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Abstract

We give a definition of weak n-categories based on the theory of operads.
We work with operads having an arbitrary set S of types, or ‘S-operads’, and
given such an operad O, we denote its set of operations by elt(O). Then for any
S-operad O there is an elt(O)-operad O+ whose algebras are S-operads over
O. Letting I be the initial operad with a one-element set of types, and defining
I0+ = I, I(i+1)+ = (I i+)+, we call the operations of I (n−1)+ the ‘n-dimensional
opetopes’. Opetopes form a category, and presheaves on this category are
called ‘opetopic sets’. A weak n-category is defined as an opetopic set with
certain properties, in a manner reminiscent of Street’s simplicial approach to
weak ω-categories. Similarly, starting from an arbitrary operad O instead of
I, we define ‘n-coherent O-algebras’, which are n times categorified analogs of
algebras of O. Examples include ‘monoidal n-categories’, ‘stable n-categories’,
‘virtual n-functors’ and ‘representable n-prestacks’. We also describe how n-
coherent O-algebra objects may be defined in any (n+ 1)-coherent O-algebra.

1 Introduction

A fundamental problem in higher-dimensional algebra is to set up a convenient theory
of weak n-categories. Since there seems to be quite a bit of freedom in what such a
theory could look like, we begin with a rough sketch of what is called for, and then
summarize the ideas behind our approach.

As traditionally conceived, an n-category should be some sort of algebraic struc-
ture having objects or 0-morphisms, 1-morphisms between 0-morphisms, 2-morphisms
between 1-morphisms, and so on up to n-morphisms. There should be various ways
of composing j-morphisms, and these composition operations should satisfy various
laws, such as associativity laws. In the so-called ‘strict’ n-categories, these laws are
equations. While well-understood and tractable, strict n-categories are insufficiently
general for many applications: what one usually encounters in nature are ‘weak’ n-
categories, in which composition operations satisfy the appropriate laws only up to
equivalence. Here the idea is that n-morphisms are equivalent precisely when they
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are equal, while for j < n an equivalence between j-morphisms is recursively defined
as a (j + 1)-morphism from one to the other that is invertible up to equivalence.

What makes it difficult to define weak n-categories is that laws formulated as
equivalences should satisfy laws of their own — so-called ‘coherence laws’ — so that
one can manipulate them with some of the same facility as equations. Moreover,
these coherence laws should also be equivalences satisfying their own coherence laws,
again up to equivalence, and so on.

For example, a weak 1-category is just an ordinary category, defined by Eilenberg
and MacLane [15] in their 1945 paper. In a category, composition of 1-morphisms is
associative ‘on the nose’:

(fg)h = f(gh).

Weak 2-categories first appeared in the work of Bénabou [9] in 1967, under the name
of ‘bicategories’. In a bicategory, composition of 1-morphisms is associative only up
to an invertible 2-morphism, the ‘associator’:

Af,g,h: (fg)h→ f(gh).

The associator allows one to rebracket parenthesized composites of arbitrarily many
1-morphisms, but there may be many ways to use it to go from one parenthesization
to another. For all these to be equal, the associator must satisfy a coherence law, the
pentagon identity, which says that the following diagram commutes:

((fg)h)i (fg)(hi) f(g(hi))

(f(gh))i f((gh)i)

-

?

-

-
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where all the arrows are 2-morphisms built using the associator. Weak 3-categories or
‘tricategories’ were defined by Gordon, Power and Street [18] in a paper that appeared
in 1995. In a tricategory, the pentagon identity holds only up to an invertible 3-
morphism, which satisfies a further coherence law of its own.

When one explicitly lists the coherence laws this way, the definition of weak n-
category tends to grow ever more complicated with increasing n. To get around this,
one must carefully study the origin of these coherence laws. So far, most of our insight
into coherence laws has been won through homotopy theory, where it is common to
impose equations only up to homotopy, with these homotopies satisfying coherence
laws, again up to homotopy, and so on. For example, the pentagon identity and
higher coherence laws for associativity first appeared in Stasheff’s [28] work on the
structure inherited by a space equipped with a homotopy equivalence to a space with
an associative product. Subsequent work by Boardman and Vogt, May, Segal and
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others led to a systematic treatment of coherence laws in homotopy theory through
the formalism of topological operads [1].

Underlying the connection between homotopy theory and n-category theory is a
hypothesis made quite explicit by Grothendieck [19]: to any topological space one
should be able to associate an n-category having points as objects, paths between
points as 1-morphisms, certain paths of paths as 2-morphisms, and so on, with certain
homotopy classes of n-fold paths as n-morphisms. This should be a special sort of
weak n-category called a ‘weak n-groupoid’, in which all j-morphisms (0 < j ≤ n)
are equivalences. Moreover, the process of assigning to each space its ‘fundamental n-
groupoid’, as Grothendieck called it, should set up a complete correspondence between
the theory of homotopy n-types (spaces whose homotopy groups vanish above the nth)
and the theory of weak n-groupoids. This hypothesis explains why all the coherence
laws for weak n-groupoids should be deducible from homotopy theory. It also suggests
that weak n-categories will have features not found in homotopy theory, owing to the
presence of j-morphisms that are not equivalences.

In addition, this hypothesis makes it clear in which contexts the laws governing
composition of j-morphisms should hold only up to equivalence: namely, in those
where there is no preferred composite of j-morphisms; instead, the composite is best
regarded as only unique up to equivalence. In homotopy theory this arises from the
arbitrary choice involved in parametrizing the composite of two paths. Because of
this arbitrariness, composition of paths fails to be associative ‘on the nose’. Instead,
it is associative up to a homotopy, the associator, with this homotopy satisfying a
coherence law, the pentagon identity, but again only up to homotopy, and so on.

While many ways around this problem have been explored, here we prefer to accept
it as a fact of nature and develop a theory of weak n-categories in which composition
of j-morphisms is not an operation in the traditional sense, but something a bit more
subtle. Indeed, many forms of ‘composition’ in mathematics are of this sort, such
as the disjoint union of sets or the tensor product of vector spaces. While one can
artificially treat them as operations in the traditional sense, it is better to define them
by universal properties. Uniqueness up to equivalence then follows automatically.
Taking this as a hint, we shall define the composite of j-morphisms by a universal
property.

Homotopy theory also makes it clear that when setting up a theory of n-categories,
there is some choice involved in the shapes of ones j-morphisms — or in the language
of topology, ‘j-cells’. The traditional approach to n-categories is ‘globular’. This
means that for j > 0, each j-cell f : x → y has two (j − 1)-cells called its ‘source’,
sf = x, and ‘target’, tf = y, which for j > 1 satisfy

s(sf) = s(tf), t(sf) = t(tf)).

Thus a j-cell can be visualized as a ‘globe’, a j-dimensional ball whose boundary
is divided into two (j − 1)-dimensional hemispheres corresponding to its source and
target. In homotopy theory, however, the simplicial approach is much more popular.
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In a ‘simplicial set’, each j-cell f is shaped like a j-dimensional simplex, and has j+1
faces, certain (j − 1)-cells d0f, . . . , djf . In addition to these there are (j + 1)-cells
i0f, . . . , ij+1f called ‘degeneracies’, and the face and degeneracy maps satisfy certain
well-known relations.

In the simplicial approach, weak n-groupoids are described using ‘Kan complexes’.
It is worth recalling these here, because they begin to illustrate how composite j-
morphisms can be defined by a universal property. A ‘j-dimensional horn’ in a sim-
plicial set is, roughly speaking, a configuration in which all but one of the faces of a
j-simplex have been filled in by (j − 1)-cells in a consistent way. A simplicial set for
which any horn can be extended to a j-cell is called a ‘Kan complex’. Kan complexes
serve to describe arbitrary homotopy types. Algebraically, we may think of them
as a simplicial version of ‘weak ω-groupoids’, since they can have nontrivial j-cells
for arbitrarily large j. A Kan complex represents a homotopy n-type, or in other
words a weak n-groupoid, if for j > n+ 1 any configuration in which all the faces of
a j-simplex have been filled in by (j − 1)-cells in a consistent way can be uniquely
extended to a j-cell.

