Gauge Bosons (first try) |
Force Gauge Boson Symbol
Electromagnetism Photon vy

2.1 Isospin and SU(2)

Because like charges repel, it is remarkable that the atomic nucleus stays
together. After all, the protons are all positively charged and are repelled
from each other electrically. To hold these particles so closely together,
physicists hypothesized a new force, the strong force, strong enough to
overcome the electric repulsion of the protons. It must be strongest only at
short distances (about 10715 m), and then it must fall off rapidly, for pro-
tons are repelled electrically unless their separation is that small. Neutrons
must also experience it, because they are bound to the nucleus as well.

Physicists spent several decades trying to understand the strong force;
it was one of the principal problems in physics in the mid-twentieth century.
About 1932, Werner Heisenberg, pioneer in quantum mechanics, discovered
one of the first clues to its nature. He proposed, in [9], that the proton and
neutron might really be two states of the same particle, now called the
nucleon. In modern terms, he attempted to unify the proton and neutron.

To understand how, we need to know a little quantum mechanics. In
quantum mechanics, the state of any physical system is given by a vec-
tor in a complex Hilbert space, and it is possible to take complex linear
combinations of the system in different configurations. For example, the
wavefunction for a quantum system, like a particle on a line, is a complex-
valued function

Y € L*(R).



Or if the particle is confined to a 1-dimensional box (say the unit interval,
[0,1]), then its wavefunction lives in the Hilbert space L?([0,1]).

We have special rules for combining quantum systems. If, say, we have
two particles in a box, particle 1 and particle 2, then the wavefunction is a
function of both particle 1’s position and particle 2’s:

¢ € L([0,1] x [0,1])

but this is isomorphic to the tensor product of particle 1’s Hilbert space
with particle 2’s:

L%([0,1] x [0,1]) = L*([0,1] ® L*([0,1])

This is how we combine systems in general. If a system consists of one part
with Hilbert space V' and another part with Hilbert space W, their tensor
product V ® W is the Hilbert space of the combined system. Heuristically,

and = ®

We just discussed the Hilbert space for two particles in a single box. We
now consider the Hilbert space for a single particle in two boxes, by which
we mean a particle that is in one box, say [0, 1], or in another box, say
[2,3]. The Hilbert space here is

L*([0,1] U [2,3]) = L*([0,1]) & L*([2,3])

In general, if a system’s state can lie in a Hilbert space V or in a Hilbert
space W the total Hilbert space is then

VeWw.

Heuristically,
or = .

Back to nucleons. According to Heisenberg’s theory, a nucleon is a
proton or a neutron. If we use the simplest nontrivial Hilbert space for
both the proton and neutron, namely C, then the Hilbert space for the
nucleon should be

C*~CasC.
The proton and neutron then correspond to basis vectors of this Hilbert
space:
— 1 c CQ
P=1o
and

n—<(1)>€([:2.

But, we can also have a nucleon in a linear combination of these states.
More precisely, the state of the nucleon can be represented by any unit
vector in C2.

The inner product in C? then allows us to compute probabilities, using
the following rule coming from quantum mechanics: the probability that
a system in state ¢y € H, a given Hilbert space, will be observed in state
¢ € His

[, )]



Since p and n are orthogonal, there is no chance of seeing a proton as a
neutron or vice versa, but for a nucleon in the state

ap + fpn € C?,

there is probability |a|? that measurement will result in finding a proton,
and |3]? that measurement will result in finding a neutron. The condition
that our state be a unit vector ensures that these probabilities add to 1.

In order for this to be interesting, however, there must be processes
that can turn protons and neutrons into different states of the nucleon.
Otherwise, there would be no point in having the full C? space of states.
Conversely, if there are processes which can change protons into neutrons
and back, it turns out we need all of C? to describe them.

Heisenberg believed in such processes, based on an analogy between
nuclear physics and atomic physics. The analogy turned out to be poor,
based on the faulty notion that the neutron was composed of a proton and
an electron, but the idea of the nucleon with states in C? proved to be a
breakthrough.

This is because, in 1936, a paper by Cassen and Condon [3] appeared
suggesting that the nucleon’s C? is acted on by the symmetry group SU(2).
They emphasized the analogy between this and the spin of the electron,
which is also described by vectors in C?, acted on by SU(2). In keeping with
this analogy, the property that distinguishes the proton and neutron states
of a nucleon is now called isospin. The proton was declared the isospin
up state or I3 = % state, and the neutron was declared the isospin down
or I3 = —% state. Cassen and Condon’s paper put isospin on its way to
becoming a useful tool in nuclear physics.

Isospin proved useful because it quantified the following principle, which
became clear from empirical data around the time of Cassen and Condon’s
paper. It is this: The strong force, unlike the electromagnetic force, is
the same whether the particles involved are protons or neutrons. Protons
and neutrons are interchangable, if we neglect the small difference in their
mass, and most importantly, if we neglect electromagnetic effects. In terms
of isospin, this reads: Strong interactions are invariant under the action of
SU(2) on the isospin states C2.

This foreshadows modern ideas about unification. The proton, living in
the representation C of the trivial group, and the neutron, living in a differ-
ent representation C of the trivial group, are unified into the nucleon, with
representation C2 of SU(2). These symmetries hold for strong interactions,
but they are broken by electromagnetism.

Whenever a physical process has a symmetry, Noether’s theorem gives
corresponding conserved quantities. For the strong interaction, the SU(2)
symmetry implies that isospin is conserved. In particular, the total I3 of
any system remains unchanged after a process which involves only strong
interactions.

Nevertheless, for the states in C? which mix protons and neutrons to
have any meaning, there must be a mechanism which can convert protons
into neutrons and vice versa. Mathematically, we have a way to do this:
the action of SU(2). What does this correspond to, physically?

The answer originates in the work of Hideki Yukawa. The early 1930s,
he investigated what particle could mediate the strong interaction as the
photon mediates the electromagnetic interaction. He hypothesized that it



must be a massive particle, for he found that the strength of the force would
go as

where m is the mass in question, and r is the separation between the protons
or neutrons. Thus, when the protons or neutrons are more than 1/m apart,
the strong interaction between them becomes negligible, and Yukawa chose
this mass so that 1/m would be about 10~!5 meters in certain units. It
came out to be about 200 times as massive as the electron, or about a
tenth the mass of a proton. He predicted that experimentalists would find
a particle with a mass in this range, and that it would interact strongly
when it collided with nuclei.

Partially because of the intervention of World War II, it took over ten
years for Yukawa’s prediction to be vindicated. After a rather famous false
alarm, it became clear by 1947 that a particle with the expected properties
had been found. It was called the pion and it came in three varieties: one
with positive charge, the 7+, one neutral, the 7°, and one with negative
charge, the 7—.

The pion proved to be the mechanism that can transform nucleons. To
wit, we observe processes like those in figure [l where we have drawn the
Feynman diagrams which depict the nucleons absorbing pions, transforming
where they are allowed to by charge conservation.
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Figure 1: The nucleons absorbing pions.

Because of isospin conservation, we can measure the I3 of a pion by
looking at these interactions with the nucleons. It turns out that the I3 of
a pion is the same as its charge:

Pion | I3
mt +1
70 0
T -1

Here we pause, because we can see the clearest example of a pattern that
lies at the heart of the Standard Model. It is the relationship between
isospin I3 and charge Q). For the pion, isospin and charge are equal:

Q(m) = Is(m).

But they are also related for the nucleon, though in a subtler way:

Nucleon | I3 | Charge
T
= 1
eI
2




The relationship for nucleons is

QUN) = Iy(N) +

This is nearly the most general relationship. It turns out that, for any
given family of particles that differ only by I3, we have the Gell-Mann—
Nishijima formula:

Q=1I13+Y)/2

where the charge () and isospin I3 depend on the particle, but a new quan-
tity, the hypercharge Y, depends only on the family. For example, pions
all have hypercharge Y = 0, while nucleons both have hypercharge Y = 1.

Mathematically, Y being constant on ‘families’ just means it is constant
on representations of the isospin symmetry group, SU(2). The three pions,
like the proton and neutron, are nearly identical in terms of mass and
their strong interactions. In Heisenberg’s theory, the different pions are
just different isospin states of the same particle. Since there are three,
they have to span a three-dimensional representation of SU(2). Up to
isomorphism, there is only one three-dimensional complex irrep of SU(2),
which is Sym®C2, the symmetric tensors of rank 2. In general, the unique
j-dimensional irrep of SU(2) is given by Sym’'C2.

Now we know two ways to transform nucleons: the mathematical action
of SU(2), and the physical interactions with pions. How are these related?

The answer lies in the representation theory. Just as the two nucleons
span the two-dimensional irrep of C? of SU(2), the pions should span the
three-dimensional irrep Sym?C? of SU(2). But there is another way to write
this representation which sheds light on the pions and the way they interact
with nucleons: because SU(2) is itself a three-dimensional real manifold,
its Lie algebra su(2) = T;1SU(2) is a three-dimensional real vector space.
SU(2) acts on itself by conjugation, which fixes the identity and thus induces
linear transformations of su(2), giving a representation of SU(2) on su(2)
called the adjoint representation.

For simple Lie groups like SU(2), the adjoint representation is irre-
ducible. Thus su(2) is a three-dimensional real irrep of SU(2). This is
different from the three-dimensional complez irrep Sym>C2, but very re-
lated. Indeed, Sym*C? is just the complexification of su(2):

Sym?C? = C @ su(2) = sl(2,C).

The pions thus live in sl(2,C), a complex Lie algebra, and this acts on
C? because SU(2) does. To be precise, Lie group representations induce
Lie algebra representations, so the real su(2) algebra has a representation
on C2. This then extends to a representation of the complex Lie algebra
s[(2,C). And this representation is even familiar—it is the fundamental
representation of s[(2,C) on C2.

For any Lie algebra g, a representation V' is a linear map,

gV -V

and when g is a the Lie algebra of a group G, this map is actually a G-
intertwiner; since g and V' are both representations of GG, this is a sensible
thing to say, and it is easy to check.
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In the case of the pion acting on the nucleons, we have an SU(2)-
intertwiner
sl(2,C) ® C* — C%

Physicists have invented a nice, diagrammatic way to depict such intertwin-
ers — Feynman diagrams:

N/

Figure 2: A nucleon absorbs a pion.

Here, we see a nucleon coming in, absorbing a pion, and leaving. That
is, this diagram depicts a basic interaction between pions and nucleons.

Of course, to really understand interactions, quantum field theory is es-
sential; there, Feynman diagrams still represent intertwiners, but between
infinite-dimensional representations, well beyond our modest aims here.
With our restriction to finite-dimensional representations, we are, in the
language of physics, restricting our attention to ‘internal degrees of free-
dom’; with their ‘internal’ (i.e., gauge) symmetries.

Nonetheless, we can put basic interactions like the one in figure B to-
gether to form more complicated ones, like this:

Here, two nucleons interact by exchanging pions. This is the mechanism
for the strong force proposed by Yukawa, still considered approximately
right today. Better, though, it depicts all the representation-theoretic ingre-
dients of a modern gauge theory in physics. That is, it shows two nucleons,
which live in a representation C2 of the gauge group SU(2), interacting by

11



the exchange of a pion, which lives in the complexified adjoint rep, su(2)®C.
In the coming sections we will see how these ideas underlie the Standard
Model.

2.2 The Fundamental Fermions
2.2.1 Quarks

In the last section, we learned how Heisenberg unified the proton and neu-
tron into the nucleon, and that Yukawa proposed nucleons interact by ex-
changing pions. This viewpoint turned out to be at least approximately
true, but it was based on the idea that the proton, neutron and pions
were all fundamental particles without internal structure, which was not
ultimately supported by the evidence.

Protons and neutrons are not fundamental. They are made of particles
called quarks. There are a number of different types of quarks, called
flavors. However, it takes only two flavors to make protons and neutrons:
the up quark, u, and the down quark, d. The proton consists of two up
quarks and one down:

p = uud

while the neutron consists of one up quark and two down:
n = udd

Protons have an electric charge of +1, exactly opposite the electron, while
neutrons are neutral, with 0 charge. These two conditions are enough to
determine the charge of their constituents, which are fundamental fermions
much like the electron:

| Fundamental Fermions (second try) |

Name Symbol Charge
Electron e~ -1
Up quark U —&—%

Down quark d —

o] =

There are more quarks than these, but these are the lightest ones, com-
prising the first generation. They are all we need to make protons and
neutrons, and so, with the electron in tow, the above list contains all the
particles we need to make atoms.

Yet quarks, fundamental as they are, are never seen in isolation. They
are always bunched up into particles like the proton and neutron. This
phenomenon is called confinement. It makes the long, convoluted history
of how we came to understand quarks, despite the fact that they are never
seen, all the more fascinating. Unfortunately, we do not have space for this
history here, but it can be found in the books by Crease and Mann [,
Segre [24], and Pais [T8].

It is especially impressive how physicists were able to discover that each
flavor of quark comes in three different states, called colors: red r, green
g, and blue b. These ‘colors’ have nothing to do with actual colors; they

12



are just cute names—though as we shall see, the names are quite well
chosen. Mathematically, all that matters is that the Hilbert space for a
single quark is C3; we call the standard basis vectors r, g and b. The color
symmetry group SU(3) acts on this Hilbert space in the obvious way, via
its fundamental representation.

Since both up and down quarks come in three color states, there are
really six kinds of quarks in the matter we see around us. Three up quarks,
spanning a copy of C3:

u u?,ub e C3
and three down quarks, spanning another copy of C3:
dr,d?,d’ e C?

The group SU(3) acts on each space. All six quarks taken together span
this vector space:

CoC*=C’xC?
where C? is spanned by the flavors v and d. Here is yet another way to
say the same thing: a first-generation quark comes in one of six flavor-color
states.

How could physicists discover the concept of color, given that quarks
are confined? In fact confinement was the key to this discovery! Confine-
ment amounts to the following decree: all observed states must be white,
i.e., invariant under the action of SU(3). It turns out that this has many
consequences.

For starters, this decree implies that we cannot see an individual quark,
because they all transform nontrivially under SU(3). Nor do we ever see a
particle built from two quarks, since no unit vectors in C? @ C? are fixed
by SU(3). But we do see particles made of three quarks: namely, nucleons!
This is because there are unit vectors in

CiecieCs

fixed by SU(3). Indeed, as a representation of SU(3), C3®C? @ C? contains
precisely one copy of the trivial representation: the antisymmetric rank
three tensors, A3C? C C? ® C3 @ C3. This one dimensional vector space is
spanned by the wedge product of all three basis vectors:

rAbAge AC?

So, up to normalization, this must be the color state of a nucleon. And
now we see why the ‘color’ terminology is well-chosen: an equal mixture of
red, green and blue light is white. This is just a coincidence, but it is too
cute to resist.

So: color is deeply related to confinement. Flavor, on the other hand,
is deeply related to isospin. Indeed, the flavor C? is suspiciously like the
isospin C? of the nucleon. We even call the quark flavors ‘up’ and ‘down’.
This is no accident. The proton and neutron, which are the two isospin
states of the nucleon, differ only by their flavors, and only the flavor of
one quark at that. If one could interchange v and d, one could interchange
protons and neutrons.

Indeed, we can use quarks to explain the isospin symmetry of Sec-
tion 21 Protons and neutrons are so similar, with nearly the same mass
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and strong interactions, because u and d quarks are so similar, with nearly
the same mass and truly identical colors.

So as in Section 21 let SU(2) act on the flavor states C2. By analogy
with that section, we call this SU(2) the isospin symmetries of the quark
model. Unlike the color symmetries SU(3), these symmetries are not exact,
because v and d quarks have different mass and charge. Nevertheless, they
are useful.

The isospin of the proton and neutron then arises from the isospin of its
quarks. Define I3(u) = 3 and I3(d) = —%, making u and d the isospin up
and down states at which their names hint. To find the I3 of a composite,
like a proton or neutron, add the I3 for its constituents. This gives the
proton and neutron the right I3:

e e I
B() = §-3-% = -

Of course, having the right I3 is not the whole story for isospin. p and n
must still span a copy of the fundamental rep C? of SU(2). Whether or
not this happens depends on how the constituent quark flavors transform
under SU(2).