Consider for example the case j = 2. Suppose, as shown in Figure 1, that two
faces of a 2-simplex have been filled in by 1-cells f and g such that d1f = d0g = y.
Then in a Kan complex we can extend this horn to a 2-cell F , which has as its third
face a 1-cell h.
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1. Extending a horn to a cell

In this situation, we may think of h as ‘a composite’ of f and g, and F as a ‘process
of composing’ f and g. There is not a unique preferred composite. However, it
automatically follows from the definition of Kan complex that any two composites
are equivalent. Here two j-cells with all the same faces are said to be ‘equivalent’ if
there is a (j+1)-cell having these j-cells as two of its faces, the rest being degenerate.

Kan complexes serve as a highly efficient formalism in which to do homotopy
theory [25]. In particular, there is no need to explicitly list coherence laws! They are
all implicit in the fact that every horn can be extended to a cell, and they all become
explicit — in their simplicial forms — if one makes composition into an operation of
the traditional sort by arbitrarily choosing an extension of every horn. It is tempting,
therefore, to develop a simplicial approach to weak n-categories.

This was done by Street [29], who actually dealt with weak ω-categories. Like
Kan complexes, these are simplicial sets. However, only certain ‘admissible’ horns,
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having the correct sort of orientation, are required to have extensions. For example,
we do not require the horn shown in Figure 2 to have an extension, since the missing
face would correspond to a composite of f and an inverse of g, which we expect to
exist in a weak n-groupoid, but not in a weak n-category.
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2. A horn that need not have an extension in a n-category

Second, for those horns that are required to have extensions, we require the ex-
istence of a ‘universal’ extension. The point is that, unlike the ω-groupoid case, we
cannot think of every (j + 1)-cell as a process of composing all but one of its faces
to obtain the remaining face. Instead, Street’s weak ω-categories are equipped with
a distinguished set of ‘universal’ cells which we can think of this way. These sat-
isfy some axioms: there are no universal 0-cells, all universal 1-cells are degenerate,
and all degenerate cells are universal. Last, and most importantly, any composite of
universal cells is universal.

Our definition of weak n-categories resembles Street’s, but with two major dif-
ferences. First, while simplices are convenient in algebraic topology, they are not
well adapted to the ‘unidirectional’ or ‘noninvertible’ character of the j-morphisms
in n-category theory, as is clear from the rather technical combinatorics involved in
orienting the faces of a simplex and defining admissible horns. This raises the pos-
sibility that a more convenient theory could be set up with j-cells of some other
shapes — shapes motivated more by the inner logic of n-category theory than by tra-
ditional concerns of algebraic topology. In our approach we use certain shapes called
‘opetopes’. (Nota bene: The first two syllables of ‘opetope’ are pronounced exactly
as in the word ‘operation’.)

Opetopes arise naturally from the theory of operads. Roughly speaking, an ‘op-
erad’ is an algebraic gadget consisting of a collection of abstract operations closed
under composition. These operations may have any finite number of arguments, and
we work with operads in which the arguments are ‘typed’ or many-sorted. Any such
operad is determined by: 1) its types, 2) its operations, and 3) its ‘reduction laws’, or
equations stating that some composite of operations equals a given operation. This
description of an operad is like a presentation in terms of generators and relations.
An operad also has ‘algebras’ in which its operations are represented as actual func-
tions. From the viewpoint of mathematical logic, an operad is a kind of theory,
and its algebras are models of that theory. As always, it is useful to study operads
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both syntactically, in terms of their presentations, and semantically, in terms of their
algebras.

We define the ‘slice operad’ O+ of an operad O in such a way that an algebra of
O+ is precisely an operad over O, i.e., an operad with the same set of types as O,
equipped with an operad homomorphism to O. Syntactically, it turns out that:

1. The types of O+ are the operations of O.

2. The operations of O+ are the reduction laws of O.

3. The reduction laws of O+ are the ways of combining reduction laws of O to give
other reduction laws.

This gets at the heart of the process of ‘categorification’, in which laws are promoted
to operations and these operations satisfy new coherence laws of their own. Here the
coherence laws arise simply from the ways of combining the the old laws.

The simplest operad of all is the initial operad, I. Syntactically speaking, this is
the operad with only one type and only one operation, the identity. Semantically,
I is the operad whose algebras are just sets, without any extra structure at all.
Starting with I and iterating the slice operad construction j − 1 times, we obtain an
operad whose operations we call ‘j-dimensional opetopes.’ A 0-dimensional opetope
is just a point, and a 1-dimensional opetope is just an oriented interval. For j > 1,
a j-dimensional opetope may have any number of ‘infaces’ but only one ‘outface’.
Thanks to the above syntactic description of the slice operad construction, it turns
out that a j-dimensional opetope corresponds simply to a way of pasting together its
infaces — certain (j − 1)-dimensional opetopes — to obtain its outface.

A weak n-category will be an ‘opetopic set’ with certain extra properties, similar
to those defining a Kan complex, but a bit more complicated. The analog of an
admissible horn is a ‘niche’, which is a configuration in which all the infaces of an
opetope have been filled in with cells, but not the outface. We require that every
niche can be extended to a universal cell, and regard the outface of such a universal
cell as ‘a composite’ of its infaces. We also require composites of universal cells to be
universal.

Here we must note the second major difference between our approach and Street’s.
It turns out that if one works with n-categories instead of ω-categories, one need not
(and should not) arbitrarily designate certain cells as universal; instead, universality
becomes a property. In our framework an n-category typically has j-cells for arbi-
trarily large j, but they act like ‘equations’ for j > n, so every j-cell is defined to be
universal for j > n. Universality for j-cells of lower dimension is defined in a recur-
sive manner. The basic idea is that a given cell occupying some niche is universal if
any other occupant factors through that one, up to equivalence. Here the notion of
‘equivalence’ must also be recursively defined.

A brief outline of our paper is as follows. In Section 2 we introduce some necessary
material on operads. In Section 3 we describe the slice operad construction, opetopes
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and opetopic sets. In Section 4 we define weak n-categories and begin to study them,
along with the more general ‘n-coherent O-algebras’, which are the n-categorical
analogs of operad algebras. In the Conclusions we compare other approaches to weak
n-categories and discuss the all-important question of when two approaches can be
considered equivalent.

Henceforth by ‘n-category’ we always mean ‘weak n-category’, as defined in this
paper. For more background on n-category theory and why it should be interesting,
see the previous papers in this series, which we refer to as HDA0 [4], HDA1 [6],
and HDA2 [2]. As in those papers, we use the ordering in which the composite of
morphisms f : x → y and g: y → z is written as fg, but when dealing with operads
we write the composite of a k-ary operation f with the operations g1, . . . , gk as f ·
(g1, . . . , gk).

2 Operads

It turns out to be convenient to describe weak n-categories using the theory of operads.
Operads are a formalism for dealing with algebraic structures having operations of
arbitrary finite arity satisfying arbitrary ‘reduction laws’, that is, equational laws
saying that some composite of operations equals some operation. For the benefit of
the reader unfamiliar with operads, we begin in Section 2.1 by recalling the traditional
sort of operad [24]. We call these ‘untyped’ operads because they are suited to the
case when the inputs and output of every operation are of the same type.

Then, with the help of some generalities about monoid objects in Section 2.2, we
introduce the more general ‘typed’ operads needed for this paper in Section 2.3. While
all we really need are operads with an arbitrary set of types, we find it somewhat
illuminating to define operads with an arbitrary small category of types. In Section 2.4
we show how a functor F :C → D gives a way to turn operads with type category D
into operads with type category C, and in Section 2.5 we conclude with another basic
operad construction, the ‘slice operad of an operad algebra’. Some of the material in
these sections makes for tough going, so it may be helpful at points to consult our
introduction to n-categories [3].