In general, states like u®u®d and u®d®d in do not span a copy of C?
inside C? ® C? ® C2, at least not if we want this C? to be the fundamental
rep of SU(2) as a subrepresentation of C? @ C2 @ C2. So, as with color, the
equations

p=uud, n =udd

fail to give us the whole story. For the proton, we actually need some linear
combination of the I3 = % flavor states, which are made of two u’s and one
d:

uRued, udldu, deouu cC*’®C?*®C?

And for the neutron, some linear combination of the I3 = —% flavor states,
with one v and two d’s:

uded, deu®d, dedoue C*®@C?*®C?

and we need to choose them so they span the same C2 C C? ® C? @ C2.
p = uud and n = udd is just a sort of short-hand for saying that p and n
are made from basis vectors with those quarks in them.

In physics, the linear combination required to make p and n work also
involves the spin of the quarks which, since it involves dynamics, would lie
outside of our scope. We will content ourselves with showing that it can be
done. That is, we will show that C2 @ C? ® C? really does contain a copy
of the fundamental rep C? of SU(2). To do this, we use the fact that any
rank 2 tensor can be decomposed into symmetric and antisymmetric parts;
for example,

C? ® C? = Sym?C? @ A%C?
and this is actually how C? ® C? decomposes into irreps. Sym?C?, as
we noted in Section B is the unique 3-dimensional irrep of SU(2); its
othogonal complement A%2C? in C? ® C? is thus also a subrepresentation,
but this space is 1-dimensional, and must therefore be the trivial irrep,
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A2C? = C. In fact, for any SU(n), the top exterior power of its fundamental
rep, A"C", is trivial.
Thus, as a representation of SU(2), we thus have
C?eC?eC? = C?e(Sym’C?eC)
C?@Sym’C? & (2

1%

So indeed, C? is a subrepresentation of C? ® C? ® C?2.

As in the last section, there is no reason to have the full C? of isospin
states for nucleons unless there is a way to change protons into neutrons.
There, we discussed how the pions provide this mechanism. The pions live
in s((2, C), the complexification of the adjoint representation of SU(2), and
this acts on C2:

This Feynman diagram is a picture of the intertwiner s[(2,C) @ C? — C?
given by sl(2,C)’s Lie algebra action on C?. Now we know that nucleons
are made of quarks and that isospin symmetry comes from their flavor
symmetry. What about pions?

Pions also fit into this model, but they require more explanation, be-
cause they are made of quarks and ‘antiquarks’. To every kind of particle,
there is a corresponding antiparticle, which is just like the original particle
but with opposite charge and isospin. The antiparticle of a quark is called
an antiquark.

In terms of group representations, passing from a particle to its antipar-
ticle corresponds to taking the dual representation. Since the quarks live in
C% ® C3, a representation of SU(2) x SU(3), the antiquarks live in the dual
representation C2* ® C3*. Since C? has basis vectors called up and down:

(1 2 (0 2
u_(())e(c d_(l)e(c

the space C?* has a dual basis
7= (1,00eC>* d=(0,1)eC*

called antiup and antidown. Similarly, since the standard basis vectors
for C3 are called red green and blue, the dual basis vectors for C3* are
known as anticolors: namely antired 7, antigreen g, and antiblue b.
When it comes to actual colors of light, antired is called ‘cyan’: this is the
color of light which blended with red gives white. Similarly, antigreen is
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magenta, and antiblue is yellow. But few physicists dare speak of ‘magenta
antiquarks™—apparently this would be taking the joke too far.

All pions are made from one quark and one antiquark. The flavor state
of the pions must therefore live in

C? @ C%,

We can use the fact that pions live in s[(2, C) to find out how they decom-
pose into quarks and antiquarks, since

5((2,C) C End(C?)

First, express the pions as matrices:

w=(50) *=(0 %) ==(93)

We know they have to be these matrices, up to normalization, because these
act the right way on nucleons in C2:

T +p—n
at+n—p
™ +p—p
4+n—n

Now, apply the standard isomorphism End(C?) =2 C? @ C?* to write these
matrices as linear combinations of quarks and antiquarks:

at=u®d, "=u®d-dou, 7 =d®7u

Note these all have the right I5, because isospins reverse for antiparticles.
For example, I3(d) = +3, so I3(n") = 1.

In writing these pions as quarks and antiquarks, we have once again
neglected to write the color, because this works the same way for all pions.
As far as color goes, pions live in

C? o C*.

Confinement says that pions need to be white, just like nucleons, and there
is only a one-dimensional subspace of C? ® C3* that is invariant under
SU(3), spanned by

reT+9gR7+bebe C?C.

So, this must be the color state of all pions.
Finally, the Gell-Mann—Nishijima formula also still works for quarks,
provided we define the hypercharge for both quarks to be Y = %:

Qu) = I3(u)+Y/2 = 1+1

win

Q) = Ld)+Y/2 = —i+1 = -

W=

Since nucleons are made of three quarks, their total hypercharge is Y = 1,
just as before.
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2.2.2 Leptons

With the quarks and electron, we have met all the fundamental fermions
required to make atoms, and almost all of the particles we need to dis-
cuss the Standard Model. Only one player remains to be introduced—the
neutrino, v. This particle complets the first generation of fundamental
fermions:

| The First Generation of Fermions — Charge |
Name Symbol Charge
Neutrino v 0
Electron e~ -1
Up quark U +§

ol

Down quark d —

Neutrinos are particles which show up in certain interactions, like the
decay of a neutron into a proton, an electron, and an antineutrino

n—p+e +Uv

Indeed, neutrinos v have antiparticles 7, just like quarks and all other par-
ticles. The electron’s antiparticle, denoted e™, was the first discovered, so it
wound up subject to an inconsistent naming convention: the ‘antielectron’
is called a positron.

Neutrinos carry no charge and no color. They interact very weakly with
other particles, so weakly that they were not observed until the 1950s, over
20 years after they were hypothesized by Pauli. Collectively, neutrinos and
electrons, the fundamental fermions that do not feel the strong force, are
called leptons.

In fact, the neutrino only interacts via the weak force. Like the electro-
magnetic force and the strong force, the weak force is a fundamental force,
hypothesized to explain the decay of the neutron, and eventually required
to explain other phenomena.

The weak force cares about the ‘handedness’ of particles. It seems
that every particle that we have discussed comes in left- and right-handed
varieties, which (quite roughly speaking) spin in opposite ways. There are
are left-handed leptons, which we denote as

vy erp
and left-handed quarks, which we denote as
ur, d L

and similarly for right-handed fermions, which we will denote with a sub-
script R. As the terminology suggests, looking in a mirror interchanges
left and right — in a mirror, the left-handed electron e, looks like a right-
handed electron, ey, and vice versa. More precisely, applying any of the
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reflections in the Poincaré group to the (infinite-dimensional) representa-
tion we use to describe these fermions interchanges left and right.
Remarkably, the weak force interacts only with left-handed particles
and right-handed antiparticles. For example, when the neutron decays, we
always have,
nyp —pr+ep +7UR

and never have,
ngr — prtep+7UL.

This fact about the weak force, first noticed in the 1950s, left a deep im-
pression on physicists. No other physical law is asymmetric in left and
right. That is, no other physics, classical or quantum, looks different when
viewed in a mirror. Why the weak force, and only the weak force, exhibits
this behavior is a mystery.

Since neutrinos interact only weakly and the weak interaction only in-
volves left-handed particles, the right-handed neutrino vr has never been
observed directly. For a long time, physicists believed vz did not even ex-
ist, but recent observations of neutrino oscillations suggest otherwise. In
this paper, we will assume there are right-handed neutrinos, but the reader
should be aware that this is still open to some debate. In particular, even
if the vg do exist, we know very little about them.

Note that isospin is not conserved in weak interactions. After all, we
saw in the last section that I3 is all about counting the number of u quarks
over the number of d quarks. In a weak process like,

udd — uvud+e~ +7

the right-hand side has I3 = —%, while the left has I3 = %
Yet maybe we are not being sophisticated enough. Perhaps isospin can

be extended beyond quarks, and leptons can also carry I3. Indeed, if we

define I3(vg) = 3 and I3(e”) = —3, we get

n, — pLr + e, + Tgr

Ig: -

N [=
N [=

where we have used the rule that isospin reverses sign for antiparticles.

This extension of isospin is called weak isospin since it extends the
concept to weak interactions. Indeed, it turns out to be fundamental to
the theory of weak interactions. Unlike regular isospin symmetry, which is
only approximate, weak isospin symmetry turns out to be exact.

So from now on we shall discuss only weak isospin, and call it simply
isospin. Weak isospin is zero for right-handed particles, and :I:% for left-
handed particles:
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| The First Generation of Fermions — Charge and Isospin

Name Symbol  Charge Isospin
Q I3
Left-handed neutrino vy, 0 %
Left-handed electron er -1 — %
Left-handed up quark ur +2 i
Left-handed down quark dr, -1 -1
Right-handed electron en -1 0
Right-handed neutrino VR 0 0
Right-handed up quark UR —|—% 0

Right-handed down quark dr —

o=

The antiparticle of a left-handed particle is right-handed, and the antiparti-
cle of a right-handed particle is left-handed. The isospins also change sign.
Thus, for instance, I3(e};) = +4, while I3(ef) = 0.

In Section Z32 we will see that the Gell-Mann—Nishijima formula,
when applied to weak isospin, defines a fundamental quantity, the ‘weak
hypercharge’, that is vital to the Standard Model. But first, in Section 22311
we discuss how to generalize the SU(2) symmetries from isospin to weak
isospin.

2.3 The Fundamental Forces
2.3.1 Isospin and SU(2), Redux

The story we told of isospin in Section ZJ] was strictly one about the strong
force, which binds nucleons together into nuclei. We learned about the
approximate picture that nucleons live in representation C? of SU(2), the
isospin symmetries, and that they interact by exchanging pions, which live
in the complexified adjoint rep of SU(2), sl(2, C).

This story is mere prelude to the modern picture, where the weak isospin
we defined in Section ZZ2is the star of the show. It explains not the strong
force, but the weak force. It is a story parallel to that of Section Bl but
with left-handed fermions instead of nucleons. The left-handed fermions,
with I3 = :l:%, are paired up into fundamental representations of SU(2), the
weak isospin symmetry group. There is one spanned by left-handed
leptons,

v, e € C?

and one spanned by the left-handed quarks, of each color,
up,dy € C?, wuf,dj €C? uy,dj eC

The antiparticles of the left-handed fermions, the right-handed antifermions,
span the dual representation C2*.
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Because these particles are paired up in the same SU(2) representation,
physicists often write them as doublets:

(i) (i)

with the particle of higher I3 written on top. Note that we have suppressed
color on the quarks. This is conventional, and is done because SU(2) acts
the same way on all colors.

The particles in these doublets then interact via the exchange of W
bosons, which are the weak isospin analogues of the pions. Like the pions,
there are three W bosons:

w(3s) w=(5 %) w=(23)

They span the complexified adjoint rep of SU(2), sl(2,C), and they act on
each of the doublets like the pions act on the nucleons, via the action of
51(2,C) on C2. For example,

W d

Again, Feynman diagrams are the physicists’ way of drawing SU(2)-
intertwiners. Since all the C?’s are acted on by the same SU(2), they can
interact with each other via W boson exchange. For example, quarks and
leptons can interact via W’s

This is in sharp contrast to the old isospin theory, where we only talk
about nucleons and thus had only one C2. It is processes like these that
are responsible for the decay of the neutron:
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u d u

u d d

The fact that only left-handed particles are combined into doublets re-
flects the fact that only they take part in weak interactions. Every right-
handed fermion, on the other hand, is trivial under SU(2). Each one spans
the trivial rep, C. For example, the right-handed electron spans

epeC

Physicists say these are singlets, meaning they are trivial under SU(2).
This is just the representation theoretic way of saying the right-handed
electron, ep, does not participate in weak interactions.

In summary, left-handed particles are grouped into doublets (C? repre-
sentations of SU(2)), while right-handed particles are singlets (trivial rep-
resentations, C).

| The First Generation of Fermions — SU(2) Representations |

Name Symbol  Isospin SU(2) rep
Left-handed leptons YL +1 C?

er 2
Left-handed quarks ur +1 C?

dr, 2
Right-handed neutrino VR 0 C
Right-handed electron €n 0 C
Right-handed up quark UR 0 C
Right-handed down quark dr 0 C

The left-handed fermions interact via the exchange of W bosons, while the
right-handed ones do not.

2.3.2 Hypercharge and U(1)

In Section ZZ2 we saw how to extend the notion of isospin to weak isospin,
which proved to be more fundamental, since we saw in Section EZ31 how
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this gives rise to interactions among left-handed fermions mediated via W
bosons.

We grouped all the fermions into SU(2) representations. When we did
this in Section 21l we saw that the SU(2) representations of particles were
labeled by a quantity, the hypercharge Y, which relates the isospin I35 to
the charge @ via the Gell-Mann—Nishijima formula

Q=13+Y)/2

We can use this formula to extend the notion of hypercharge to weak
hypercharge, a quantity which labels the weak isospin representations.
For left-handed quarks, this notion, like weak isospin, coincides with the
old isospin. We have weak hypercharge Y = % for these particles:

Qur) = DLur)+Y/2 = 14+1 = 2

Q(dr) = Iz(dp)+Y/2 14l = -

But like weak isospin extended isospin to leptons, weak hypercharge extends
hypercharge to leptons. For left-handed leptons, define Y = —1, and the
Gell-Mann—Nishijima formula applies:

Q(I/L) = I3(VL) +Y/2

(SIS
N[

Qlep) = Dlep)+Y/2 = — - 1

Note that the weak hypercharge of quarks comes in units one-third the
size of the weak hypercharge for leptons, a reflection of the fact that quark
charges come in units one-third the size of lepton charges. Indeed, thanks
to the Gell-Mann—Nishijima formula, these facts are equivalent.

For right-handed fermions, weak hypercharge is even simpler. Since
I3 = 0 for these particles, the Gell-Mann—Nishijima formula reduces to

Q=Y/2

or Y = 2Q. For all right-handed fermions, the hypercharge Y is twice their
charge. In summary, the fermions have hypercharge:

N|=
N[

| The First Generation of Fermions — Hypercharge |

Name Symbol Hypercharge

Y
Left-handed leptons < Zf > -1

L
Left-handed quarks ur L
dr, 3

Right-handed neutrino VR 0
Right-handed electron €r -2
Right-handed up quark UR %
Right-handed down quark dr —%
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But what is the meaning of hypercharge? I3, as it turned out, was
related to how particles interact via W bosons, because particles with Is =
:l:% span the fundamental representation of SU(2). Yet there is a deeper
connection.

In quantum mechanics, observables like I3 correspond to self-adjoint
operators. We will denote the operator corresponding to an observable
with a carat, for example I is the operator corresponding to I3. A state
of specific I3, like vy, which has I3 = %, is an eigenvector,

IgVL = %I/L

with an eigenvalue that is the I3 of the state. This makes it easy to write
I3 as a matrix when we let it act on the C? with basis v, and e}, or any

other doublet. We get
1
- 5 0
0 -4

and thus Is € sl(2,C), the complexified adjoint rep of SU(2). In fact,
I 3 = %WO, one of the gauge bosons. So, up to a constant of proportionality,
the observable I3 is one of the gauge bosons.

Similarly, corresponding to hypercharge Y is an observable Y. This is
also, up to proportionality, a gauge boson, though this gauge boson lives in
the complexified adjoint rep of U(1).

Here are the details. Particles with hypercharge Y span irreps Cy of
U(1). Since U(1) is abelian, all of its irreps are one-dimensional. By Cy
we denote the one-dimensional vector space C with action of U(1) given by

a-z=aoYz

For example, the left-handed leptons vy and e; both have hypercharge
Y = —1, and each one spans a C_q,

vy € (C_l, ez e C_4
or, more compactly, the left-handed leptons span,
VLan € Cfl ® (C2

where C? is trivial under U(1). Note the factor of 3 in the definition of Cy,
which takes care of the fact that Y might not be an integer, but is only
guaranteed to be an integral multiple of % In summary, the fermions we
have met thus far with hypercharge Y have U(1) representations Cy-.
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| The First Generation of Fermions — U(1) Representations

Name Symbol U(1) rep
Left-handed leptons ( Zf ) C_1
L

Left-handed quarks ( ur > C.

dL 3
Right-handed neutrino VR Co
Right-handed electron Cr C_o
Right-handed up quark UR C 1
Right-handed down quark dr C_ 2

Now, the adjoint representation u(1) of U(1) is just the tangent space to
the unit circle in C at 1. It is thus parallel to the imaginary axis, and can be
identified as iR. Is is generated by . i also generates the complexification,
C ® u(1) = C, though this also has other convenient generators, like 1.

Given a particle ¢ € Cy of hypercharge Y, we differentiate the action
of U(1) on ¢

€l . = 30y

and set § = 0 to find out how u(1) acts:
i =3Yi

Dividing by ¢ we get that,
1-9=3Yy

where we have cancelled a factor of i, using the fact that the complexified
adjoint rep is linear in C. In other words, we have

- 1
Y=-€C
36

as an element of the complexified adjoint rep.

Particles with hypercharge interact by exchange of a boson, called the B
boson, which spans C. Of course, since C is one-dimensional, any nonzero
element spans it. Up to a constant of proportionality, the B is just Y, and
we might as well take it to be equal to Y, but calling it B is standard in
physics.

The B boson is a lot like another, more familiar U(1) gauge boson—the
photon! The hypercharge force which the B boson mediates is a lot like
electromagnetism, which is mediated by photons, but its strength is propor-
tional to hypercharge rather than charge. We draw the U(1) intertwiners
as Feynman diagrams,
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as always.

2.3.3 Electroweak Symmetry Breaking

In the Standard Model, electromagnetism and the weak force are unified
into the electroweak force. This is is a U(1) x SU(2) gauge theory, and
without saying so, we just told you all about it in sections B3] and
The fermions live in representations of hypercharge U(1) and weak isospin
SU(2), exactly as we described in those sections, and we tensor these to-
gether to get representations of U(1) x SU(2):

| The First Generation of Fermions — U(1) x SU(2) Representations |

Name Symbol Hypercharge Isospin U(1) x SU(2) rep
Left-handed leptons ( zf ) -1 :I:% C_;®C?
L
Left-handed quarks < ur ) 3 +1 C. ®C?
dL 3

Right-handed neutrino VR 0 0 CoxC
Right-handed electron er -2 0 CoC
Right-handed up quark UR % 0 C 1 ® C
Right-handed down quark dr -2 0 C_:®C

These fermions interact by exchanging B and W bosons, which span
C ¢ s1(2,C), the complexified adjoint representation of U(1) x SU(2). The
Feynman diagrams depicting these exchanges:
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avatata

are pictures of U(1) x SU(2) intertwiners.

Yet despite the electroweak unification, electromagnetism and the weak
force are very different at low energies, including most interactions in the
everyday world. Electromagnetism is a force of infinite range that we can
describe by a U(1) gauge theory, with the photon as gauge boson

The photon lives in C ®sl(2, C), alongside the B and W bosons. It is given
by a linear combination

v=W"+B/2

that parallels the Gell-Mann—Nishijima formula, Q = Is + Y/2.
The weak force is of very short range and mediated by the W and Z
bosons:

{4
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The Z boson lives in C @ s[(2,C), and is given by the linear combination
Z=w°"-B/2

which is in some sense ‘perpendicular’ to the photon.
These bosons, since they are responsible for the fundamental electro-
magnetic and weak interactions, belong in our chart of gauge bosons:

| Gauge Bosons (second try) |

Force Gauge boson Symbol
Electromagnetism Photon ¥
Weak force W and Z bosons W, W~ and Z

What makes the photon (and electromagnetism) so different from the
W and Z bosons (and the weak force)? It is symmetry breaking. Symmetry
breaking allows the full electroweak U(1) x SU(2) symmetry group to be
hidden away at high energy, replaced with the electomagnetic subgroup
U(1) at lower energies. This electromagnetic U(1) is not the obvious factor
of U(1) given by U(1) x 1. It is another copy, one which wraps around inside
U(1) x SU(2) in a manner given by the Gell-Mann—Nishijima formula.

The dynamics behind symmetry breaking are beyond the scope of this
paper. We will just mention that, in the Standard Model, electroweak
symmetry breaking is believed to be due to the ‘Higgs mechanism’. In this
mechanism, all particles in the Standard Model, including the photon and
the W and Z bosons, interact with a particle called the Higgs boson, and
it is their differing interactions with this particle that makes them appear
so different at low energies.

The Higgs boson has yet to be observed, and remains one of the most
mysterious parts of the Standard Model. As of this writing, the Large
Hadron Collider at CERN is beginning operations; searching for the Higgs
boson is one of its primary aims.

For the details on symmetry breaking and the Higgs mechanism, which
is essential to understanding the Standard Model, see Huang [I0]. For a
quick overview, see Zee [28].

2.3.4 Color and SU(3)

There is one more fundamental force in the Standard Model: the strong
force. We have already met this force, as the force that keeps the nucleus
together, but we discussed it before we knew that protons and neutrons
are made of quarks. Now we need a force to keep quarks together inside
the nucleons, and quark confinement tells us it must be a very strong force
indeed. It is this force that, in modern parlance, is called the strong force
and considered fundamental. The force between nucleons is a side effect of
these more fundamental interactions among quarks.

Like all three forces in the Standard Model, the strong force is explained
by a gauge theory, this time with gauge group SU(3), the color symmetry
group of the quarks. The picture is simpler than that of electromagnetism
and the weak force, however, because this symmetry is unbroken. It is
exact at all energies.
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By now, you can guess how this goes. Every kind of quark spans the
fundamental representation C* of SU(3). For example, the left-handed up
quark, with its three colors, lives in

uf,ud,ul € C?
and the left-handed down quark, with its three colors, spans another copy
of C3,
g b
27 d%v dL € (C3
Together, these span the SU(3) representation
CteC?

where C? is trivial under SU(3).

The quarks interact by the exchange of gluons, the gauge bosons of
the strong force. These gauge bosons live in C ® su(3) = sl(3,C), the
complexified adjoint representation of SU(3). The interactions are drawn
as Feynman diagrams, which depict SU(3)-intertwiners, like this:

The gluons are fundamental particles, gauge bosons of the strong force, and
they complete our table of gauge bosons:

| Gauge Bosons |

Force Gauge Boson Symbol
Electromagnetism Photon ¥

Weak force W and Z bosons W, W~ and Z
Strong force Gluons g

On the other hand, the leptons are white: they transform trivially under
SU(3). So, they not exchange gluons. In other words, they do not partic-
ipate in the strong interaction. We can capture all of this information in

a table, where we give the SU(3) representations in which all our fermions
live.
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| The First Generation of Fermions — SU(3) Representations

Name Symbol  Colors SU(3) rep
Left-handed neutrino v, white C
Left-handed electron er white C
Left-handed up quarks ul ud,ub o g,b C3
Left-handed down quarks dy,d%,d%  r,g,b C3
Right-handed electron en white C
Right-handed neutrino VR white C
Right-handed up quarks ufy, uf,uly  T,g,b C3
Right-handed down quarks  d%,d%,d%  r,g,b C3

2.4 The Standard Model Representation

We are now in a position to put the entire Standard Model together in a sin-
gle picture, much as we combined the weak isospin SU(2) and hypercharge
U(1) into the electroweak gauge group, U(1) x SU(2), in Section We
then tensored the hypercharge U(1) representations with the weak isospin
SU(2) representations to get the electroweak representations.

Now let us take this process one step further, by bringing in a factor of
SU(3), for the color symmetry, and tensoring the representations of U(1) x
SU(2) with the representations of SU(3). Doing this, we get the Standard
Model. The Standard Model is a gauge theory with group:

Ggn = U(1) x SU(2) x SU(3)

The fundamental fermions described by the Standard Model combine to
form representations of this group. We know what these are, and describe
all of them in Table [l
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| The Standard Model Representation

Name Symbol Hypercharge Isospin Colors U(1) x SU(2) x SU(3) rep
Left-handed leptons ( Zf ) -1 :I:% white CLieC*aC
L

uy,uy, ) 1 1 2 3

Left-handed quarks g 3 +3 r,q,b (C% ®C*®C
L, 4L, ay,

Right-handed neutrino VR 0 0 white CoCxC
Right-handed electron €n -2 0 white CLrCxC
Right-handed up quarks uly, u%, uZ}% % 0 r,4,b (C% ®C®C?
Right-handed down quarks iy, d%, dY% —% 0 r,g,b C_:®Ce® C3

Table 1: Fundamental fermions as representations of Gy = U(1) xSU(2) x
SU(3)

All of the representations of Gq) in the left-hand column are irreducible,
since they are made by tensoring irreps of Gq\’s factors. This is a general
fact: if V is an irrep of G, and W is an irrep of H, then V ® W is an irrep
of G x H. Moreover, all irreps of G x H arise in this way.

On the other hand, if we take the direct sum of these all representations,

F=(C1®C®C) & -+ @ (@C_:0CaC’

we get a reducible representation containing all the first-generation fermions
in the Standard Model. We call F' the fermion representation. If we
take the dual of F', we get a representation describing all the antifermions
in the first generation. And taking the direct sum of these spaces:

FoFr

we get a representation of Ggpy that we will call the Standard Model
representation. It contains all the first-generation elementary particles in
the Standard Model. It does not contain the gauge bosons or the mysterious
Higgs.

The fermions living in the Standard Model representation interact by
exchanging gauge bosons that live in the complexified adjoint representation
of Ggpp- We have already met all of these, and we collect them in Table

| Gauge Bosons |

Force Gauge Boson Symbol
Electromagnetism Photon ¥

Weak force W and Z bosons W, W~ and Z
Strong force Gluons g

Table 2: Gauge bosons
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Of all the particles and antiparticles in F'® F*, exactly two of them are
fixed by the action of Ggpr. These are the right-handed neutrino

vReCrCRC

and its antiparticle,
7L € (CheCrC)"

both of which are trivial representations of Ggqpr; they thus do not par-
ticipate in any interactions mediated by the gauge bosons of the Standard
Model. They might interact with Higgs boson, though very little about
right-handed neutrinos is known with certainty.

By now, we know these interactions are drawn as Feynman diagrams,
which are a depiction of Gq)-intertwiners between representations built
out of F' and F*. We collect the Feynman diagrams that depict the funda-
mental interactions of the Standard Model in Figure

wt w= 4

Figure 3: Some Standard Model Feynman diagrams.

These diagrams are calculational tools in physics, though to actually use
them as such, we need quantum field theory. Then, instead of just standing
for intertwiners between representations of the gauge group G SM> Feynman
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diagrams also depict intertwiners between representations of the Poincaré
group. These intertwiners are succinctly encoded in something called the
‘Standard Model Lagrangian’. Unfortunately, the details are beyond the
scope of this paper.

2.5 Generations

Our description of the Standard Model is almost at an end. We have told
you about its gauge group, Ggq)j, its representation F'® F™* on the the first-
generation of fermions and antifermions, and a bit about how these fermions
interact by exchanging gauge bosons, which live in the complexified adjoint
rep of Gg)j. For the grand unified theories we are about to discuss, that
is all we need. The stage is set.

Yet we would be derelict in our duty if we did not mention the second
and third generation of fermions. The first evidence for these came in the
1930s, when a charged particle 207 times as heavy as the electron was found.
At first researchers thought it was the particle predicted by Yukawa — the
one that mediates the strong interaction between nucleons. But then it
turned out the newly discovered particle does not feel the strong interaction.
This came as a complete surprise. As the physicist Rabi quipped at the
time: “Who ordered that?”

Dubbed the muon and denoted p~, this new particle turned out to act
like an overweight electron. Like the electron, it participates in only the
electromagnetic and weak interactions — and like the electron, it has its
own neutrino! So, the neutrino we have been discussing so far is now called
the electron neutrino, v, to distinguish it from the muon neutrino, v,,.
Together, the muon and the muon neutrino comprise the second generation
of leptons. The muon decays via the weak interaction

pwoo—e +v,+V,

into an electron, a muon neutrino, and an electron antineutrino.

Much later, in the 1970s, physicists realized there was also a second
generation of quarks: the charm quark, ¢, and the strange quark, s.
This was evidence of another pattern in the Standard Model: there are as
many flavors of quark as there are leptons. In Section B3 we will learn
about the Pati-Salam model, which explains this pattern by unifying quarks
and leptons.

Today, we know about three generations of fermions. Three of quarks:

| Quarks by Generation

| 1st Generation | 2nd Generation | 3rd Generation
Charge Name Symbol Name Symbol Name Symbol
—|—% Up U Charm c Top t
— % Down d Strange s Bottom b

and three of leptons:
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| Leptons by Generation

| 1st Generation | 2nd Generation | 3rd Generation
Charge Name Symbol Name Symbol Name Symbol
0 Electron neutrino Ve Muon neutrino vy Tau neutrino Vr
-1 Electron e~ Muon w- Tauon T

The second and third generations of quarks and charged leptons differ from
the first by being more massive and able to decay into particles of the
earlier generations. The various neutrinos do not decay, but some and
perhaps all of them are massive. This allows them to ‘oscillate’ from one
type to another, a phenomenon called neutrino oscillation.

The Standard Model explains all of this by something called the Higgs
mechanism. Apart from how they interact with the Higgs boson, the gen-
erations are identical. For instance, as representations of Ggq)r, each gen-
eration spans another copy of F. Each generation of fermions has corre-
sponding antifermions, spanning a copy of F™*.

All told, we thus have three copies of the Standard Model representation,
F@F*. We will only need to discuss one generation, so we find it convenient
to speak as if F'® F™* contains particles of the first-generation. No one knows
why the Standard Model is this redundant, with three sets of very similar
particles. It remains a mystery.

3 Grand Unified Theories

Not all of the symmetries of Gg)j, the gauge group of the Standard Model,
are actually seen in nature. This is because these symmetries are ‘broken’
in some physical way. They are symmetries of the laws, but not necessarily
symmetries of the system. The actual phenomenology of particles that
we observe is like a shadow that these symmetrical laws cast down to our
regime of low energy from the regime of high energy where the symmetries
become exact.

It is reasonable to ask if this process continues. Could the symmetries
of the Standard Model be just a subset of all the symmetries in nature?
Could they be the low energy shadows of laws still more symmetric?

A grand unified theory, or GUT, constitutes a guess at what these ‘more
symmetric’ laws might be. It is a theory with more symmetry than the
Standard Model, which reduces to the Standard Model at lower energies.
It is also, therefore, an attempt to describe the physics at higher energies.

GUTs are speculative physics. The Standard Model has been tested in
countless experiments. There is a lot of evidence that it is an incomplete
theory, and some vague clues about what the next theory might be like,
but so far there is no empirical evidence that any GUT is correct — and
even some empirical evidence that some GUTs, like SU(5), are incorrect.

Nonetheless, GUTs are interesting to theoretical physicists, because
they allow us to explore some very definite ideas about how to extend
the Standard Model. And because they are based almost entirely on the
representation theory of compact Lie groups, the underlying physical ideas
provide a marvelous playground for this beautiful area of mathematics.
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Amazingly, this beauty then becomes a part of the physics. The repre-
sentation of G used in the Standard Model seems ad hoc. Why this one?
Why all those seemingly arbitrary hypercharges floating around, mucking
up some otherwise simple representations? Why do both leptons and quarks
come in left- and right-handed varieties, which transform so differently?
Why do quarks come in charges which are in units % times an electron’s
charge? Why are there the same number of quarks and leptons? GUTs can
shed light on these questions, using only group representation theory.

3.1 The SU(5) GUT

The SU(5) grand unified theory appeared in a 1974 paper by Howard Georgi
and Sheldon Glashow [6]. It was the first grand unified theory, and is still
considered the prototypical example. As such, there are many accounts of
it in the physics literature. The textbooks by Ross [23] and Mohapatra [12]
both devote an entire chapter to the SU(5) theory, and a lucid summary can
be found in a review article by Witten [27], which also has the advantage
of discussing the supersymmetric generalization of this theory.

In this section, we will limit our attention to the nonsupersymmetric
version of SU(5) theory, which is how it was originally proposed. Unfor-
tunately, this theory has since been ruled out by experiment; it predicts
that protons will decay faster than the current lower bound on proton life-
time [I9]. Nevertheless, because of its prototypical status and intrinsic
interest, we simply must talk about the SU(5) theory.