2.1 Untyped operads

An untyped operad O has, for each k ≥ 0, a set Ok of k-ary operations. We may
visualize an element of Ok as a tree as in Figure 3. This tree has one black dot or node
representing the operation itself, k lines or edges coming in from above representing
the inputs of the operation, and one edge going out from below representing the
output.
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3. An element of Ok for k = 4

We may compose these trees by attaching the output edges of k of them to the input
edges of a tree with k inputs, as shown in Figure 4. (In the resulting tree some of the
edges may be drawn as broken lines for convenience.) More precisely, for any integers
i1, . . . , ik ≥ 0 there is a function

Ok ×Oi1 × · · · ×Oik → Oi1+···+ik .

(f, g1, . . . , gk) 7→ f · (g1, . . . , gk)
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4. Composition in an operad

We require composition to be ‘associative’, in the sense that

f · (g1 · (h11, . . . , h1i1), . . . , gk · (hk1, . . . , hkik)) =

(f · (g1, . . . gk)) · (h11, . . . , h1i1 , . . . . . . , hk1, . . . , hkik)

whenever both sides are well-defined. This makes composites such as those shown in
Figure 5 unambiguous.
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5. Associativity for composition in an operad
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We also require the existence of an ‘unit’ 1 ∈ O1 such that

1 · (f) = f, f · (1, . . . , 1) = f

for all f ∈ Ok.
What we have so far is an planar untyped operad. For a full-fledged untyped

operad, we also assume there is a right action of the symmetric group Sk on Ok for
all k, for which the following compatibility conditions hold. First, for any f ∈ Ok,
σ ∈ Sk, and gj ∈ Oij for 1 ≤ j ≤ k, we have

(fσ) · (gσ(1), . . . , gσ(k)) = (f · (g1, . . . , gk)) ρ(σ),

where
ρ:Sk → Si1+···+ik

is the obvious homomorphism. We illustrate this condition in Figure 6.

6. Compatibility condition for symmetric group actions

Second, for any f ∈ Ok, and gj ∈ Oij , σj ∈ Sij for 1 ≤ j ≤ k, have

f · (g1σ1, . . . , gkσk) = (f · (g1, . . . , gk)) ρ
′(σ1, . . . , σk),

where
ρ′:Si1 × · · · × Sik → Si1+···+ik

is the obvious homomorphism.
Operads are mainly interesting for their algebras. Given an untyped operad O

as above, one defines an O-algebra to be a set A on which the operations of O are
rendered concrete. In other words, there are maps

α:Ok → hom(Ak, A)

sending the identity operation 1 ∈ O1 to the identity function from A to itself, and
sending composites to composites:

α(f · (g1, . . . , gk)) = α(f) ◦ (α(g1)× · · · × α(gk)).

We also require that the maps α satisfy

α(fσ) = α(f)σ,

where f ∈ Ok and σ ∈ Sk acts on hom(Ak, A) on the right by permuting the factors
in Ak. We omit this requirement if O is merely planar.
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2.2 Monoid objects and their actions

An untyped operad O for which only O1 is nonempty is just a monoid, so we may think
of a monoid as a kind of operad. Interestingly, however, there is a rather different
way to think of any operad as a kind of monoid, or more precisely, a ‘monoid object’.
By the internalization principle discussed in HDA0, we can generalize the definition
of ‘monoid’ from the category of sets to any sufficiently similar category — in fact,
any monoidal category. If M is a strict monoidal category, a monoid object in M is
an object m ∈ M equipped with a product µ:m ⊗m → m and unit ι: 1 → m, such
that the following diagrams commute:

m⊗m⊗m m⊗m

m⊗m m

-µ⊗1

?

1⊗µ

?

µ

-µ

1⊗m m⊗m

m

-ι⊗1

@
@
@
@
@
@R

1

�
�
�
�
�
�	

µ

m⊗ 1 m⊗m

m

-1⊗ι

@
@
@
@
@
@R

1

�
�
�
�
�
�	

µ

These represent associativity and the left and right unit laws, respectively. When
the monoidal category M is not strict, one simply inserts the natural isomorphisms
(m⊗m)⊗m ∼= m⊗ (m⊗m) and 1⊗m ∼= m ∼= m⊗ 1 where needed.

One may then define an action of the monoid object m on any object in M . More
generally, one may define an action of m on any object in a category on which M acts.
Recall that an action of M on a category C is a monoidal functor A:M → end(C),
where the monoidal category end(C) has endofunctors on C as objects and natural
transformations between these as morphisms. Equivalently, we may think of the
action A as a functor A:M×C → C satisfying certain conditions. Here it is convenient
to write A(m, c) simply as m⊗ c.

Suppose that m ∈ M is an monoid object and A:M × C → C is an action. If A
is a strict monoidal functor, we define an action of m in C riding the action A to be
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a morphism
α:m⊗ c→ c

in C making the following diagrams commute:

m⊗m⊗ c m⊗ c

m⊗ c c

-µ⊗1

?

1⊗α

?

α

-α

1⊗ c m⊗ c

c

-i⊗1

@
@
@
@
@@R

1

�
�
�
�
��	

α

When A is not strict, one simply inserts the natural isomorphisms (m ⊗ m) ⊗ c ∼=
m⊗ (m⊗ c) and 1⊗ c ∼= c where needed.

Given a monoid object m ∈M and an action A of M on C, we define the category
of actions of m in C riding the action A as follows. The objects of this category are
actions of m in C riding A, and given two such actions

α:m⊗ c→ c, α′:m⊗ c′ → c′,

we define a morphism from α to α′ to be a morphism f : c→ c′ such that the following
diagram commutes:

m⊗ c c

m⊗ c′ c′

-α

?

1⊗f

?

f

-α′

It is worth noting an interesting pattern. We may generalize the notion of ‘monoid’
to that of a monoid object m in any monoidal category M , but the notion of ‘monoidal
category’ is itself a categorification of the notion of ‘monoid’. Similarly, we may define
an action of the monoid object m ∈M on c ∈ C whenever the monoidal category M
acts on C.

We see here two instances of the following principle: certain algebraic structures
can be defined in any category equipped with a categorified version of the same struc-
ture. Another instance was mentioned in HDA0: we may define a commutative
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monoid object in any symmetric monoidal category. We name this principle the mi-
crocosm principle, after the theory, common in pre-modern correlative cosmologies,
that every feature of the microcosm (e.g. the human soul) corresponds to some feature
of the macrocosm. Of course, the above formulation of the microcosm principle is
rather vague; we give a precise version in Section 4.3.

Even without a precise formulation, the microcosm principle can serve as a useful
guide when seeking the most general way to internalize certain algebraic structures.
For example, we may apply the microcosm principle to morphisms between monoid
objects. Suppose we are given a monoidal functor F :M → M ′ between monoidal
categories. Then given monoid objects m ∈ M and m′ ∈ M ′, we define a morphism
f :m → m′ riding F to be a morphism f :F (m) → m′ in M ′ making the following
diagrams commute:

F (m⊗m) F (m)⊗ F (m) m′ ⊗m′

F (m) m′
?

F (µ)

-f⊗f�

?

µ′

-f

F (1M) 1M ′

F (m) m′
?

F (ι)

�

?

ι′

-f

Here µ, ι are the product and unit form, while µ′, ι′ are the product and unit form′.
If F is a strict monoidal functor, the unlabelled arrows F (m)⊗F (m)→ F (m⊗m) and
1M ′ → F (1M) are identity morphisms. If F is a weak monoidal functor, these arrows
are isomorphisms supplied by the definition of weak monoidal functor. However, in
Sections 2.4 and 2.5 we will need the case where F is merely a lax monoidal functor
(which Eilenberg and Kelly [14] call simply a monoidal functor). Then these arrows
are morphisms, not necessarily isomorphisms, supplied by the definition of a lax
monoidal functor.
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We call a morphism of monoid objects riding an identity functor a ‘homomor-
phism’. In other words, given monoid objects m,m′ in a monoidal category M , we
define a homomorphism f :m → m′ to be a morphism in M for which the following
diagrams commute:

m⊗m m′ ⊗m′

m m′

-f⊗f

?

µ

?

µ′

-f

1

m m′

�
�
�
�
�
��	

ι

?

ι′

-f

Whenever F :M → M ′ is a lax monoidal functor and m is a monoid object in M ,
F (m) becomes a monoid object in M ′ in a natural way, and a morphism of monoid
objects f :m → m′ riding F can also be thought of as a homomorphism from F (m)
to m′.