The core idea behind the SU(5) grand unified theory is that because the
Standard Model representation F' @ F™* is 32-dimensional, each particle or
antiparticle in the first generation of fermions can be named by a 5-bit code.
Roughly speaking, these bits are the answers to five yes-or-no questions:

Is the particle isospin up?

Is it isospin down?

Is it red?

e Is it green?
e Is it blue?

There are subtleties involved when we answer ‘yes’ to both the first two
questions, or ‘yes’ to more than one of the last three, but let us start with
an example where these issues do not arise: the bit string 01100. This
names a particle that is down and red. So, it refers to a red quark whose
isospin is down, meaning —%. Glancing at Table[ll we see just one particle
meeting this description: the red left-handed down quark, d7 .

We can flesh out this scheme by demanding that the operation of taking
antiparticles correspond to switching 0’s for 1’s in the code. So the code
for the antiparticle of d} , the ‘antired right-handed antidown antiquark’, is
10011. This is cute: it means that being antidown is the same as being up,
while being antired is the same as being both green and blue.

Furthermore, in this scheme all antileptons are ‘black’ (the particles
with no color, ending in 000), while leptons are ‘white’ (the particles with
every color, ending in 111). Quarks have exactly one color, and antiquarks
have exactly two.
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We are slowly working our way to the SU(5) theory. Next let us bring
Hilbert spaces into the game. We can take the basic properties of being up,
down, red, green or blue, and treat them as basis vectors for C°. Let us
call these vectors u,d, r, g,b. The exterior algebra AC® has a basis given by
wedge products of these 5 vectors. This exterior algebra is 32-dimensional,
and it has a basis labelled by 5-bit strings. For example, the bit string 01100
corresponds to the basis vector d Ar, while the bit string 10011 corresponds
touAgAD.

Next we bring in representation theory. The group SU(5) has an obvious
representation on C°. And since the operation of taking exterior algebras
is functorial, this group also has a representation on AC®. In the SU(5)
grand unified theory, this is the representation we use to describe a single
generation of fermions and their antiparticles.

Just by our wording, though, we are picking out a splitting of C® into
C2?@C3: the isospin and color parts, respectively. Choosing such a splitting
of C% picks out a subgroup of SU(5), the set of all group elements that
preserve this splitting. This subgroup consists of block diagonal matrices
with a 2 x 2 block and a 3 x 3 block, both unitary, such that the determinant
of the whole matrix is 1. Let us denote this subgroup as S(U(2) x U(3)).

Now for the miracle: the subgroup S(U(2) x U(3)) is isomorphic to the
Standard Model gauge group (at least modulo a finite subgroup). And,
when we restrict the representation of SU(5) on AC? to S(U(2) x U(3)), we
get the Standard Model representation!

There are two great things about this. The first is that it gives a concise
and mathematically elegant description of the Standard Model representa-
tion. The second is that the seemingly ad hoc hypercharges in the Standard
Model must be exactly what they are for this description to work. So, physi-
cists say the SU(5) theory explains the fractional charges of quarks: the fact
that quark charges come in units % the size of electron charge pops right
out of this theory.

With this foretaste of the fruits the SU(5) theory will bear, let us get
to work and sow the seeds. Our work will have two parts. First we need to
check that

S(U(2) x U(3)) GSM/N

where N is some finite normal subgroup that acts trivially on F'& F*. Then
we need to check that indeed

ACP* = F o F*

as representations of S(U(2) x U(3)).

First, the group isomorphism. Since S(U(2) x U(3)) is a subgroup of
SU(5), we are looking for a way to include Ggpy = U(1) x SU(2) x SU(3) in
SU(5). Can this be done? Clearly, we can include SU(3) x SU(3) as block
diagonal matrices in SU(5):

SU@) xSUB) —  SU(5)
wn — (80)

But that is not enough, because G'qp also has that pesky factor of U(1),
related to the hypercharge. How can we fit that in?
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The first clue is that elements of U(1) must commute with the elements
of SU(2) x SU(3). But the only elements of SU(5) that commute with
everybody in the SU(2) x SU(3) subgroup are diagonal, since they must
separately commute with SU(2) x 1 and 1 x SU(3), and the only elements
doing so are diagonal. Moreover, they must be scalars on each block. So,
they have to look like this:

a 0
(55)

where « stands for the 2 x 2 identity matrix times the complex number
a € U(1), and similarly for § in the 3 x 3 block. For the above matrix to
lie in SU(5), it must have determinant 1, so o233 = 1. This condition cuts
the group of such matrices from U(1) x U(1) down to U(1). In fact, all such
matrices are of the form
a0
(5 o)

where a runs over U(1).

So if we throw in elements of this form, do we get U(1) x SU(2) x SU(3)?
More precisely, does this map:

Gom — SU(5)
adg 0
(a,g, h) ( 0 a_2h >

give an isomorphism between Ggyp and SU(U(2) x U(3))? It is clearly a
homomorphism. It clearly maps into Ggqpp into the subgroup S(U(2) x
U(3)). And it is easy to check that it maps Gqpg onto this subgroup. But
is it one-to-one?

The answer is no: the map ¢ has a kernel, Zg. The kernel is the set of
all elements of the form

(a,a™3,a?) € U(1) x SU(2) x SU(3)

and this is Zg, because scalar matrices a =3 and a? live in SU(2) and SU(3),
respectively, if and only if « is a sixth root of unity. So, all we get is

G/ Zs 22 S(U(2) x U(3)) — SU(5).

This sets up a nerve-racking test that the SU(5) theory must pass for
it to have any chance of success. After all, not all representations of Ggyp
factor through Gq\/Ze, but all those coming from representations of SU(5)
must do so. A representation of Ggqyp will factor through Ggqyp/Ze only if
Zg subgroup acts trivially.

In short: the SU(5) GUT is doomed unless Zg acts trivially on every
fermion. (And antifermion, but that amounts to the same thing.) For this
to work for every lepton and quark in the first generation, we need certain
relations to hold between the hypercharge, isospin and color.

For example, consider the left-handed electron

e €EC10C*®C.
For any sixth root of unity «, we need
(a,a™?,a?) € U(1) x SU(2) x SU(3)

to act trivially on this particle. Let us see how it acts. Note that:
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e o € U(1) acts on C_; as multiplication by a~3;

b

e a3 € SU(2) acts on C? as multiplication by a=3;

)

e o € SU(3) acts trivially on C.

So, we have

(,a™3,a%) e =a a3, =e].
The action is indeed trivial — precisely because « is a sixth root of unity.
Or, consider the right-handed d quark:

dreC_>®C®C3.

2
3

How does (a, a3, a?) act on this? We note:

2.
)

e a € U(1) acts on C_3 as multiplication by o~

e a3 € SU(2) acts trivially on the trivial representation C;
e o? € SU(3) acts on C? as multiplication by a?.

So, we have
(,a™3,0%) - dg = a 2a’dg = dg.

Again, the action is trivial.

For SU(5) to work, though, Zs has to act trivially on every fermion.
There are 16 cases to check, and it is an awful lot to demand that hyper-
charge, the most erratic part of the Standard Model representation, satisfies
16 relations.

Or is it? In general, for a fermion with hypercharge Y, there are four
distinct possibilities:

| Hypercharge relations

Case Representation Relation
Nontrivial SU(2), nontrivial SU3) = Cy@C?*®C? = o3 372 =1
Nontrivial SU(2), trivial SU(3) = CyeC*eC = o7 3=1
Trivial SU(2), nontrivial SU(3) = CyeCeC = oV 2=1
Trivial SU(2), trivial SU(3) = GCyeCeC = Y =1

Better yet, say it like a physicist!

| Hypercharge relations
Case Representation Relation
Left-handed quark = CyeCZgC’ = oY 321
Left-handed lepton = Cy®CZeC = o¥ 3=1
Right-handed quark = Cy®CeC?® = o7 2=1
Right-handed lepton = CyeCsC = a3 =1

But « is sixth root of unity, so all this really says is that those exponents
are multiples of six:
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| Hypercharge relations |
Case Relation
Left-handed quark = 3Y-3+2€6Z
Left-handed lepton = 3Y —3€6Z
Right-handed quark = 3Y +2€6Z
Right-handed lepton = 3Y € 6Z

Dividing by 3 and doing a little work, it is easy to see these are just saying:

| Possible hypercharges |
Case Hypercharge
Left-handed quark Y = even integer +%
Left-handed lepton Y = odd integer
Right-handed quark Y = odd integer +%
Right-handed lepton Y = even integer

Table 3: Hypercharge relations

Now it is easy to check this indeed holds for every fermion in the standard
model. SU(5) passes the test, not despite the bizarre pattern followed by
hypercharges, but because of it!

By this analysis, we have shown that Zg acts trivially on the Standard
Model rep, so it is contained in the kernel of this rep. It is better than just
a containment though: Zg is the entire kernel. Because of this, we could
say that Gq\j/Ze is the ‘true’ gauge group of the Standard Model. And
because we now know that

G/ Zs 22 S(U(2) x U(3)) — SU(5),

it is almost as though this Zg kernel, lurking inside Gq1 this whole time,
was a cryptic hint to try the SU(5) theory.

Of course, we still need to find a representation of SU(5) that extends
the Standard Model representation. Luckily, there is a very beautiful choice
that works: the exterior algebra AC®. Since SU(5) acts on C°, it has a
representation on AC®. Our next goal is to check that pulling back this
representation from SU(5) to Gqyp using ¢, we obtain the Stadard model
representation F' ¢ F'*.

As we do this, we will see another fruit SU(5) theory ripen. The triviality
of Zg already imposed some structure on hypercharges, as outlined in above
in TableBl As we fit the fermions into AC®, we will see this is no accident—
the hypercharges have to be exactly what they are for the SU(5) theory to
work.

To get started, our strategy will be to use the fact that, being represen-
tations of compact Lie groups, both the fermions F' & F* and the exterior
algebra AC® are completely reducible, so they can be written as a direct
sum of irreps. We will then match up these irreps one at a time.

The fermions are already written as a direct sum of irreps, so we need
to work on AC®. Now, given g € SU(5), g acts on the exterior algebra AC®
by commuting with the wedge product:

g(v Aw) = gv A gw
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where v, w € AC®. Since we know how ¢ acts on the vectors in C°, and
these generate ACP, this rule is enough to tell us how g acts on any element
of C5. This action respects grades in AC®, so each exterior power in

AC® 22 A°C® @ A'C® & A2C° @ A3C® @ ACP @ APCP

is a subrepresentation. In fact, these are all irreducible, so this is how AC®
breaks up into irreps. Upon restriction to G'q), some of these summands
break apart further into irreps of Ggqpy-

Let us see how this works, starting with the easiest cases. A°C® and
APCP are both trivial irreps of Gq)p, and there are two trivial irreps in
F @ F*, namely (vg) and its dual, or antiparticle, (Z1,). So, we could select
A°C% = (¥1) and APC® = (vR), or vice versa. At this juncture, we have no
reason to prefer one choice to the other.

Now let us chew on the next piece: the first exterior power, A'C®. We
have

A'CP =P

as vector spaces, and as representations of Gq)- But what is Cd as a
representation of Gq);? The Standard Model gauge group acts on C® via
the map

3
Q/): (a,g, h) — < aog a—02h >

Clearly, this action preserves the splitting into the ‘isospin part’ and the
‘color part’ of C®:
C*2C?aC.

So, let us examine these two subrepresentations in turn:

e The C? part transforms in the hypercharge 1 rep of U(1): that is,
« acts as multiplication by a®. It transforms according to the fun-
damental representation of SU(2), and the trivial representation of
SU(3). This seems to describe a left-handed lepton with hypercharge
1.

e The C3? part transforms in the hypercharge —% rep of U(1): that is,
« acts as multiplication by a~2. It transforms trivially under SU(2),
and according to the fundamental SU(2) and trivially as a rep of
SU(3). Table [ shows that these are the features of a right-handed
quark.

In short, as a rep of Gg), we have
C° = CeCeC & C_;eCeC

and we have already guessed which particles these correspond to. The first
summand looks like a left-handed lepton with hypercharge 1, while the
second is a right-handed quark with hypercharge —%.

Now this is problematic, because another glance at Table Ml reveals that
there is no left-handed lepton with hypercharge 1. The only particles with
hypercharge 1 are the right-handed antileptons, which span the represen-
tation

+
<ER>:<C1®(C2*®C.
VR
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But wait! SU(2) is unique among the SU(n)’s in that its fundamental rep
C? is self-dual:
C? = C*.

This saves the day. As a rep of Gq)y, C® becomes
C° = CioeC*®C ¢ C:;0CeC

so it describes the right-handed antileptons with hypercharge 1 and the
right-handed quarks with hypercharge —%. In other words:

+
AP > 5 (;2 > @ (dy, d%, d%)

Back to calculating. We can use our knowledge of the first exterior
power to compute the second exterior power, by applying the formula

AN VeWw) = AV @ VW & AW

If this formula is unfamiliar, note that A?(V @& W) is the antisymmetric
part of the tensor product

Veme(VeW) = VeV & VW & WV & WeW,
and this part is isomorphic to
NV & VeW & AW
So, let us calculate! As reps of Ggq) we have

A2CP

1

AMCeC’eC & C_;eCC?
ANCeC?eC) ¢ CieC?eC)e(C:eCeC’) o

IR

Consider the first summand, A?(C; ® C? ® C). As a rep of SU(2) this
space is just A2C?, which is the one-dimensional trivial rep, C. As a rep
of SU(3) it is also trivial. But as a rep of U(1), it is nontrivial. Inside it
we are juxtaposing two particles with hypercharge 1. Hypercharges add,
just like charges, so the composite particle, which consists of one particle
and the other, has hypercharge 2. So, as a representation of the Standard
Model gauge group we have

A C;eC*RC)2C,RC®C.

Glancing at Table M we see this matches the left-handed positron, eJLr. Note

that the hypercharges are becoming useful now, since they uniquely identify

all the fermion and antifermion representations, except for neutrinos.
Next consider the second summand:

CeC?*eC)e(C_:@CaC?.

Again, we can add hypercharges, so this representation of Ggyy is isomor-
phic to
C:eC*eC’.
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This describes left-handed quarks of hypercharge %, which from Table [

are:
ur,

dr, |-

Finally, the third summand in A%2C? is

A*(C_z; @ ®CeC).

This has isospin —%, so by Table [ it had better correspond to the left-

handed antiup antiquark, which lives in the representation
C_s®CeC™

Let us check. The rep A2 (C_z:® C% ® C3) is trivial under SU(2) since this

group acts trivially on A2C2. As a rep of SU(3) it is the same as A2C3.
But because SU(3) preserves the volume form on C3; taking Hodge duals
gives an isomorphism

APC? = (AP7PCP)*

so we have
AQ(CB o (Al(CS)* o~ CB*
which is just what we need to show
A(C_; ®C¥ 2 C s ®COC™ = (07,1, 7).
In summary, the following pieces of the Standard Model rep sit inside
A2C5:
APC 2 (ef) @ < o ) ® (ay,,ul, 7y

We are almost done. Because SU(5) preserves the canonical volume
form on C®, taking Hodge duals gives an isomorphism between

Ap(cf) ~ (A5—pc5)*

as representations of SU(5). Thus given our results so far:

AP <EL>

ae = (G
~ _ @ (dRr)

VR

~ ur, —
AC® = ()@ < dr ) & (ur)
we automatically get the antiparticles of these upon taking Hodge duals,
305~ - dr
A°C = (ep) @ (ﬂR ® (ur)

ACE ( L ) @ (dp)
er
O <I/R>.

So AC® =2 F @ F*, as desired.
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How does all this look in terms of the promised binary code? Remember,
a 5-bit code is short for a wedge product of basis vectors u,d,r, g,b € C.
For example, 01101 corresponds to d A r A b. And now that we have found
an isomorphism AC® = F @ F*, each of these wedge products corresponds
to a fermion or antifermion. How does this correspondence go, exactly?

First consider the grade-one part A'C®> = C2 @ C3. This has basis
vectors called u, d, r, g, and b. We have seen that the subspace C2, spanned

by u and d, corresponds to
et
R .
VR

The top particle here has isospin up, while the bottom one has isospin
down, so we must have ejg = u and U = d. Likewise, the subspace C?

spanned by r, g and b corresponds to

(d, dy, dy).

Thus we must have d% = ¢, where ¢ runs over the colors r, g, b.
Next consider the grade-two part:

ACP = (eh) @ ( Zi ) ® (Tr).

Here e} lives in the one-dimensional A2C2 rep of SU(2), which is spanned
by the vector u A d. Thus, eJLr = u Ad. The quarks

ur,
(i)
live in the C? @ C3 rep of SU(2) x SU(3), which is spanned by vectors
that consist of one isospin and one color. We must have u¢ = u A ¢ and
dj = d A ¢, where again ¢ runs over all the colors r,¢,b. And now for
the tricky part: the Ty quarks live in the A2C3 rep of SU(3), but this is
isomorphic to the fundamental representation of SU(3) on C?*, which is
spanned by the anticolors antired, antired and antiblue:

F=gAb, G=rAb, b=rAg.

These vectors form the basis of A2C3 that is dual to r, ¢, and b under Hodge
duality in AC3. So we must have

uj =¢

where € can be any anticolor. Take heed of the fact that ¢ is grade 2, even
though it may look like grade 1.

To work out the other grades, note that Hodge duality corresponds to
switching 0’s and 1’s in our binary code. For instance, the dual of 01101 is
10010: or written in terms of basis vectors, the dual of d A7 Abis u A g.
Thus given the binary codes for the first few exterior powers:

AO(C5 A1C5 A2(C5
v =1 eE:u ez:u/\d
Vr=d uf=uAlc

dp=c df=dAc
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taking Hodge duals gives the binary codes for the the rest:

A3CP ACH A°CP

er=TANgAb e =dATANgANb vrR=uNdATAgAD
UG =dAC vp =uATAgAD

dp =uAc d; =undAE

up =uANdAc

Putting these together, we get the binary code for every particle and an-
tiparticle in the first generation of fermions. To save space, let us omit the
wedge product symbols:

The Binary Code for SU(5) |
A'Cc AT A2CP A3CP AIC? ASCP

vp=1 ep=u ez:ud ep=1rgb e; =drgb vg=udrgb
Vpr=d u§=uc uR=d¢ vi=urgb

—cC —=C

dp=c df=dc dp=uc dy=udc

Table 4: Binary code for first-generation fermions, where ¢ = r,¢,b and
¢ =gb,br,rg

Now we can see a good, though not decisive, reason to choose A°C5® =2
7r,. With this choice, and not the other, we get left-handed particles in the
even grades, and right-handed particles in the odd grades. We choose to
have this pattern now, but later on we need it.

Table Bl defines a linear isomorphism h: F' @ F* — AC?® in terms of the
basis vectors, so the equalities in it are a bit of a exaggeration. This map h
is the isomorphism between the fermions F' @& F* and the exterior algebra
AC?® as representations of Ggnp- Tt tells us how these representations are
the ‘same’.

Really, we mean these representations are the same when we identify
S(U(2) x U(3)) with Gq\j/Ze by the isomorphism ¢ induces. In general,
we can think of a unitary representation as a Lie group homomorphism

f:G—UV)

where V is a finite-dimensional Hilbert space and U(V) is the Lie group
of unitary operators on V. In this section we have been comparing two
unitary representations: an ugly, complicated representation of G'q\r:

p:Ggy — U(F @ F¥)
and a nice, beautiful representation of SU(5):

p':SU(5) — U(AC®).
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We built a homomorphism
¢: Ggng — SU(5)
so it is natural to wonder if is there a fourth homomorphism
U(F @ F*) — U(AC®)

such that this square commutes:

GSM 4¢> SU(5)

U(F & F*) — U(ACY)

Indeed, we just showed this! We constructed a unitary operator from
the Standard Model rep to AC®, say

~

h:F & F* 5 ACP.
This induces an isomorphism
U(h): U(F @ F*) = U(AC)

and our work above amounted to checking that this isomorphism makes
square of the above form commute. So, let us summarize this result as a
theorem:

Theorem 1. There exists a Lie group homomorphism ¢: GSM — SU(5)
and a unitary operator h: F @ F* — ACP® such that this square commutes:

Ggy ———= SU(5)

| |
U(h)

U(F & F*) —= U(ACY)

In other words, the representation of SU(5) on AC® becomes equivalent to
the Standard Model representation of Ggqyp when pulled back along ¢.

3.2 The SO(10) GUT

We know turn our attention to another grand unified theory, called the
‘SO(10) theory’ by physicists, though we shall call it the Spin(10) theory,
because the Lie group involved is Spin(10), the double cover of SO(10).
This theory appeared in a 1974 paper by Georgi [B], shortly after the first
paper on the SU(5) theory, though Georgi has said that he conceived the
Spin(10) theory first. See Zee [28], Chapter VIL.7, for a concise but readable
account.

The SU(5) GUT has helped us explain the pattern of hypercharges in
the Standard Model, and thanks to the use of the exterior algebra, AC®, we
can interpret it in terms of a binary code. This binary code explains another
curious fact about the Standard Model. Specifically, why is the number of
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fermions a power of 27 There are 16 fermions, and 16 antifermions, which
makes the Standard Model rep have dimension

dim(F @ F*) = 2° = 32.

With the binary code interpretation, it could not be any other way.

In actuality, however, the existence of a right-handed neutrino (or its
antiparticle, the left-handed antineutrino) has been controversial. Because
it transforms trivially in the Standard Model, it does not interact with
anything except perhaps the Higgs.

The right-handed neutrino certainly improves the aesthetics of the SU(5)
theory. When we include this particle (and its antiparticle), we obtain the
rep

AC oA C e A’C e A°CPa A'C° o A°C
which is all of AC®, whereas without this particle we would just have
A'C® @ A’C° @ A’C° @ A*CP

which is much less appealing—it wants to be AC®, but it comes up short.

More importantly, there is increasing indirect evidence from experimen-
tal particle physics that right-handed neutrinos do exist. For details, see
Pati [20]. If this is true, the number of fermions really could be 16, and we
have a ready-made explanation for that number in the binary code.

However, this creates a new mystery. The SU(5) works nicely with the
representation AC®, but SU(5) does not require this. It works just fine with
the smaller rep

A'C® @ A’C° @ A’C° @ A'CP.

It would be nicer to have a theory that required us to use all of AC®. Better
yet, if our new GUT were an extension of SU(5), the beautiful explanation
of hypercharges would live on in our new theory. With luck, we might even
get away with using the same underlying vector space, AC®. Could it be
that the SU(5) GUT is only the beginning of the story? Could unification go
on, with a grand unified theory that extends SU(5) just as SU(5) extended
the Standard Model?

Let us look for a group that extends SU(5) and has an irrep whose
dimension is some power of 2. The dimension is a big clue. What repre-
sentations have dimensions that are powers of 27 Spinors.

What are spinors? They are certain representations of Spin(n), the
double cover of the rotation group in n dimensions, which do not factor
through the quotient SO(n). Their dimensions are always a power of two.
This becomes clearest when we construct Spin(n) as a subgroup of a Clifford
algebra:

Spin(n) — CIliff,,.

We have Cliff,, = AR"™ as vector spaces, so Cliff,, has real dimension 2"
and is itself a rep of Spin(n), via inclusion. As a real representation this
is not quite what we are looking for, since the Standard Model is based on
complex representations, but it is a start.

Instead, we would like a spinor representation on AC®. Indeed, such a
representation exists! In general, the groups Spin(2n) have faithful complex
representions on the exterior algebras AC", called Dirac spinor repre-
sentations.
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The pathway to this, as with so much related to spin groups, is via
Clifford algebras. For any n, the real Clifford algebra on 2n generators,
Cliffo,,, acts on AC™. Then, because

Spin(2n) — Cliffy,,

AC™ becomes a representation of Spin(2n).

We get this action of Cliffs,, on AC™ by conceiving of AC™ as a ‘fermionic
Fock space’. Let eq, ..., e, be the standard basis for C". Just as we did in
the Standard Model, we are going to view these basis vectors as particles.
Wedging with e; ‘creates a particle’ of type j. We consider ‘creation’ to be
the adjoint of ‘annihilation’, and thus denote it by aj:

a;v=-¢e; Av, YveAC"

j
It may seem odd that creation is to be the adjoint of annihilation, rather
than its inverse. One reason for this is that the creation operator, a;f, has
no inverse, because the highest exterior power, A"C", is in its kernel. In
some sense, its adjoint a; is the best we can do.

This adjoint does do what want, which is to delete any particle of type
i. Explicitly, we delete the ‘first’ occurence of e; from any basis element,
bringing out any minus signs we need to make this respect the antisymmetry
of the wedge product:

ajeq, N\ ---/\eip = (—1)k+16i1 N Nej_y Negy oy ---/\eip, if j = ig.

And if no particle of type j appears, we get zero!

Now, whenever we have an inner product space like C", we get an
inner product on AC™. The fastest, if not most elegant, route to this inner
product is to remember that, given an orthonormal basis ey, ..., e, for C",
the induced basis, consisting of elements of the form e;, A---Ae;,, should be
orthonormal in AC™. But choosing an orthonormal basis defines an inner
product, and in this case it defines an inner product on the whole exterior
algebra, one that reduces to the usual one for the grade one elements,
AlCr = Cm.

It is with respect to this inner product on AC™ that a; and aj are
adjoint. That is, they satisfy,

(v, ajw) = (ajv, w)

for any elements v,w € AC"™. Showing this from the definitions we have
given is a tedious calculation, and we spare the reader from these details.
These operators satisfy anticommutation relations:

{ajvak} =0
{aj,ar} = 0
{aj,ap} = 0;

where curly brackets denote the anticommutator of two linear operators,
namely {a,b} = ab + ba.

Now let fi,..., fon, be 2n anticommuting square roots of —1 which gen-
erate Cliffy,,. Turn AC" into a Cliffy,,-module by finding 2n linear operators
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on AC™ which anticommute and square to —1. We build these from the
raw material provided by a; and aj. Indeed,

¢; = ila;+aj)
Uy = a5 — a;f
do the trick. Now we can map fi, ..., fa,, to these operators, in any order,

and AC" becomes a Cliff;,-module, as promised.
Note that each f; switches the parity of a particular grade in AC":

ijAk(Cn _ Ak—l(cn @Ak-i-l(cn

Now, Spin(2n) is defined to be the universal cover SO(2n), with group
structure making the covering map

Spin(2n)

lp

SO(2n)

into a homomorphism. This is a double cover, for n > 1, because 71 (SO(2n)) =
Zo = ker p.

This construction of Spin(2n) is fairly abstract. But we can realize
Spin(2n) as the multiplicative group in Cliffs,, generated by products of
pairs of unit vectors. This gives us the inclusion

Spin(2n) — Cliffa,

we need to make AC™ into a representation of Spin(2n).

Its Lie algebra so(2n) is generated by the commutators of the f;, and
because we know how to map each f; to an operator on AC", this gives us
an explicit formula for the action of so(2n) on AC”. Each f; changes the
parity of the grades, and their commutators do this twice, restoring grade
parity. Thus, s0(2n) preserves the parity of the grading on AC™, and does
Spin(2n) the same. This makes AC™ break up into two subrepresentations:

AC™ = AC" @ A°%C
where A°YC" denotes the even-graded parts
AYC" =AC" e A C" - -
and where A°d4C" denotes the odd-graded parts
AcddCm = AlC" @ AC @ - -

In fact, both these representations of Spin(2n) are irreducible, and
Spin(2n) acts faithfully on their direct sum AC™. Elements of these two
irreps of Spin(2n) are called the left- and right-handed Weyl spinors,
respectively, while elements of AC™ are called the Dirac spinors.

All this works for any n, but we are especially interested in the case
n = 5, where this machinery gives us the Dirac spinor representation of
Spin(10) on AC®, with an explicit formula for how Spin(10)’s Lie algebra,
50(10), acts.
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The big question is, can we then treat Spin(10) as an extension of SU(5)?
That is, can we find an inclusion

1:SU(5) — Spin(10)

such that the Dirac spinor rep AC® of Spin(10) becomes the familiar rep of
SU(5) when we pull this rep back along 9?

More generally, can we then treat Spin(2n) as an extension of SU(n)?
That is, can we find an inclusion

1:SU(n) — Spin(2n)

such that the Dirac spinor rep AC™ of Spin(2n) becomes the familiar rep
of SU(n) when we pull this rep back along 1?
Remember, we can think of a unitary representation as a group homo-
morphism
f:G—=TU(V)

where V is the Hilbert space on which G acts as unitary operators. Here
we are concerned with two representations. One of them is the familiar
representation of SU(n) on AC™,

f:SU(n) — U(AC"),

which treats A'C"® = C” like the fundamental rep and respects wedge
products. The other is the newly introduced representation of Spin(2n) on
the Dirac spinors, which happen to form the same vector space AC™:

g:Spin(2n) — U(AC").

Really, when we say we want Spin(2n) to extend SU(n), we mean we want
a group homomorphism v such that

SU(n) v Spin(2n)

b

U(AC™)
commutes.

Theorem 2. There exists a Lie group homomorphism 1 that makes this
triangle commute:

SU(n) v Spin(2n)

Ry

U(AC™)

Proof. How can we get this map? Unfortunately, our only formulas for
the Dirac spinor representation are at the Lie algebra level. That is, we

know what
dg:s0(2n) — u(AC")
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looks like, and because Spin(2n) is a simply connected Lie group, this tells
us everything there is to know about

g:Spin(2n) — U(AC"™),

but an explicit formula for g is still hard to come by.
So instead of looking for v, let us look for

dip:su(n) — so(2n)
which makes the diagram

su(n) W, 50(2n)

RN

gl(AC™)

commute, and then work our way back up to the world of Lie groups. Since
dg is defined in terms of creation and annihilations operators aj and a;, a
good warmup might be to see if we can express df this way. To do so, we
will need a good basis for su(n). Remember,

su(n) = {n x n traceless skew-adjoint matrices over C}

which is a real vector space with n? — 1 dimensions.
If Ej;, denotes the matrix with 1 in the jkth entry and O everywhere
else, then the traceless skew-adjoint matrices have basis,
Ejk — Ekj, j >k
i(Ejk + Ekj), i>k
and
Ej‘ —Ej+1)j+1, j: 17...,71— 1.

For example, su(2) has the basis

(v9) (Fo) (0 %)

which we can easily check is linearly independent, and thus forms a basis
for the 3-dimensional su(2). Our basis for su(n) simply generalizes this
basis for su(2) to higher dimensions.