In the next section, we define an operad to be a monoid object in a certain
monoidal category of ‘signatures’. An algebra of the operad will then be an action of
this monoid object, riding a certain action of the category of signatures. We will use
the concepts of morphisms and homomorphisms between monoid objects to define
morphisms and homomorphisms between operads.

2.3 Typed operads

To define weak n-categories, we need operads for which the inputs and output of each
operation are ‘many-sorted’, or ‘typed’. In what follows, we first define these operads
and their algebras, and then give a rather lengthy explanation of our definitions.

Definition 1. For a category C, let the category fam(C) of C-families be the category
where an object is a finite list of objects of C, and where a morphism from (x1, . . . , xj)
to (y1, . . . , yk) is a bijection b: {1, . . . , j} → {1, . . . , k} together with, for each i, a
morphism from xi to yb(i), with composition of morphisms given by the obvious rule.

Definition 2. For a category C, let svf(C) be the category of set-valued functors on
C, that is, the category whose objects are functors from C to Set and whose morphisms
are natural transformations between these.
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Notice that fam(C) is a symmetric monoidal category, where the tensor product
of the families (x1, . . . , xj) and (y1, . . . , yk) is (x1, . . . , xj, y1, . . . , yk). In fact, fam(C)
is the free symmetric monoidal category on C in an appropriate sense. In a similar
sense, the category svf(fam(C)op) of set-valued contravariant functors on fam(C) is
the ‘free symmetric 2-rig on C’, where a 2-rig is a symmetric monoidal cocomplete
category for which the monoidal structure preserves small colimits in each argument.
By this universal property, the monoidal category end(svf(fam(C)op)) of endomor-
phisms preserving small colimits and the symmetric monoidal structure is equivalent
to svf(fam(C)op × C).

Definition 3. Given a category C, we define the category prof(C) of C-profiles to
be fam(C)op × C.

Definition 4. Given a category C, we define the category sig(C) of C-signatures to
be svf(prof(C)).

By the above remarks sig(C) is a monoidal category. Note that sig(C) has an
action on svf(C), which we call the tautologous action. Thus we may make the
following definitions:

Definition 5. Given a small category C, we define a C-operad be a monoid object
in sig(C), and define op(C), the category of C-operads, to be the category of monoid
objects in sig(C).

Definition 6. Given a C-operad O, we say C is the category of types of O, and
write C = type(O).

Definition 7. For a C-operad O, we define the category O-alg of O-algebras to
be the category of actions of O in svf(C) riding the tautologous action of sig(C) on
svf(C).

To get a feel for these definitions, let us see how in a special case they reduce to
the definitions of untyped operads and their algebras.

Example 8. Untyped operads as C-operads with C = 1. Here we take C to be the
terminal category 1, the category with one object x and one morphism 1x. We denote
the objects of fam(C) as 1, x, x2, . . .. Note that hom(xj, xk) is the empty set unless
j = k, in which case it is the symmetric group Sk. An object A of svf(fam(C)op)
assigns to each object xk of fam(C) a set Ak equipped with an Sk-action. It is
illuminating to write A as a formal power series:

A = A0 + A1x + A2x
2 + · · · .

Then the coproduct in svf(fam(C)op) corresponds to addition of formal power series,
where we add coefficients by taking their disjoint union. Similarly, the monoidal
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structure corresponds to multiplication of formal power series, but where we multiply
the coefficients as follows: to multiply a set with Sj-action and a set with Sk-action,
we take the Cartesian product with its natural Sj × Sk-action and then induce an
action of Sj+k along the obvious inclusion Sj × Sk ↪→ Sj+k. (Here by ‘inducing an
action’ we mean the left adjoint of restricting an action to a subgroup.)

An endomorphism P of svf(fam(C)op) preserving small colimits and the symmetric
monoidal structure will be determined by its action on the generating object x (by
which we mean the formal power series A with A1 being a one-element set and Ai

empty for i 6= 1). We have

P (x) = P0 + P1x + P2x
2 + · · · ,

so P determins a sequence of sets Pk. Note that each set Pk is equipped with an
action of Sk, by the functoriality of P . Conversely, any collection of sets Pk with Sk-
actions determines such an endomorphism P . We may also think of P as the object
of sig(C) assigning to each C-profile (xk, x) a set Pk. We call the elements of Pk the
‘k-ary operations’ of P .

A C-operad is a monoid object in sig(C). To understand what this amounts
to, we must understand the monoidal structure in sig(C). This corresponds to the
composition of endomorphisms of svf(fam(C)op), or in other words, composition of
formal power series. Given C-signatures P and Q, their composite is given by

(P ◦Q)(x) = P (Q(x)).

Thus we have

(P ◦Q)0 = P0 + P1Q0 + P2Q
2
0 + · · ·

(P ◦Q)1 = P1Q1 + P2(Q0Q1 +Q1Q0) + · · ·
(P ◦Q)2 = P1Q2 + P2(Q0Q2 +Q2

1 +Q2Q0) + · · ·

and so on, where we add and multiply the coefficients as before. Note that an element
of (P ◦ Q)j consists of an element of Pk, for arbitrary k ≥ 0, together with a choice
of elements of the sets Qi1 , . . . , Qik , where i1 + · · ·+ ik = j.

Given a C-operad O, the product µ:O ◦ O → O gives a collection of functions
from (O ◦O)j to Oj. This amounts to a collection of functions

Ok ×Oi1 × · · · × Oik → Oi1+···+ik .

We leave it to the reader to check that in this special case C = 1, O being a monoid
object in the category of C-signatures is precisely equivalent to the conditions in the
definition of an operad given at the beginning of Section 2. In particular, the associa-
tivity and unit laws there correspond to the associativity and unit laws required of a
monoid object, while the conditions involving the symmetric groups correspond to the
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fact that the product µ:O ◦O → O is a symmetric monoidal natural transformation
between symmetric monoidal functors.

In this case, the tautologous action of sig(C) on svf(C) works as follows. The
category svf(C) is just Set, so suppose we are given a C-signature P and a set A.
Then P acts on A to give the set

P (A) = P0 + P1A + P2A
2 + · · ·

If O is a C-operad, an O-algebra is a set A together with an action of O on A, that is, a
function α:O(A)→ A satisfying certain conditions. Alteratively, as in the definition
of the algebra of an untyped operad, we can think of this action as a collection of
functions α:Ok → hom(Ak, A). We leave it for the reader to check that the conditions
α must satisfy to be an action are just the conditions given in Section 2.

Our use of formal power series above appears already in the generating function
approach to combinatorics [13] and its categorical interpretation in terms of ‘species’
by Joyal [21]. As shown in Figure 7, what is at work here is the analogy between
ordinary set-theoretic linear algebra and categorified linear algebra.

commutative rig k symmetric 2-rig Set

set S category C

k〈S〉 or hom(S, k) svf(Cop)

FS fam(C)

k[S] or k[[S]] svf(fam(C)op)

end(k[S]) or end(k[[S]]) end(svf(fam(C)op)) = sig(C)

7. Set-theoretic linear algebra versus categorified linear algebra

Recall that a rig is a set with two monoid structures + and ·, where + is commutative
and · distributes over +. A 2-rig, as defined earlier, is a categorified analog of a rig.
In set-theoretic linear algebra we may work over any commutative rig k, while in
categorified linear algebra we may work over any symmetric 2-rig. The free commu-
tative rig on one element is N, while the free symmetric 2-rig on one object is Set. For
simplicity, in Figure 7 we only consider categorified linear algebra over Set, although
other symmetric 2-rigs are also interesting. It is most common in set-theoretic linear
algebra to work over a field or commutative ring, but working over N is important in
combinatorics, and heightens the analogy to categorified linear algebra over Set.

Given a set S one may form the free k-module k〈S〉 on S. Similarly, given a
category C one may form the free cocomplete category svf(Cop) on C; note that
a cocomplete category is automatically a Set-module in the sense of Kapranov and
Voevodsky [22]. One may also form the free commutative monoid FS on the set
S. The free commutative k-algebra on S is then k〈FS〉, usually denoted by k[S].
Similarly, one may form the free symmetric monoidal category fam(C) on the category
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C. The free symmetric 2-rig on C is then svf(fam(C)op). The monoidal category
end(svf(fam(C)op)) = sig(C) is thus a categorified version of the monoid end(k[S]).

There are some rough spots in this analogy. In particular, while we can pull
back k-valued functions along any function f :S → T , obtaining a k-linear map
f ∗: k〈T 〉 → k〈S〉, we cannot in general push them forwards. In contrast to this,
not only can we pull back set-valued functors along any functor F :C → D, obtaining
a functor F ∗: svf(D)→ svf(C), we can also push them forward using the left adjoint
F∗: svf(C)→ svf(D). Both F ∗ and F∗ preserve small colimits. In short, while the free
k-module on a set transforms only contravariantly under functions, the free cocom-
plete category on a category transforms both covariantly and contravariantly under
functors. This plays an important role in Section 2.4.

There is a kind of substitute for the free k-module on a set that transforms covari-
antly: the k-module hom(S, k) of functions from S to k. In some ways svf(fam(Cop))
resembles hom(FS, k) = k[[S]] more than k[S], which explains the importance of
formal power series in the generating function approach to combinatorics. Of course,
k〈S〉 and hom(S, k) are isomorphic when S is finite; the categorified situation works
more smoothly because cocomplete categories are closed under arbitrary colimits,
while k-modules are only closed under finite linear combinations.

To conclude this section, let us unpack our abstract definitions of general C-
operads and their algebras to obtain equivalent ‘nuts-and-bolts’ descriptions along
more traditional lines. First we introduce some handy notation. Given an object
(x1, . . . , xk) ∈ fam(C) and an object x ∈ C, we write the corresponding C-profile
as (x1, . . . , xk, x

′). A C-signature P assigns to this C-profile a set P (x1, . . . , xk, x
′)

which we call the set of operations of P with profile (x1, . . . , xk, x
′). As in Figure 8,

we may visualize such an operation as a gadget with k inputs of types x1, . . . , xk and
one output of type x′. Given an operation with this profile, we call x1, . . . , xk its input
types and x′ its output type, and the tuple (x1, . . . , xk) its arity. (In the untyped case
we sometimes call the integer k the arity.)
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8. An operation f with profile (x1, x2, x3, x4, x
′)

Since the tensor product of objects in sig(C) is given by composing endomorphisms
of svf(fam(C)op), we may write the monoidal structure in sig(C) as ◦. One may check
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that given C-signatures P and Q, and an operation f of P and operations g1, . . . , gk
of Q for which the arity of f is the product of the arities of the gi, we obtain an
operation of P ◦ Q. We denote this operation by f ◦ (g1, . . . , gk). The output type
of f ◦ (g1, . . . , gk) is the output type of f , while its arity type is the product of the
arities of g1, . . . , gk. We may visualize f ◦ (g1, . . . , gk) as in Figure 9.
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9. An operation f ◦ (g1, . . . , gk) of P ◦Q, where k = 3

Now suppose that O is a C-operad. Then it is a monoid object in sig(C), and the
product µ:O ◦O → O sends each operation f ◦ (g1, . . . , gk) in O ◦O to an operation
in O which we denote by f · (g1, . . . , gk). One may check that the associativity of the
product µ implies an associativity law like that for untyped operads. Also, the unit
ι: 1 → O gives O an operation ιf of profile (x, x′) for every morphism f : x → x′ in
C. One may also check that the unit law and compatibility with symmetric group
actions hold as in an untyped operad. With a little more work, one can verify:

Proposition 9. For any small category C, a C-operad O gives:

1. for any C-profile (x1, . . . , xk, x
′), a set O(x1, . . . , xk, x

′)

2. for any f ∈ O(x1, . . . , xk, x
′) and any g1 ∈ O(x11, . . . , x1i1 , x1), . . . ,

gk ∈ O(xk1, . . . , xkik , xk), an element

f · (g1, . . . , gk) ∈ O(x11, . . . , x1i1 , . . . . . . , xk1, . . . , xkik, x
′)

3. for each morphism f : x→ x′ in C, an element ι(f) ∈ O(x, x′)

4. for any permutation σ ∈ Sk, a map

σ:O(x1, . . . , xk, x
′) → O(xσ(1), . . . , xσ(k), x

′)

f 7→ fσ
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such that:

(a) whenever both sides make sense,

f · (g1 · (h11, . . . , h1i1), . . . , gk · (hk1, . . . , hkik)) =

(f · (g1, . . . gk)) · (h11, . . . , h1i1 , . . . . . . , hk1, . . . , hkik)

(b) for any f ∈ O(x1, . . . , xk, x
′),

f = ι(1x′) · f = f · (ι(1x1), . . . , ι(1xk))

(c) for any f ∈ O(x1, . . . , xk, x
′) and σ, σ′ ∈ Sk,

f(σσ′) = (fσ)σ′

(d) for any f ∈ O(x1, . . . , xk, x
′), σ ∈ Sk, and g1 ∈ O(x11, . . . , x1i1 , x1), . . . ,

gk ∈ O(xk1, . . . , xkik , xk),

(fσ) · (gσ(1), . . . , gσ(k)) = (f · (g1, . . . , gk)) ρ(σ),

where ρ:Sk → Si1+···+ik is the obvious homomorphism.

(e) for any f ∈ O(x1, . . . , xk, x
′), g1 ∈ O(x11, . . . , x1i1 , x1), . . . ,

gk ∈ O(xk1, . . . , xkik , xk), and σ1 ∈ Si1 , . . . , σk ∈ Sik ,

(f · (g1σ1, . . . , gkσk)) = (f · (g1, . . . , gk)) ρ
′(σ1, . . . , σk),

where ρ′:Si1 × · · · × Sik → Si1+···+ik is the obvious homomorphism.

Conversely, such data determine a unique C-operad.

We can give a similar description of the algebras of a C-operad O. An O-algebra
is an action α:O(A)→ A, but we usually denote it simply as A. Given an O-algebra
A and an object x ∈ C, we call A(x) the set of elements of type x of A. For any
C-profile (x1, . . . , xk, x

′), the action α gives a function

O(x1, . . . , xk, x
′)× A(x1)× · · · × A(xk)→ A(x′)

which we write as
(f, a1, . . . , ak) 7→ f(a1, . . . , ak).

Alternatively, we sometimes write this as a function

O(x1, . . . , xk, x
′)→ hom(A(x1)× · · · × A(xk), A(x′))

which by abuse of language we also call α. One may then verify the following:
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Proposition 10. For any C-operad O, an O-algebra A gives:

1. for any object x ∈ C, a set A(x).

2. for any C-profile (x1, . . . , xk, x
′), a function

α:O(x1, . . . , xk, x
′)→ hom(A(x1)× · · · × A(xk), A(x′))

such that:

(a) whenever both sides make sense,

α(f · (g1, . . . , gk)) = α(f) ◦ (α(g1)× · · · × α(gk))

(b) for any x ∈ C, α(ι(1x)) acts as the identity on A(x)

(c) for any f ∈ O(x1, . . . , xk, x
′) and σ ∈ Sk,

α(fσ) = α(f)σ,

where σ ∈ Sk acts on hom(A(x1) × · · · × A(xk), A) on the right by permuting
the factors.

Conversely, such data determine a unique O-algebra.

Starting in Section 3 we will restrict attention to operads whose type category has
only identity morphisms. Such a category is said to be discrete. Since the category
Set is isomorphic to the category having small discrete categories as objects and
functors as morphisms, we need not worry much about the difference between small
discrete categories and sets. Thus we may easily extend the terminology above to
define S-profiles, S-signatures, S-operads, and so on when S is a set. For example,
we define an S-operad to be an operad whose type category is the discrete category
with S as its set of objects.

2.4 Pullback operads

Given a functor F :C → D and a D-operad O, we now construct a certain C-operad,
the ‘pullback’ F ∗O. First recall that D-signatures can be regarded as set-valued
functors on prof(D) = fam(D)op × D, and likewise for C-signatures. Thus we may
pull back D-signatures to C-signatures along F , giving a functor

F ∗: sig(D)→ sig(C).