Now, it is easy to describe the elementary matrix Ej; in terms of cre-
ation and annihilation operators. This is the unique matrix which maps

Ejk(ex) = e
Ejk(el) Oa ! # k

and
a;ak
defines the same operator on C™. So define df by
Ejx—Ey; — a;ak —aja;
i(Ejk + Exj) = i(ajar + agay)

*

i(Ejj — Ejy1,5+1) — ilajaj —ajija41)

49



Because ajay, acts just like Ej; on C", this map certainly gives the funda-
mental rep of su(n) on ALC™ = C™. But does it act in the right way on the
rest of AC™? Remember, f respected wedge products, so

f@)(wAw) = fz)o A f(r)w

for all x € SU(n). Differentiating this condition, we see that su(n) must
act like a derivation:

df (X)) (v Aw) =df (X)v Aw+ v Adf(X)w

for all X € su(n). So, we need the operators

*

ajar —apa; i(ajap +aga;) i(aja; —ajqa;41)

J

to be derivations.
Now, the a; operators are a lot like derivations. They are antideriva-
tions. That is, if v € APC™ and w € AC"™, then
a;(v Aw) =a;v Aw+ (—1)Pv A ajw
However, the adjoint operators a} are nothing like a derivation. They satisty
a;(v Aw) = aj(v) Nw = (=1)Pv A aj(w)
because a} acts by wedging with e;, and moving this through v introduces p

minus signs. And while this relation is not like a Leibniz rule, this relation
combines with the previous one to make the composites

*
aj Q.

into derivations for every j and k.
So, df really gives the usual representation of su(n) on AC™. For

su(n) B, 50(2n)

RN

gl(AC™)

to commute, the image of su(n) under df had better live in that of so(2n)
under dg. In fact, we would be done if we showed this. Because su(n) and
50(2n) are both simple Lie algebras, df and dg must be injective, we are
really about to show that

df:su(n) — dg(so(2n)) = so(2n)

and that is the inclusion we were looking for!
Let us finish! so0(2n) — Cliffy,, is generated by commutators of the
Clifford algebra generators,

and dg sends these to commutators of the operators
¢; = i(a; +aj)
T = aj—aj
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We unravel these commutators of ¢; and 7;, that generate so(2n) inside
gl(AC™). There are three cases, which loosely correspond to the three forms
the generators of su(n) take. First, there are commutators between the
same type of operators, with distinct indices. These are

(@5 0k] = [ia; + af),i(ar + ap)]
= —[a; + aj,ar + ajy)
= [ag +ai,a; + a;-‘]
= 2(axa; + aja; + axaj + ajaj)
where we have freely used the fact that all these operators anticommute,
and thus [a;, ar] = 2a;ay, and so on. Similarly, the commutator of two 7
opertators is
[mj,mk] = [aj —aj,ar — ap]
= 2(ajar — ajar — ajay, +ajay)
Adding these, and using anticommutativity, we find
(9, Px] + [m), mk] = 4(aja; — ajak)
So df takes
1
Bji — By = — (65, 08] + [, m])
Then, there are commutators between distinct types of operators with
distinct indices, like
[¢j77r7€] = [i(aj + a;)= ak — a;:]
= 2i(ajar +ajay — ajay, — ay)
= 2i(ajar +ajay + apa; — ajay)

And if we symmetrize this expression with respect to j and k, anticommu-
tativity destroys all but the middle terms:

(P, Tr] + [Pk, m5] = 4i(ajar + aga;)
So df takes .
UEjk + Bg) = 7 (95, me] + [on, 75])

Finally, we have the commutator of distinct types of operators with the
same index, like

(¢j,m5] = li(a; +aj),a; — aj]
= ilag, aj] —ilay, aj]
= 2ia,, a;-‘]
= 2i(2aja; — 1)
And here, we finally had to use the fact that a; and a} do not anticommute.

Instead, they satisfy {a;,aj} = 1, and this gives us the last equality. We
use these to get our traceless diagonal operators:

(b7, 5] — [Pj41, mjp1] = 4i(afa; — ajia511)
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So df takes

1
i(Ejj — Ejt1,5+1) — 1 ([pj, 5] = [Dj41,mj11])

Thus, we expressed the desired operators as linear combinations of opera-
tors in dg(s0(2n). This completes our proof. O

This theorem had a counterpart for the SU(5) GUT — namely, Theorem
M There we saw a homomorphism ¢ that showed us how to extend the
Standard Model group Gy to SU(5), and made this square commute:

Gyy ———= SU(5)

| |

U(F & F*) — U(ACY)

Now ¢ says how to extend SU(5) further to Spin(10), and makes this square
commute:

SU(5) —Y~ Spin(10)

lf | l
U(AC%) —> U(AC?)

We can put these squares together, to get this commutative diagram:

GsMm . SU(5) _v, Spin(10)

l L

U(F @ F*) — U(AC?) ——> U(AC?)
which collapses down to this:

b

GsM Spin(10)

| l

U(F & F*) — U(ACY)

All this diagram says is that Spin(10) is a GUT—it extends the standard
model group Gq) in a way that is compatible with the Standard Model
representation, F' @ F*. In Section Bl all our hard work was in showing
the representations F @ F* and AC® of Ggq\p were the same. Here, we do
not have to do that. We just showed that Spin(10) extends SU(5). Since
SU(5) already extended G'qyp, Spin(10) extends that, too.

3.3 The Pati—Salam Model

Now we discuss a unified theory which is not so ‘grand’, because its gauge
group is not a simple Lie group as it was for the SU(5) and Spin(10) theories.
This theory is called the Pati-Salam model, after its inventors [21], but we
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will refer to it by its gauge group, SU(2) x SU(2) x SU(4). Physicists
sometimes call this group G(2,2,4).
We might imagine the SU(5) theory as an answer to this question:

Why are the hypercharges in the Standard Model what they
are?

The answer it provides is something like this:

Because SU(5) is the actual gauge group of the world, acting on
the representation AC?.

But there are other intriguing patterns in the Standard Model that SU(5)
does not explain — and these might lead us in different directions.

First, there is a strange similarity between quarks and leptons. Each
generation of fermions in the Standard Model has two quarks and two
leptons. For example, in the first generation we have the quarks u and
d, and the leptons v and e~. The quarks come in three ‘colors’: this
is a picturesque way of saying that they transform in the fundamental
representation of SU(3) on C3. The leptons, on the other hand, are ‘white’:
they transform in the trivial representation of SU(3) on C.

| Representations of SU(3) |
Particle Representation
Quark c3?
Lepton C

Could the lepton secretly be a fourth color of quark? Maybe it could in a
theory where the SU(3) color symmetry of the Standard Model is extended
to SU(4). Of course this larger symmetry would need to be broken to
explain the very real difference between leptons and quarks.

Second, there is a strange difference between left- and right-handed
fermions. The left-handed ones participate in the weak interaction governed
by SU(2), while the right-handed ones do not. Mathematically speaking,
the left-handed ones live in a nontrivial representation of SU(2), while the
right-handed ones live in a trivial one. The nontrivial one is C2, while the
trivial one is C @ C:

| Representations of SU(2) |

Particle Representation
Left-handed fermion C?
Right-handed fermion CoC

But there is a suspicious similarity between C2 and C @ C. Could there
be another copy of SU(2) that acts on the right-handed particles? Again,
this ‘right-handed’ SU(2) would need to be broken, to explain why we do
not see a ‘right-handed’ version of the weak force that acts on right-handed
particles.

Following Pati and Salam, let us try to sculpt a theory that makes these
ideas precise. In the last two sections, we saw some of the ingredients we
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need to make a grand unified theory: we need to extend the symmetry
group Giq) to a larger group G using an inclusion

(up to some discrete kernel), and we need a representation V' of G which
reduces to the Standard Model representation when restricted to Gq\p:

FoF =V
We can put all these ingredients together into a diagram

GSM4>G

L

U(F @ F*) == TU(V)

which commutes only when our G theory works out.

We now use the same methods to chip away at our current challenge.
We asked if leptons correspond to a fourth color. We already know that
every quark comes in three colors, r, g, and b, which form a basis for the
vector space C3. This is the fundamental representation of SU(3), the color
symmetry group of the Standard Model. If leptons correspond to a fourth
color, say ‘white’, then we should use the colors r, g, b and w, as a basis
for the vector space C*. This is the fundamental representation of SU(4),
so let us take that group to describe color symmetries in our new GUT.

Now SU(3) has an obvious inclusion into SU(4), using block diagonal

matrices:
g 0
= (5 1)

When restricted to this subgroup, the fundamental representation C* breaks
down as:
c'2C’eoC

which are exactly the representations of SU(3) in the Standard Model, as
we can see from Table [l It looks like we are on the right track.
We can do even better if we start with the splitting of C* into colored
and white parts:
ct=C’aC.

Remember that when we studied SU(5), choosing the splitting
CC=C?eC?

had the remarkable effect of introducing U(1), and thus hypercharge, into
SU(5) theory. This was because the subgroup of SU(5) that preserves this
splitting is larger than SU(2) x SU(3), roughly by a factor of U(1):

(U(1) x SU(2) x SU(3))/Zs = S(U(2) x U(3))

It was this factor of U(1) that made SU(5) theory so fruitful.
So, if we choose a splitting

C*~2CoC,
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we should again look at the subgroup that preserves this splitting. Namely,
S(U(3) x U(1)) € SU(4).

Just as in the SU(5) case, this group is bigger than just SU(3) x SU(1),
roughly by a factor of U(1). Perhaps this factor of U(1) is again related to
hypercharge! So, instead of settling for an inclusion SU(3) — SU(4), we
should try to find an inclusion

U(1) x SU(3) — SU(4).
This works just as it did for SU(5). We want a map
U(1) x SU(3) — SU(4)
and we already have one that works for the SU(3) part:
SU@3) — SU(4)
o= (87
We just need to tweak this a bit to include a factor of U(1) that commutes
with everything in SU(3). Elements of SU(4) that do this are of the form

a 0

0 p
where « stands for the 3 x 3 identity matrix times the complex number
a € U(1), and similarly for 5 in the 1 x 1 block. For the above matrix to lie

in SU(4), it must have determinant 1, so o33 = 1. So, we can only include
U(1) by mapping it to matrices of the form

(5 %)

U(1) x SU@3) — SU(4)
(a, ) — ( OSE O[Qg )

If we let U(1) x SU(3) act on C* = C*@ C via this map, the ‘quark part’
C3 transforms as though it has hypercharge %: that is, it gets multiplied
by a factor of @. On the other hand, the ‘lepton part’ C transforms as
though it has hypercharge —1, getting multiplied by a factor of a=3. So,

as a representation of U(1) x SU(3), we have

This gives a map

Cct (C%x(Cg ® C_;®C.

A peek at Table [l reveals something exciting. This exactly how the left-
handed quarks and leptons in the Standard Model transform under U(1) x
SU(3)!

So to treat leptons as a fourth color, this seems to tell us that the left-
handed leptons are somehow more fundamental than the right. It might
even suggest that thinking of leptons this way only works for left-handed
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fermions. But this brings us back to our second question, which was about
the strange difference between left- and right-handed particles.

Remember that as representations of SU(2), the left-handed particles
live in the C? rep of SU(2), while the right-handed ones live in the trivial
C @& C rep. Physicists write this by grouping left-handed particles into a
doublet, and right-handed particles into singlets:

€r, GR

But there is a suspicious similarity between C? and C @ C. Could there be
another copy of SU(2) that acts on the right-handed particles? Physically
speaking, this means that the left- and right-handed particles would both

form doublets
VL VR
er €r

but under the actions of different SU(2)’s! Mathematically, this just means
we want to extend the representations of the ‘left-handed” SU(2)

C? CopC

to representations
C’eC C®C?

of SU(2) x SU(2), where think of the left factor as the ‘left-handed’ SU(2),
and the right factor as a new ‘right-handed’ SU(2). We do this by letting
the left-handed SU(2) acts nontrivially on the left-handed doublet

Dy = C? ® C
and trivially on the right-handed doublet
Dr=C® C?

while right-handed SU(2) acts trivially on Dy, and nontrivially on Dpg.
Now, the SU(2) from the Standard Model is the left-handed one, and it
has an obvious inclusion in SU(2) x SU(2) as the left factor:

SU(2) — SU(2) x SU(2)

given by x +— (x,1). And if we break symmetry by pulling back along this
inclusion, our left- and right-handed fermion reps become

C’®C C?

CeC? = CoC

1%

which are exactly the representations of SU(2) in the Standard Model, as
we can see in Table [l It looks like we are on the right track.
But let us try to follow the example of SU(5) and SU(4); instead of
choosing
SU(2) — SU(2) x SU(2)
as given above, choose the splitting we want to see in the right-handed
particles. Specifically, we want

CeC*=Cx(CaC)
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This choice breaks SU(2) x SU(2) down to its subgroup SU(2) x S(U(1) x
U(1)). As with SU(5) and SU(4), this is bigger than SU(2) by a factor of
U(1), which brings the hypercharge into play! So instead of just including

SU(2) — SU(2) x SU(2)
we really ought to think about maps
U(1) x SU(2) — SU(2) x SU(2)

Now S(U(1) x U(1)) is just the obvious copy of U(1) that sits inside of
SU(2), namely all matrices of the form

a 0
0 ot
where o € U(1). So an obvious map
f:U(1) x SU(2) — SU(2) x SU(2)

is given by

(e, 2) € U(1) x SU(2) — <x< ‘g a91 )>

Alas, this gives us nothing physically! Pulling back along this map, the
left-handed particles become

C?eC~C?

They have hypercharge 0, and this corresponds to nothing in the Standard
Model!

Is there any way that we can save SU(2) x SU(2) theory? It seemed like
a good idea, because if we ignore hypercharge, it works just fine:

1%

Cl®C C?
CeC? 2 CaC

In fact, SU(4) theory was also cleaner if we ignored the hypercharge:
cC'=C¥eC

We could even put these two theories together into a grand unified theory
with group SU(2) x SU(2) x SU(4), and redefining representations which
we call the left-handed fermions

FL=C*g®CgC*
and right-handed fermions

FR=C®Ci’ecC!
and an inclusion

SU(2) x SU(3) — SU(2) x SU(2) x SU(4)
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given by

)

where again, we are completely ignoring the hypercharge symmetries U(1).
And again, this works great, because

Fr CleC® @ C’@C
Fr @ CeC® @ C®C @ CC* @& CgC

12

as representations of SU(2) x SU(3), and these are exactly the six reps of
SU(2) x SU(3) which show up in the Standard Model. Even the multiplic-
ities are right! Can we save these ideas and find a way to make them work
with the hypercharge?

What would happen if, instead of starting with the inclusion

SU(2) x SU(3) — SU(2) x SU(2) x SU(4)
we started with the reps
Fp=C’@CoC*

FR=C®Ci’ecC*
of SU(2) x SU(2) x SU(4), and specified the way we want them to split:

CPeCeC*=2C?*eCe®(C*a0)

CRC?*C*=2CR(CeC)® (C*aC)

The subgroup SU(2) x S(U(1) x U(1)) x S(U(3) x U(1)) that preserves this
splitting must than involve U(1). So we expect a map

U(1) x SU(2) x SU(3) — SU(2) x SU(2) x SU(4)
And we already built such a map, though in two pieces. We got
£:U(1) x SU(2) — SU(2) x SU(2)

and
¢9:U(1) x SU(3) — SU(4)

so we automatically get their Cartesian product:
fxg:U(1) x SU(2) x U(1) x SU(3) — SU(2) x SU(2) x SU(4)
which takes

Fxg: (a2, B,y) € U(1)xSU(2) xU(1)xSU(3) — <x< oY >< # 693 )>

and from this we can define a map, which we will take the liberty of also
calling f x g, just by setting o = :

Fxg: (e, 2,y) € U(1)xSU(2)xSU(3) — (:v( ol )( w o ))

(07
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Does this work any better? Pulling back along this map, we get
F, = C*eCeC*

C*®(C0C°aC)

= C9C’0C @ CeCeC’

1%

as reps of U(1) x SU(2) x SU(3), which are exactly the left-handed leptons
and quarks in the Standard Model:

e ()2 ()
€r, dL

Fr, thus consists of the left-handed fermions. We want F'r to be the
right handed fermions, but it is not,

Fr % (Vr) © (eg) © (ur) ® (dr)

Instead, Fr is

Fp = CeC*®C*
~ (C;0C_1)a(C;eCaCy)
¥ C;:; @& Cy o <C§®<C3 ® CoeC3

and these hypercharges do not follow the Standard Model at all. It is as
though the right-handed leptons had hypercharge —% and —%, while the
right-handed quarks had hypercharge % and 0.

Why does Fr, work so well while Fr fails miserably? It is because Fp,
gets its hypercharges just from C*, which picked up its U(1) action from
the map ¢ alone:

(a,2) € U(1) x SU(3) ( w U )

These hypercharges, as we have already noted, really are the hypercharges
of the left-handed fermions.

On the other hand, the right-handed hypercharges come from a mixture
of the maps f and g. Specifically, under the map f

(a,x) € U(1) x SU(2) — (:v, ( “ 91 ))
0 «
the right-handed doublet breaks into

DR:(C®02%(C%®(C,

1
3

which combine with hypercharges from C* =2 C 1® C3 @ C_; to give the
the right-handed fermions hypercharges that obey

1
Right-handed hypercharge = Left-handed hypercharge 4 3

and these hypercharges, which are
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Particle Hypercharge
VR —% -1+ %
R 3 ~l-3
w o} o=+
0 = }-4

do not show up in the Standard Model. There, we have hypercharges

Particle Hypercharge
VR 0 —-1+1
en -2 = -1-1
UR % = % +1
dr -2 = 1-1

At last, this shows us our mistake. Instead of right-handed doublet becom-
ing
Dr=C 1 eC_

1
3
under f, we really need

Dr=2CiaoC,

which means that we should have chosen f to be

(a,) € U(1) x SU(2) <x( 063 0 ))

a3

Really, all we are doing here is rescaling the units of hypercharge by 3.
This fixes everything. f x g takes on its final form as the map

0:Ggng — G(2,2,4)

which takes

a’ 0 ay 0
(OL,I,y)EGSMH(I,< 0 a—3>7( 0 a3 >>

It is easy to see how the irreps F; and Fr break up when restricting to
Ggq\p along this map. For Fp, it is exactly the same. We get

e ()e(2)
L €r,
which are indeed the left-handed fermions. What is different now is Fr. It

becomes

Ir

1%

CoCiaCy)® (C% ®C*@ (Cfl)
Cs ®<C3e9<c_§ RC3PC_,dCy
(vr) © (eg) © (ur) ® (dr)

1%
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which are indeed the right-handed fermions. Finally, our SU(2) x SU(2) x
SU(4) grand unified theory is taking shape.