The proposition below makes F ∗ into a lax monoidal functor. As in Section 2.2, for
any D-operad O, the pullback F ∗O then becomes a C-operad.
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Proposition 11. For any functor F :C → D, F ∗: sig(D)→ sig(C) can be given the
structure of a lax monoidal functor.

Proof - Note that F :C → D induces a pullback functor

F ]: svf(Dop)→ svf(Cop),

preserving small colimits, and also, because svf(Cop) is the free cocomplete category
on C, a functor

F]: svf(Cop)→ svf(Dop)

preserving small colimits. In fact, F ] is right adjoint to F]. By the universal property
of svf(fam(Cop)) and svf(fam(Dop)), the functors F ] and F] induce morphisms of
symmetric monoidal cocomplete categories:

R: svf(fam(Dop))→ svf(fam(Cop))

and
L: svf(fam(Cop))→ svf(fam(Dop))

with the former being right adjoint to the latter.
Now recall that the category sig(D) is equivalent, as a monoidal category, to the

category end(svf(fam(D)op)). Thus we may identify sig(D) with this latter category,
which is strictly monoidal. A D-signature S is then an endomorphism

S: svf(fam(Dop))→ svf(fam(Dop)),

and the composite

R ◦ S ◦ L: svf(fam(Cop))→ svf(fam(Cop))

is a C-signature. This composition process extends to a functor from sig(D) to sig(C),
which one may check is equivalent to F ∗.

To make F ∗ into a lax monoidal functor it thus suffices to find a natural transfor-
mation ΦS,T :F ∗(S) ◦F ∗(T )→ F ∗(S ◦ T ) making the following diagram commute for
any D-signatures S, T, U :

F ∗(S) ◦ F ∗(T ) ◦ F ∗(U) F ∗(S ◦ T ) ◦ F ∗(U)

F ∗(S) ◦ F ∗(T ◦ U) F ∗(S ◦ T ◦ U)

-ΦS,T ◦1

?

1◦ΦT,U

?

ΦS◦T,U

-ΦS,T◦U

(1)
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together with a morphism φ: 1sig(D) → F ∗(1sig(C)) making the following diagrams
commute for any D-signature S:

1 ◦ F ∗(S) F ∗(S)

F ∗(1) ◦ F ∗(S) F ∗(1 ◦ S)

-1

?

φ◦1

?

1

-Φ1,S (2)

F ∗(S) ◦ 1 F ∗(S)

F ∗(S) ◦ F ∗(1) F ∗(S ◦ 1)

-1

?

1◦φ

?

1

-ΦS,1 (3)

Since R is the right adjoint of L, there is a natural transformation ε:L ◦R ⇒ 1, the
counit of the adjunction. Since

F ∗(S) ◦ F ∗(T ) = R ◦ S ◦ L ◦R ◦ T ◦ L

while
F ∗(S ◦ T ) = R ◦ S ◦ T ◦ L,

we may use ε to define

ΦS,T = 1R◦S ◦ ε ◦ 1T◦L:R ◦ S ◦ L ◦R ◦ T ◦ L⇒ R ◦ S ◦ T ◦ L.

The commutativity of (1) is then easy to check. Similarly, the unit ι: 1 ⇒ R ◦ L of
the adjunction gives a morphism φ: 1 → f ∗(1) = R ◦ L. The commutativity of (2)
and (3) then follows from the triangle identities for an adjunction, which say that

R R ◦ L ◦R R-ι◦1 -1◦ε
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and

L L ◦R ◦ L L-1◦ι -ε◦1

are identity morphisms. ut

Here we note another interesting wrinkle in the analogy between set-theoretic
linear algebra and categorified linear algebra. A function f :S → T from the finite
set S to the finite set T induces a function f ∗: end(k[T ]) → end(k[S]), using the
isomorphism end(k[S]) ∼= k〈FS × S〉. However, in contrast to Proposition 11, this is
not a monoid homomorphism.

The same thing happens in the simpler context of matrix algebras. For any finite
set S, the set k〈S×S〉 becomes a monoid under matrix multiplication. Similarly, for
any category C, svf(Cop × C) becomes a monoidal category, called the category of
distributors from C to C. Given a function f :S → T between finite sets, the pullback
f ∗: k〈T × T 〉 → k〈S × S〉 is only a monoid homomorphism when f is one-to-one.
However, for any functor F :C → D, the pullback F ∗: svf(Dop ×D)→ svf(Cop × C)
is a lax monoidal functor. In fact, this follows from Proposition 11, using the fact
that a distributor may be regarded as a signature with only unary operations.

2.5 The slice operad of an algebra

Given an O-algebra A, the slice operad A+ is an operad whose algebras are O-algebras
over A, that is, equipped with a homomorphism to A. We give an explicit construction
of the slice operad and then prove it has this property.

Recall that given a category C and an object A ∈ svf(C), the category elt(A) of
elements of A has pairs (x, y) with x ∈ C and y ∈ A(x) as objects, and morphisms
f : x → x′ with A(f)(y) = y′ as morphisms from (x, y) to (x′, y′). Composition of
morphisms is defined in the obvious manner. In this situation there is a functor
p: elt(A)→ C with p(x, y) = x and p(f) = f .

Now suppose that O is a C-operad and A is an O-algebra. Then A is an object
of svf(C), so as in the previous section we may form the pullback p∗O, which is an
elt(A)-operad. Thus the following makes sense:

Definition 12. For a C-operad O and an O-algebra A, the slice operad of A, written
A+, is the sub-operad of p∗O for which an operation g of p∗O of profile (a1, . . . , ak, a

′)
is included if and only if it satisfies g(a1, . . . , ak) = a′.

Proposition 13. Suppose O is a C-operad and A is an O-algebra. Then A+-alg
is equivalent to the category of O-algebras over A. That is, an A+-algebra is an O-
algebra B equipped with an O-algebra homomorphism fB:B → A, and a morphism
between A+-algebras is an O-algebra morphism g:B → B ′ for which the following
diagram commutes:

23



B B′

A

-g

@
@RfB

�
�	 fB′

Proof - One may check this explicitly. Alternatively, since the operations of A+

are certain operations of O, we obtain a forgetful functor from O-alg to A+-alg. This
has a left adjoint L:A+-alg→ O-alg sending the terminal object of A+-alg to A ∈ O-
alg. This gives a functor from A+-alg to the category of O-algebras equipped with a
homomorphism to A, which one may check is an equivalence. ut

3 Opetopes and Opetopic Sets

We now begin to address the crucial issue of categorification: the process whereby,
in passing from an n-categorical context to an (n + 1)-categorical context, laws are
promoted to operations and these new operations satisfy new laws of their own. Our
approach to this issue relies heavily on operads.

In all that follows, we restrict attention to operads having a set of types, in the
manner explained at the end of Section 2.3. Note that any such operad is determined
by:

1. its types

2. its operations

3. its reduction laws

where by ‘reduction laws’ we mean all equations stating that a given composite of
operations, possibly with their arguments permuted, equals a given operation. (Here
we include unary and nullary composites.) Our approach to categorification relies
on a construction that yields for any operad O a new operad O+ having operations
corresponding to the reduction laws of O. This construction works roughly as follows.
In Section 3.1, we show that S-operads are themselves the algebras of a certain operad.
This allows us to apply the slice operad construction to S-operads, obtaining for each
S-operad O a new operad O+ whose algebras are S-operads over O. It turns out that:

1. The types of O+ are the operations of O.

2. The operations of O+ are the reduction laws of O.

3. The reduction laws of O+ are the ways of combining reduction laws of O to give
other reduction laws of O.
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We give numerous examples of this construction in Section 3.2. In Section 3.3 we
introduce the n-dimensional O-opetopes, which are the types of the nth iterated slice
operad On+, and we describe a notation for them involving lists of labelled trees which
we call ‘metatrees’. We pay special attention to the I-opetopes, or simply ‘opetopes’,
because they serve as the basic shapes for cells in our approach to n-category theory.
In Section 3.4 we give a description of the algebras of O+ for any S-operad O. Finally,
in Section 3.5, we describe ‘opetopic sets’; n-categories are opetopic sets with certain
properties.

3.1 The operad for operads

Given a small category C, we denote by |C| the set of objects of C. We now show
that for any set S, S-operads are the algebras of a certain |prof(S)|-operad. More
precisely, recall from Section 2.3 that the category of S-operads, op(S), is the category
of monoid objects in sig(S). Then we have:

Theorem 14. For any set S, there is a |prof(S)|-operad whose category of algebras
is equivalent to op(S).

Proof - We construct a |prof(S)|-operadX whose category of algebras is equivalent
to op(S). The basic idea is that the operations of X are the ways of composing
operations in S-operads, while possibly permuting their arguments.

Note that any S-operad has an underlying S-signature, giving us a functor

R: op(S)→ sig(S).

This functor has a left adjoint

L: sig(S)→ op(S)

assigning to each S-signature the free operad on that S-signature. Let TS denote the
terminal S-operad, and let F equal L(R(TS)), the free S-operad on the underlying
S-signature of TS. Note that the terminal S-operad has one operation for each S-
profile, so we may identify S-profiles with operations of TS. We may think of F as
the S-operad freely generated by all these operations.

The operations of F are in one-to-one correspondence with certain labelled trees
called TS-trees. A typical TS-tree is shown in Figure 10. An TS-tree is, first of
all, a combed tree; it is planar except at the very top, where we allow an arbitrary
permutation of the edges. Second, each node is labelled with an operation of TS, or
in other words, an S-profile. A node labelled by the S-profile (x1, . . . , xk, x

′) must
have k edges coming into it from above. Moreover, we require that it be possible to
label every edge with an element of S in such a way that for any node labelled by the
S-profile (x1, . . . , xk, x

′), the edges coming into that node from above are labelled by
the elements x1, . . . , xk in that order from left right, while the edge coming out of it
from below is labelled by the element x′.
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10. A TS-tree

In this graphical notation, we compose operations in F by combining trees essentially
as in Section 2.1, and then ‘combing’ the resulting tree so that all the permutations
of edges occur at the very top.

Now let us turn to the |prof(S)|-operad X. The operations of X are given as
follows. Suppose that p1, . . . , pk are S-profiles. Then X has one operation f of arity
(p1, . . . , pk) for each operation f of F that can be written as a composite of the
operations p1, . . . , pk. Given such an operation f of X, we define its output type to
be the profile of f .

Alternatively, we may describe the operations of X using TS-trees. The operad
X has one operation of arity (p1, . . . , pk) for each TS-tree with nodes labelled by the
S-profiles p1, . . . , pk, each pi labelling exactly one node. This description makes it a
bit easier to visualize how each operation of X is a way of composing operations in an
S-operad. For example, let f be the operation of X of arity (p1, . . . , p9) corresponding
to the TS-tree in Figure 10. Suppose that O is any S-operad having operations oi
with profiles pi. Then we can compose the oi and permute their arguments, following
the pattern given by the TS-tree, to obtain the operation

(o6 · (o5 · (o2, o8, o4), o1, o3 · (o9, o7)))σ

where σ is the permutation at the top of the TS-tree, namely

(1, 2, 3, 4, 5, 6, 7) 7→ (3, 1, 2, 4, 6, 5, 7).

In general, suppose that f ∈ X(p1, . . . , pk, p
′) and O is a C-operad. Given opera-

tions oi of O of type pi, we may compose them and permute their arguments in the
manner described by the TS-tree for f to obtain an operation of type p′, which we
denote by α(f)(o1, . . . , ok). Thus we obtain a map

α:X(p1, . . . , pk, p
′)→ hom(O(p1)× · · · × O(pk), O(p′))
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where O(p) denotes the set of operations of O of type p.
Composition of operations of X is defined as follows. Suppose X has operations f

and g1, . . . , gk of profiles for which the composite f ·(g1, . . . , gk) should be well-defined.
Let gi denote the operations of F corresponding to the operations gi. Then we define
f · (g1, . . . , gk) by

f · (g1, . . . , gk) = α(f)(g1, . . . , gk).

We finish giving X the structure of a |prof(S)|-operad with the help of Proposition
9. First, the only morphisms in |prof(S)| are identity morphisms, so for any S-profile
p we need an operation ι(1p) ∈ X(p, p). We take this to be the unique operation
with that profile corresponding to the operation p of F . Second, for any operation
f ∈ X(p1, . . . , pk, p

′) and σ ∈ Sk we need an operation fσ ∈ X(pσ(1), . . . , pσ(k), p
′).

We define fσ to be the unique operation of arity (pσ(1), . . . , pσ(k)) corresponding to

the operation f of F . One may then check that X is a |prof(S)|-operad by verifying
conditions a) - e) of Proposition 9; we leave this to the reader.

Any S-operad O becomes an X-algebra with the help of Proposition 10. We have
already defined the sets O(p) for any S-profile p and the action

α:X(p1, . . . , pk, p
′)→ hom(O(p1)× · · · × O(pk), O(p′)),

so one must only verify conditions a) - c). We leave this to the reader as well. Finally,
it is straightforward to check that any X-algebra is naturally a S-operad, and that a
homomorphism of X-algebras is the same as a homomorphism of S-operads. ut

In fact, there is also a prof(C)-operad for C-operads for any small category C.
This played an important role in an earlier version of our approach [5], but for various
reasons we now prefer in what follows to work only with operads having a set, rather
than a category, of types.

3.2 The slice operad of an operad

Definition 15. Given a S-operad O, let the slice operad of O, denoted O+, be the
elt(O)-operad whose algebras are S-operads over O, i.e., equipped with a C-operad
homomorphism to O.

The existence of O+ is guaranteed by Proposition 13 and Theorem 14. The point
is that since S-operads are the algebras of a certain operad, we can apply the slice
operad construction to S-operads.

Since O+ is an elt(O)-operad, it follows that the types of O+ are the operations
of O. Also, by examining the proof of Theorem 14 one may check that the operations
of O+ are the reduction laws of O, and the reduction laws of O+ are the ways of
combining reduction laws of O to obtain new reduction laws. This will become clearer
in the next section.

To get a feel for this important construction, let us consider some examples:
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Example 16. The initial untyped operad I as the operad for sets. Since S-operads
form a category we may speak of initial and terminal S-operads. In the case S = 1,
the initial S-operad I is the untyped operad whose only operation is the identity. In
other words, I is the untyped operad with only one unary operation and no operations
of higher arity. Its algebras are simply sets, so we say that I is the operad for sets.

Example 17. I+ as the operad for monoids. Note that I+ is an elt(I)-operad, but
elt(I) = 1, so I+ is an untyped operad. By definition, it is the operad for untyped
operads over I. An untyped operad admits a homomorphism to I only if all its
operations are unary, in which case it has a unique homomorphism to I. An operad
with only unary operations is just a monoid, so I+ is the operad for monoids. The
operad I+ has k! operations of arity k, corresponding to all the elements of Sk, or in
other words, the different orderings in which one can multiply k elements of a monoid.
The symmetric group Sk acts on these operations in an obvious way.

In the next example we consider an iterated slice operad. Note that in Definition
15 above, elt(O) is a small discrete category, or in other words just the set of operations
of O, since in applying Theorem 14 we are treating O as a set-valued functor on the
discrete category |prof(S)|. Thus if O is an operad with a set of types, so is O+, so
we may iterate the slice operad construction.

Example 18. I++ as the operad for planar untyped operads. By definition, I++ is
the elt(I+)-operad for untyped operads over I+. An untyped operad O admits a
homomorphism to I+ if and only if Sk acts freely on the set Ok of k-ary operations of
O. A homomorphism f :O → I+ is then determined by the sets Pk = f−1(g) ⊆ Ok,
where g is the k-ary operation of I+ corresponding to the identity element of Sk as in
Example 17. One can check that the sets Pk equipped with the composition operation
of O form a planar untyped operad P , and conversely, any planar untyped operad
comes from an untyped operad over I+ in this manner, unique up to isomorphism.
Thus I++ is the operad for planar untyped operads.