More care must be taken for discussing left- and right-handed antifermions
in SU(2) x SU(2) x SU(4) theory. Usually, to turn particles into antiparti-
cles, we just take duals, and that works here. But in the standard model, it
is the right-handed antifermions that transform nontrivially under SU(2),

so we better define:
N _
T %~ €r dr
Fr=ri= <7R>@<5R)

The left-handed antifermions are trivial under SU(2), so define:
Fr=Fp= (U)o (dp) o (ef) © (7r).

We just showed that the F, and Fr together give all the fermions in the
Standard Model:
F=F, & Fgr

Taking duals on both sides, this means that F;, and Fr give all the an-
tifermions, albeit with a twist:

F*2FoF,2FraoFy
Putting it all together, we get that the representation
FL®FrRe FL®FR
of SU(2) xSU(2)xSU(4) is isomorphic to the Standard Model representation
FOF 2FL,0FrOFL®©Fg
of the Standard Model group Gq)j, when we pull back along the map
0: Ggyp — SU(2) x SU(2) x SU(4).
As with SU(5) and Spin(10), we can say all this very concisely:

Theorem 3. The diagram

GSM SU(2) x SU(2) x SU(4)

| |

UF®F*)—=U(F, ® FR® F & Fg)

commutes.

3.4 The Route to Spin(10) Via SU(2) x SU(2) x SU(4)

In the last section, we showed how the SU(2) xSU(2) x SU(4) theory answers
two questions about the Standard Model:

Why are quarks and leptons so similar? Why are left and right
so different?

61



We were able to describe leptons as a fourth color, ‘white’, and create
a right-handed version of the SU(2) in the Standard Model. Neither one of
these worked on its own, but together, they made a full-fledged extension of
the Standard Model, much like SU(5) and Spin(10), but based on seemingly
different principles.

Yet thinking of leptons as ‘white’ should be strangely familiar, not just
from the SU(2) x SU(2) x SU(4) perspective, but from the binary code that
underlies both the SU(5) and the Spin(10) theories. There, leptons were
indeed white: They all have color rgh € ACP.

Alas, while SU(5) hints that leptons might be a fourth color, it does not
deliver on this. The quark colors

r,g,b e A'C?

lie in a different irrep of SU(5) than does rgb € A3C®. SU(5)’s leptons are
white, having color rgb, but unlike the SU(2) x SU(2) x SU(4) theory, the
SU(5) theory does not unify leptons with quarks.

Yet SU(5) theory is not the only game in town when it comes to the
binary code. We also have Spin(10), which acts on the same the vector
space as SU(5). As a representation of Spin(10), AC5 breaks up into just
two irreps: the even grades, A°VC®, which contain the left-handed particles
and antiparticles:

AVC = (T @ (ef) @ (ZL ) ® (ur) ® ( VL ) @ (dr)
L €r,
and the odd grades A°d4C?,, which contain the right handed particles and
antiparticles:

A= ) o ey o () 0 tur) @ (1) @ (an)

Unlike SU(5), the Spin(10) GUT does unify rgb with the quark colors,
because they both live in the irrep A°4C®.

It seems that the Spin(10) GUT, which we built out of the SU(5) GUT,
somehow managed to pick up some of the features of the SU(2) x SU(2) x
SU(4) theory. How does Spin(10) relate to SU(2) x SU(2) x SU(4), exactly?
In general, we only know there is a map SU(n) — Spin(2n), but in low
dimensions, there is much more, because some groups coincide:

ot

— N N N
1 1R IR
v U \nn »n
S =2 cc
RS

X

wn

c

—

S

What really stands out is this:
SU(2) x SU(2) x SU(4) = Spin(4) x Spin(6)

What we have been calling the SU(2) x SU(2) x SU(4) theory could
really be called the Spin(4) x Spin(6) theory, because these groups are
isomorphic. And this brings out an obvious relationship with the Spin(10)
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theory, because the inclusion SO(4) x SO(6) — SO(10) lifts to the universal
covers, so we get a homomorphism

7n: Spin(4) x Spin(6) — Spin(10)

A word of caution is needed here. While 7 is the lift of an inclusion, it is
not an inclusion itself. This is because the universal cover Spin(4) x Spin(6)
of SO(4) x SO(6) is a four-fold cover, being a double cover on each factor.

So we can try to extend the symmetries SU(2) x SU(2) x SU(4) to
Spin(10), though this will only work if the kernel of 7 is trivial on any
representations. What about the representations? There is an obvious
representation of Spin(4) x Spin(6) that extends to a Spin(10) rep. Both
Spin(4) and Spin(6) have Dirac spinor representations, so their product
Spin(4) x Spin(6) has a representation AC2® AC?, and in fact, the obvious
map

g:AC? ® AC® — ACP
given by
VRQW v AW

is a Spin(4) x Spin(6)-isomorphism between AC? @ AC? and the represen-
tation AC® of Spin(10). Put into concise diagrammatic language, we just
have that

Spin(4) x Spin(6) ——= Spin(10)

.

U(AC? @ AC3) —> U(ACH)

commutes.

We will prove this diagram commutes in a moment. First though, we
have confront the fact that AC?® AC? does not look like the representation
for SU(2) x SU(2) x SU(4) theory that we discussed in Section That

representation was

FLoFr®FroFr, = (C?CeCY ¢ (CeC?*®CY ¢ (C*®CoC*) ¢ (CeC*CY)

1%

(C*®C) & (CeC?) ® (C* & C™)

where we have used the fact that C2 = C2* as SU(2) reps in the last line.
We thus need AC? @ AC? to be the same as the F, @ Fr ® F; @ Fg
representation of SU(2) x SU(2) x SU(4) = Spin(4) x Spin(6). Whether or
not this works depends on our choice of isomorphism between these groups.
However, we can choose one that works:

Theorem 4. We can find a Lie group isomorphism
SU(2) x SU(2) x SU(4) = Spin(4) x Spin(6)
and isomorphisms of Hilbert spaces
FLoFroFLoFr = ((C*0C) @ (CoC?) ® (C* @ C) 2 AC?®AC?
that make this diagram commute:

SU(2) x SU(2) x SU(4) —————= Spin(4) x Spin(6)

| |

U(C?®CaC®C?) e (C*aCH) —— U(AC? ® AC?)
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Proof. We can prove this in pieces, by showing that the Spin(4) part
commutes:
SU(2) x SU(2) —= Spin(4)

l |

U(C?2®CoC®C?% ——=U(AC?)

and the Spin(6) part commutes:

~

SU(4) Spin(6)

l |

U(C* @ C) == U(AC?)

First, the Spin(6) part. We want to show the spinor rep AC? of Spin(6) =2
SU(4) is isomorphic to C*@ C?* as a rep of SU(4). We start with the action
of Spin(6) on AC3. This breaks up into irreps,

Ac3 o~ ACV(CB o) Aodd(CS

called the left- and right-handed Weyl spinors, and these are dual to each
other because 6 = 2 mod 4, by a theorem in Adams []. Call the actions

pev: Spin(6) — U(A™C?)

and
Poda: Spin(6) — U(A°C?)

Since these reps are dual, it suffices just to consider one of them, say podq-
We can define poqq at the Lie algebra level by specifying the homomor-
phism
dpoaq: 50(6) — gl(A°4C?) = gl(4, C)

As for the Spin(10) theory, this map takes generators of s0(6) to skew-
adjoint operators on A°d9C?, so we really have

dpodd: 50(6) — u(4) =2 u(l) ® su(4)
Homomorphic images of semisimple Lie algebras are semisimple, so the
image of s0(6) must lie entirely in su(4). In fact, so(6) is simple, so this
nontrivial map must be an injection

dpoda: §0(6) — su(4)

and because the dimension is 15 on both sides, it must be onto. Thus dpoqq
is an isomorphism of Lie algebras, and this implies poqq is an isomorphism
of the simply connected Lie groups Spin(6) and SU(4):

Podd: Spin(6) — SU(A°IIC?) 2= SU(4)
and furthermore, under this isomorphism,

Aodd(CS o (C4
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as a representation of SU(4) = SU(A°44C3). But then the dual representa-
tion is
ACV(C3 o (C4*

In summary, pogq makes the following diagram commute:

Podd

Spin(6) SU(4)

| |

U(AC?) — U(C* & C*)

which completes the proof for Spin(6).

Next, we prove a similar result for Spin(4) = SU(2) x SU(2). We want
to show the spinor rep AC? of Spin(4) = SU(2) x SU(2) is isomorphic to
C?®C@®C®C? as arep of SU(2) x SU(2). We start with the action of
Spin(4) on AC2. This breaks up into irreps,

A(CQ o AOdd(C2 P ACVCZ
called the left- and right-handed Weyl spinors. Call the actions
pev: Spin(4) — U(A™C?)

and
Podd: Spin(4) — U(A°4IC?)
For the moment, consider pey. pey is defined at the Lie algebra level, by
specifying the homomorphism

dpey: s0(4) — gl(A®¥C?) = gl(2,C)

in terms of skew-adjoint operators, as for s0(6) above. This map takes
generators of 50(4) to skew-adjoint operators on A®VC2, so we really have

dpev:50(4) — u(2) = u(l) @ su(2)

Homomorphic images of semisimple Lie algebras are semisimple, so the
image of s0(4) must lie entirely in su(2). Similarly, dpoda also takes so(4)
to su(2):

dpoda: 50(4) — su(2)

And we can combine these maps to get
dpodd D dpev: 50(4) — su(2) @ su(2)

which is just the derivative of Spin(4)’s representation on AC?. Since this
representation is faithful, the map dpoqq @ dpev of Lie algebras is injective.
But the dimensions of s0(4) and su(2) @ su(2) agree, so dpodd ® dpev is
also onto. Thus it is an isomorphism of Lie algebras, and this implies
Podd B Pev 18 an isomorphism of of the simply connected Lie groups Spin(4)
and SU(2) x SU(2)

Podd @ pev: Spin(4) — SU(AIIC?) x SU(AYC?) = SU(2) x SU(2)
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under which SU(2) x SU(2) acts on A°4C2 @ A®VC2. The left factor of
SU(2) acts irreducibly on A°44C2, which the second factor is trivial on. In
fact,

AOdd(C2 o~ (C2
as representations of the left factor of SU(2) = SU(A°4C?). Thus A°4C? =
C%2 ® C as a rep of SU(2) x SU(2). Similarly, A®"C? = C @ C2, as claimed.
The following diagram thus commutes:

pevDpodd
_—

Spin(4) SU(2) x SU(2)

l |

UAC?) —=U(C? 2 CaC®C?)

which completes the proof for Spin(4). a

In short, we now know that Spin(4) x Spin(6) with its representation on
AC? ® AC3, is the same as SU(2) x SU(2) x SU(4) with its representation
on Fr, ® Fr® F, @ F . Henceforth, we will use them interchangably. Now
we will show that:

Theorem 5. The Spin(4) x Spin(6) representation AC?> @ AC? extends to
the Spin(10) representation AC® via 1.

Proof. At the Lie algebra level, we have the inclusion
$0(4) @ s0(6) — s0(10)

by block diagonals, which is also just the differential of the inclusion SO(4) x
SO(6) — SO(10) at the Lie group level. Given how the spinor reps are
defined in terms of creation and annihilation operators, it is easy to see
that

50(4) @ s0(6)—— 50(10)

L

gl(AC? @ AC3) — gI(AC?)

commutes, because it is easy to see that g is a s0(4) @ so(6)-intertwiner.
That is because the so(4) part only acts on AC?, while the s0(6) part only
acts on AC3.

But these Lie algebras act by skew-adjoint operators, so really

$0(4) @ 50(6)—— 50(10)

L

u(AC? ® AC3) —— u(AC?)
commutes. Since the so(n)’s and their direct sums are semisimple, so are

their images. Therefore, their images live in the semisimple part of the
unitary Lie algebras, which is just another way of saying the special unitary
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Lie algebras. We get that

50(4) & 50(6)——— 50(10)

L )

su(AC? ® AC?) — su(ACH)
commutes, and this gives a diagram in the world of simply connected Lie

groups:
Spin(4) x Spin(6) ——= Spin(10)

L

SU(AC? ® AC3) ——= SU(ACP)
This commutes, so we are done. a

In short, we have seen how to reach the Spin(10) theory, not by extend-
ing SU(5), but by extending the SU(2) x SU(2) x SU(4) theory. For physics
texts that treat this issue, see for example Zee [28] and Ross [23].

3.5 The Question of Compatibility

We now have two routes to the Spin(10) theory. In Section B2 we saw how
to reach it via the SU(5) theory:

Gonf —2—> SU(5) —% > Spin(10)

|

U(F @ F*) — U(AC?) —> U(AC?)

e d
More Unification

Our work in that section and in Section Bl showed that this diagram
commutes, which is a way of saying that the Spin(10) theory extends the
Standard Model.

In Section Bl we saw another route to the Spin(10) theory, which goes
through Spin(4) x Spin(6):

0

GsMm Spin(4) x Spin(6) —— Spin(10)

T

U(F & F*) ——> U(AC? ® AC?) — 2> U(AC?)

S,
More Unification

Our work in that section and Section showing that this diagram com-
mutes as well. So, we have another way to extend the Standard Model and
get the Spin(10) theory.
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Drawing these two routes to Spin(10) together gives us a cube:

¢
Gsm SU(5)
/ /
Spin(4) x Spin(6) ? Spin(10)
U(F & F*) YW uiacs)
u(f) /
U(AC? @ AC?) ) U(ACY)

Are these two routes to Spin(10) theory the same? That is, does the cube
commute?

We have already seen, in Sections BIIHZA that the vertical faces com-
mute. So, we are left with two questions involving the horizontal faces.
First: does the top face of the cube

SU(5)

e e

Spin(4) x Spin(6) ! Spin(10)

commute? In other words: does a symmetry in Gg)j go to the same place
in Spin(10) no matter how we take it there? And second: does the bottom
face of the cube commute? In other words: does this triangle:

h

FoFr

(e

AC? @ AC?

ACP

commute?

Whether or not the cube commutes depends on ¢ and 6, which essen-
tially determine the intertwiners f and h. We can leave n and ¢ and the
corresponding interwiners fixed.

Theorem 6. We can choose ¢ and 6 so that the cube of GUTs commutes.

Proof. It suffices to show that, with the correct choice of ¢ and 6, we
can choose the intertwiners

FoF— s \c5

(e

AC? @ AC?
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to commute. This, in turn, implies the bottom face of the cube commutes,
from which we see that the two maps from Gq\p to U(ACP) going through
the bottom face are equal:

Gsm

\ "

U(F & F*) U(AC?)

U(f)l ll
U(g)

U(AC? ® AC?) —Z= U(ACY)

Because the vertical sides of the cube commute, we know from diagram-
matic reasoning that the two maps from Ggqy to U(ACP) going through
the top face are equal:

Go\ | ——2——~ SU(5)

| |

Spin(4) x Spin(6) ——= Spin(10)

.

U(ACY)

Since the Dirac spinor representation is faithful, the map Spin(10) —
U(AC?) is injective. This means we can drop it from the above diagram,
and the remaining square commutes. This is exactly the top face of the
cube!

So let us show that with proper choice of ¢ and 6 we can arrange the
intertwiners to commute:

FaoFr—=

(e

AC? ® AC?

ACP

Recall from Section Bl that ¢ depends on our choice of splitting C? @
C? = C°. In fact, Gg)f is roughly the subgroup of SU(5) preserving this
splitting. Let us take advantage of this to see how A is built.

Since G'q)\p preserves the splitting C? @ C3 = CP, we have a GoM-

intertwiner
AC® =2 AC? @ AC?

where by C? and C? on the right we mean the Ggq)j-subrepresentations in
the 2 + 3 splitting of C°.
Yet recall from Section Bl that these subrepresentations are explicitly

CP2C,9C?’xC

and
C3 = C_; RC®C3
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as representations of Gqpr. Here we write C? to mean the submodule of
C® on the left, but C? to mean the fundamental representation of SU(2)
on the right, and similarly for C3. So, taking the exterior algebra of both
sides, we get

AC? =2 CooAC? @ C1@AC? & C,eAiC?

where again we write C? for the C® subrepresentation on the left and the
fundamental representation of SU(2) on the right, and we are now omitting
any factors of the trivial representation for SU(3). Similarly, for C3, we get

AC? =~ CueA'C® o C_§®A1<C3 ® C_%®A2(C3 @ C_0A3C3

Now we can tensor these together, distribute over direct sums, and use
Cy, ® Cy, = Cy, 4y, and the fact that the fundamental representation is
self-dual for SU(2) to show that F & F* = ACS.

Now recall from Section B3lthat 6 depends on our choice of 3+1 splitting
of C* and 1 + 1 splitting of C ® C2. In Section Bl we saw that

(C4 o~ AOdd(CS o~ Al(CB o A3(C3
and this has a 3 + 1 splitting given by the grading. Similarly,
CRC*ZAYVCZ=2AC? o AC?

has a 1 + 1 splitting given by the grading.
We choose ¢ to map G'q onto the subgroup SU(2) x S(U(1) x U(1)) €
Spin(4) that preserves the 1 4 1 splitting:

(o, z,y) € U(1) x SU(2) x SU(3) — (:E, ( C(Y)B 93 ))
Thus we get
AVC? = CLieAC? @& CieAC?
as a Gg\[-representation. We also have
Aodd 0 ALC2
as a Gig\[-representation. So in total
AC? = C1eAC & CeA'C’ & CieAC?

as a Gqpp-representation. Note that this is the same as SU(5)’s AC? except
the hypercharges are all lowered by 1.

We choose ¢ to map Gy to the subgroup of S(U(3) x U(1)) € Spin(6)
that preserves the 3 + 1 splitting:

(o, z,y) € U(1) x SU(2) x SU(3) — ( Oz)y Oﬁg )
Thus we get
AdIC? = CeAC @ CeAC
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as a Gq)[-representation. As above, the C3 on the right hand side is just
the fundamental representation of SU(3). Using Hodge duality, we also get

AVC3 ((37% QAC? @ CieAC?
So in total, we know the Dirac spinor representation AC? of Spin(6) becomes
AC? =~ C,0AC? @ Ci QAIC? @ C_: QAC? @ C_,0A3C3

as a Gg\p-representation. Note that this is the same as SU(5)’s AC? except
the hypercharges are all raised by 1.

Thus, when we tensor AC2 and AC3? together, we get the same rep-
resentation of G'q)[, because the differences in hypercharges cancel. This
completes the proof. O

Thus the cube of GUTs

GsMm SU(5)
/ /
Spin(4) x Spin(6) ! Spin(10)
U(F & F*) YW uAcs)
U(f) /
U(AC2 ® AC?) v) U(ACY)

commutes.

This means that the two routes to the Spin(10) theory that we have
described, one going through SU(5) and the other through Spin(4)x Spin(6),
lead to one and the same place. No matter how we get it, Spin(10) extends
the Standard Model in the same way, with symmetries in Ggqy[ going to
the same places, and the fermions and antifermions in F' & F'* becoming
the same elements of ACP.

4 Conclusion

We have studied three different grand unified theories: the SU(5), Spin(4) x
Spin(6) and Spin(10) theories. The SU(5) and Spin(4) x Spin(6) theories
were based on different visions about how to extend the Standard Model.
However, we saw that both of these theories can be extended to the Spin(10)
theory, which therefore unites these visions.

The SU(5) theory is all about treating isospin and color on an equal
footing: it combines the two isospins of C2 with the three colors of C3,
and posits an SU(5) symmetry acting on the resulting C5. The particles
and antiparticles in a single generation of fermion are described by vectors
in AC®. So, we can describe each of these particles and antiparticles by a
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binary code indicating the presence or absence of up, down, red, green and
blue.

In doing so, the SU(5) theory introduces unexpected relationships be-
tween matter and antimatter. The irreducible representations of SU(5)

A°C® @ AICP @ A2C° @ A3C® @ AYCP @ ASCP

unify some particles we normally consider to be ‘matter’ with some we
normally consider ‘antimatter’, as in

15 A 6;%
AC = T @(dR>.

In the Standard Model representation, we can think of the matter-antimatter
distinction as a Zs-grading, because the Standard Model representation
F & F* splits into F and F*. By failing to respect this grading, the SU(5)
symmetry group fails to preserve the usual distinction between matter and
antimatter.

But the Standard Model has another Zs-grading that SU(5) does re-
spect. This is the distinction between left- and right-handedness. Remem-
ber, the left-handed particles and antiparticles live in the even grades:

AT = (7)) @ (ef) @ ( Zz ) & (uL) @ < Zg > & (dr)

while the right-handed ones live in the odd grades:

+

A 2 ) 0 () © () @ qur) @ (1) @ dn)

The action of SU(5) automatically preserves this Zs-grading, because it
comes from the Z-grading on AC®, which SU(5) already respects.

This characteristic of the SU(5) theory lives on in its extension to
Spin(10). There, the distinction between left and right is the only distinc-
tion among particles and antiparticles that Spin(10) knows about, because
A¥C® and A°Y4C? are irreducible. This says the Spin(10) theory unifies all
left-handed particles and antiparticles, and all right-handed particles and
antiparticles.

In contrast, the Spin(4) x Spin(6) theory was all about adding a fourth
‘color’, w, to represent leptons, and restoring a kind of symmetry between
left and right by introducing a right-handed SU(2) that treats right-handed
particles like the left-handed SU(2) treats left-handed particles.

Unlike the SU(5) theory, the Spin(4) x Spin(6) theory respects both
Zy-gradings in the Standard Model: the matter-antimatter grading, and
the right-left grading. The reason is that Spin(4) x Spin(6) respects the
Zo x Zo-grading on AC? ® AC3, and we have:

FL o AOdd(C2 ® Aodch
FR o AevC2 ® Aodd(CS
FL o AeV(C2 ® AeV(C3
FR o~ AOdd(C2 Q ACV(C3

Moreover, the matter-antimatter grading and the right-left grading are all
that Spin(4) x Spin(6) respects, since each of the four spaces listed is an
irrep of this group.
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When we extend Spin(4) x Spin(6) to the Spin(10) theory, we identify
AC? ® AC3 with AC®. Then the Zs x Zo-grading on AC? @ AC? gives the
Zo-grading on AC® using addition in Zg. This sounds rather technical, but
it is as simple as “even 4+ odd = odd”:

AOdd(C5 o~ (ACVCQ ® Aodd(CB) @ (AOddCQ ® ACVC3 ) o~ FR @FR
and “odd + odd = even”, “even + even = even”:
AOdd(C5 i~ (AOdd(C2 ® AOdd(CS) D (Aevc2 ® AEVC?)) o~ FL P FL-

We hope it is clear that the Standard Model, the SU(5) theory, the
Spin(10) theory and the Spin(4) x Spin(6) fit together in an elegant algebraic
pattern. What this means for physics — if anything — remains unknown.
Yet we cannot resist feeling that it means something, and we cannot resist
venturing a guess: the Standard Model is exactly the theory that reconciles
the visions built into the SU(5) and Spin(4) x Spin(6) theories.

What this might mean is not yet precise, but since all these theories
involve symmetries and representations, the ‘reconciliation’ must take place
at both those levels — and we can see this in a precise way. First, at the
level of symmetries, our Lie groups are related by the commutative square
of homomorphisms:

Ggy ——2— = SU(5)

| |+

Spin(4) x Spin(6) —~= Spin(10)

Because this commutes, the image of Gq) lies in the intersection of the
images of Spin(4) x Spin(6) and SU(5) inside Spin(10). But we claim it is
precisely that intersection!

To see this, first recall that the image of a group under a homomor-
phism is just the quotient group formed by modding out the kernel of that
homomorphism. If we do this for each of our homomorphisms above, we
get a commutative square of inclusions:

GSM/ZGC—> SU(5)

Spin(4)szSpin(6>c Spin(10)

This implies that

Spin(4) x Spin(6))

-
GSM/ZG CSUB)N ( 7

as subgroups of Spin(10). To make good on our claim, we must show these
subgroups are equal:

Spin(4) x Spin(6)> '

Ggm/Zs = SU(5) N ( 7
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In other words, our commutative square of inclusions is a ‘pullback square’.

As a step towards showing this, first consider what happens when we
pass from the spin groups to the rotation groups. We can accomplish this
by modding out by an additional Zs above. We get another commutative
square of inclusions:

Gan /L~ SU(5)

|

SO(4) x SO(6)— SO(10)

Here the reader may wonder why we could quotient (Spin(4) x Spin(6))/Zs
and Spin(10) by Zs without having to do the same for their respective
subgroups, Ggq\j/Ze and SU(5). It is because Zy intersects both of those
subgroups trivially. We can see this for SU(5) because we know the inclusion
SU(5) — Spin(10) is just the lift of the inclusion SU(5) — SO(10) to

universal covers, so it makes this diagram commute:

SU(5)~— Spin(10)

l”
SO(10)

But this means that SU(5) intersects Zo = ker p in only the identity. The
subgroup Ggnp /Z¢ therefore intersects Zo trivially as well.
Now, let us show:

Theorem 7. Gq\/Ze = SU(5) N (SO(4) x SO(6)) € SO(10).

Proof. We can prove this in the same manner that we showed, in Sec-

tion Bl that

Gan/Zs = S(U(2) x U(3)) C SU(5)
is precisely the subgroup of SU(5) that preserves the 2 + 3 splitting of
Co=C2gCs.

To begin with, the group SO(10) is the group of orientation-preserving
symmetries of the 10-dimensional real inner product space R'°. But R is
suspiciously like C®, a 5-dimensional complex inner product space. Indeed,
if we forget the complex structure on C®, we get an isomorphism C° =2 R0,
a real inner product space with symmetries SO(10). We can consider the
subgroup of SO(10) that preserves the original complex structure. This is
U(5) C SO(10). If we further pick a volume form on C®, i.e. a nonzero
element of A°C®, and look at the symmetries fixing that volume form, we
get a copy of SU(5) C SO(10).

Then we can pick a 2 + 3 splitting on C°> =2 C? @ C3. The subgroup of
SU(5) that also preserves this is

S(U(2) x U(3)) — SU(5) — SO(10).
These inclusions form the top and right sides of our square:

GSME/ZGc—> SU(5)
SO(4) x SO(6)— SO(10)
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We can also reverse the order of these processes. Imposing a 2+ 3 split-
ting on C® imposes a 4 + 6 splitting on the underlying real vector space,
RV =~ R* @ R®. The subgroup of SO(10) that preserves this splitting is
S(O(4) x O(6)): the block diagonal matrices with 4 x 4 and 6 x 6 orthog-
onal blocks and overall determinant 1. The connected component of this
subgroup is SO(4) x SO(6).

The direct summands in R* @ R® came from forgetting the complex
structure on C2 & C3. The subgroup of S(O(4) x O(6)) preserving the
original complex structure is U(2) x U(3), and the subgroup of this that
also fixes a volume form on C® is S(U(2) x U(3)). This group is connected,
so it must lie entirely in the connected component of the identity, and we
get the inclusions:

S(U(2) x U(3)) — SO(4) x SO(6) — SO(10).

These maps form the left and bottom sides of our square.

It follows that Ggyp/Ze is precisely the subgroup of SO(10) that pre-
serves a complex structure on R'°, a chosen volume form on the resulting
complex vector space, and a 2 + 3 splitting on this space. But this 2 4+ 3
splitting is the same as a compatible 4 + 6 splitting of R'°, one in which
each summand is a complex vector subspace as well as a real subspace.
This means that

Gon/Ze = SU(5) NS(O(4) x O(6)) € SO(10),
and since Gq)\[/Ze is connected,
G/ Ze = SU(5) N (SO(4) x SO(6)) € SO(10)
as desired. O
From this, a little diagram chase proves our earlier claim:
Theorem 8. Gq\/Zs = SU(5) N (Spin(4) x Spin(6)) /Z2 € Spin(10).

Proof. By now we have built the following commutative diagram:

¢

GS /ZG( SU(5)

| |
(Spin(4) x Spin(6))/ZgL> Spin(10)
SO(4) x SO(6)C : SO(10)

where both the bottom vertical arrows are two-to-one, but the composite
vertical maps qé and py are one-to-one. Our previous theorem says that
the big square with q0 and p) as vertical sides is a pullback. Now we must
show that the upper square is also a pullback. So, suppose we are given
g € (Spin(4) x Spin(6))/Zs and ¢’ € SU(5) with

i(g) = ¥(g").

(0]



We need to show there exists © € Gq\/%Ze such that

Oz) =9, dx)=4g.

Now, we know that
iq(g) = pilg) = pi(g)
so since the big square is a pullback, there exists x € Ggq)p/Ze with

qb(x) =q(g), ox)=g"

The second equation is half of what we need to show. So, we only need to
check that the first equation implies 6(z) = g.

The kernel of g consists of two elements, which we will simply call +1.
Since ¢f(z) = q(g), we know

+0(z) = g.
Since 7j(g) = 1¥(g’), we thus have
(£0(x)) = ¥(g") = Yo(x).

The one-to-one map 7 sends the kernel of g to the kernel of p, which consists
of two elements that we may again call +1. So, +76(z) = ¥¢(z). On the
other hand, since the top square commutes we know ﬁé(m) = wé(x) Thus
the element +1 must actually be 1, so g = f(z) as desired. O

In short, the Standard Model has precisely the symmetries shared by
both the SU(5) theory and the Spin(4) x Spin(6) theory. Now let us see
what this means for the Standard Model representation.

We can ‘break the symmetry’ of the Spin(10) theory in two different
ways. In the first way, we start by picking the subgroup of Spin(10) that
preserves the Z-grading and volume form in AC®. This is SU(5). Then we
pick the subgroup of SU(5) that respects the splitting of C® into C? @ C3.
This subgroup is the Standard Model gauge group, modulo a discrete sub-
group, and its representation on AC® is the Standard Model representation.

We can draw this symmetry breaking process in the following diagram:

GsM . SU(5) LA Spin(10)

o

U(F @ F*) —= U(AC®) —— U(AC?)

splittingrading and volume form
e ~ - ~

The SU(5) theory shows up as a ‘halfway house’ here.

We can also break the symmmetry of Spin(10) in a way that uses the
Spin(4) x Spin(6) theory as a halfway house. We do essentially the same
two steps as before, but in the reverse order! This time we start by picking
the subgroup of Spin(10) that respects the splitting of R1? as R*@RC. This
subgroup is Spin(4) x Spin(6) modulo a discrete subgroup. The two factors
in this subgroup act separately on the factors of AC® =2 AC? @ AC3. Then
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we pick the subgroup of Spin(4) x Spin(6) that respects the Z-grading and
volume form on AC®. This subgroup is the Standard Model gauge group,
modulo a discrete subgroup, and its representation on AC? ® AC3 is the
Standard Model representation.

We can draw this alternate symmetry breaking process in the following
diagram:

GsMm — . Spin(4) x Spin(6) —== Spin(10)

R N

U(F & F*) — > U(AC? @ AC?) — 2> U(ACY)

grading and volume form splitting
<o ~ e

~

We can put these diagrams together for a fresh view of our commutative
cube:

Gsm . SU(5)
/ /
Spin(4) x Spin(6) ! Spin(10)
U(h
U(F & F*) " y(acs)
U
U(AC2 ® AC?) @ U(ACY)
splitting
P N N N NN N N N NN N N NN N
grading and volume grading and volume for
RigR® splitting o
= P NN NN NN NN

Will these tantalizing patterns help us find a way of going beyond the
Standard Model? Only time will tell.
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