Example 19. The terminal untyped operad T as the operad for commutative monoids.
In the case S = 1, the terminal S-operad T has one operation of each arity. An al-
gebra A of T is thus a commutative monoid, with the unique k-ary operation of T
acting as the map

Ak → A

(a1, . . . , ak) 7→ a1 · · ·ak.

Example 20. T+ as the operad for untyped operads. A T+-algebra is an untyped
operad over T . Since T is terminal, a T+-algebra is just an untyped operad, so T+ is
the elt(T )-operad for operads.

More generally, for any set S there is a terminal S-operad TS, having one operation
of each profile. Alternatively, TS is the pullback of the operad T along the unique
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functor from S to the terminal category 1. The slice operad T+
S is the operad for

S-operads. In fact, elt(TS) is isomorphic to |prof(S)|, and T+
S is the |prof(S)|-operad

for S-operads constructed in Theorem 14.

At this point a comment is in order about why we base our approach on operads
rather than planar operads. To bootstrap our way up to the definition of n-categories,
we want a simple sort of algebraic theory that is powerful enough for theories of this
sort to be themselves models of a theory of this sort. Theorem 14 says that operads
have this property. Planar operads are simpler than operads, but planar operads are
not sufficiently powerful: there is, for example, no planar operad for planar untyped
operads.

More precisely, for any small category C we define a planar C-operad to be a
monoid object in the category of endomorphisms of the free 2-rig on C. Taking
C = 1 we recover the usual definition of planar untyped operad. Following Example
18, one may check that a planar C-operad is the same as C-operad O equipped with
a ‘planar structure’: a homomorphism f :O → F ∗(I+), where F ∗: sig(1) → sig(C)
comes from the unique functor F :C → 1. To give the operad for planar untyped
operads a planar structure, one would need such a morphism from I++ to F ∗(I+).
One may check that no such morphism exists.

3.3 Opetopes

Opetopes arise when we iterate the slice operad constuction:

Definition 21. Given an S-operad O, we define O0+ to be O, and define O(n+1)+ =
(On+)+ for n ≥ 1.

Definition 22. Given an S-operad O, we define an n-dimensional O-opetope to be
a type of On+. We define an n-dimensional opetope to be a type of In+, where I is
the initial untyped operad.

Recall that in Theorem 14 we constructed an operad for S-operads, and in Exam-
ple 20 we saw that this was just T+

S , the slice operad of the terminal S-operad. The
proof of Theorem 14 thus amounts to a description of the operations of T+

S in terms
of ‘TS-trees’: trees with nodes labelled by S-profiles in a consistent way. A TS-tree
is not quite enough to specify a unique operation of T+

S . Rather, for any ordering
p1, . . . , pk of the S-profiles labelling the nodes of an TS-tree, there is a unique opera-
tion of T+

S of arity (p1, . . . , pk) corresponding to that TS-tree. We can keep track of
this ordering by labelling the nodes of the TS-tree with additional distinct symbols
A,B,C, . . ., and drawing a second tree with one node having k edges coming into it
from above labelled by these symbols in the desired order. This second tree must
be planar; also, we use each symbol exactly once as a label on this second tree. An
example is shown in Figure 11. Note that we use arbitrary symbols A,B,C, . . . rather
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than the S-profiles themselves to label the second tree, because the S-profiles might
not be distinct.
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11. An operation of the operad for S-operads

It is easy to extend this notation to describe the operations of O+ for any S-operad
O. Recalling the definition of slice operads given in Section 2.5, it is clear that an
operation of O+ can be specified as in Figure 12. The first tree is an arbitrary O-tree.
This is a combed tree with nodes labelled by operations of O. We require that a node
labelled by a k-ary operation have k edges coming into it from above. Moreover, we
require that it be possible to label every edge with an element of S in such a way that
for any node labelled by an operation with profile (x1, . . . , xk, x

′), the edges coming
into that node from above are labelled by the elements x1, . . . , xk in that order, while
the edge coming out of it from below is labelled by the element x′. As before, we also
label each node of this first tree with a distinct symbol A,B,C, etc.. Also as before,
the second tree is planar and has only one node, with n edges coming into that node
from above, labelled by the same symbols A,B,C, . . . in any order. These specify the
order of the input types of the operation of O+ we are describing.
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12. An operation of O+

More generally, for any n > 1 one can specify any n-dimensional O-opetope by
means of an n-dimensional O-metatree, as in Figure 13.
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13. A 3-dimensional O-metatree

This is a list of n labelled trees, the last of which is a planar tree with only one
node, while the rest are combed trees. The first tree is an arbitrary O-tree. For
1 ≤ i < n, every node of the ith tree is labelled with a distinct symbol, and the
same symbols also label all the edges at the very top of the (i+1)st tree, each symbol
labelling exactly one edge. In addition, each edge of the (i+1)st tree must correspond
to a subtree of the ith tree in such a way that:

1. The edge at the very top of the (i + 1)st tree labelled by a given symbol cor-
responds to the subtree of the ith tree whose one and only node is labelled by
the same symbol.
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2. The edge of the (i+1)st tree coming out of a given node from below corresponds
to the subtree that is the union of the subtrees corresponding to the edges
coming into that node from above.

3. The edge at the very bottom of the (i+ 1)st tree corresponds to the whole ith
tree.

Special care must be taken when the node of the last tree has no edges coming into
it from above. This can only occur when all the previous trees are empty. This sort
of metatree describes a nullary operation of O(n−1)+ whose output type is an identity
operation 1x of O(n−2)+. To specify which identity operation, we need to label the
edge coming out of the node of the last tree from below with the operation 1x.

We conclude this section with some examples which begin to explain the role
opetopes play in n-category theory.

Example 23. Metatree notation for operations of I+. Let I be the initial untyped
operad as in Example 16. Since the only operation in I is the unary operation 1, a
metatree for a typical operation of I+ looks like that in Figure 14. As we expect from
Example 17, I+ has n! operations of arity n.
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14. An operation of I+

The term ‘opetope’ is explained by the fact that one can associate to the n-
dimensional opetopes certain labelled n-dimensional combinatorial polytopes, or gen-
eralizations thereof. In particular, the operations of I+ are the 2-dimensional opetopes,
and the k-ary operations of I+ correspond to polygons with k labelled ‘infaces’ and
one ‘outface’. For example, the 4-ary operation in Figure 14 corresponds to the
polygon shown in Figure 15, with four labelled infaces and one outface.
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15. 2-dimensional opetope represented as a polytope

The degenerate cases k = 0 and k = 1 are a bit of a nuisance because one cannot
represent ‘unigons’ and ‘bigons’ as convex geometrical polytopes. Nonetheless, one
can still draw them if one allows curved edges, and these drawings are widely used in
2-categorical commutative diagrams. In fact, the bigon is the only basic shape of 2-
cell in the traditional globular approach to n-category theory; to achieve the effect of
2-cells with other shapes one resorts to pasting theorems [12, 20, 26]. In the opetopic
approach the basic shapes of cells are the opetopes, which may have any number of
infaces but always exactly one outface. For example, we use a 2-cell shaped like the
opetope in Figure 15 to represent an operation having the 1-cells A, B, C, and D as
inputs and the outface 1-cell as its output. In particular, we use a ‘universal’ 2-cell
of this sort — as defined below in Section 4.1 — to represent a process of composing
the 1-cells A, B, C, and D. The outface is then called a ‘composite’ of these 1-cells.

Example 24. Metatree notation for operations of I++. A metatree for a typical
operation of I++ is shown in Figure 16.
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16. An operation of I++

The operations of I++ are the 3-dimensional opetopes, and we can associate to them
certain 3-dimensional combinatorial polytopes or generalizations thereof. For exam-
ple, the operation of Figure 16 corresponds to the polytope shown in Figure 17, having
two triangular ‘infaces’ labelled D and E on top, and having the quadrilateral on the
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bottom as ‘outface’. Note that while this is a combinatorial polytope, it cannot be
realized as a convex geometrical polytope. As in the 2-dimensional case, there are also
‘degenerate’ 3-dimensional opetopes that cannot be realized as combinatorial poly-
topes in the strict sense. Also note that Figure 17 does not record all the information
needed to uniquely specify an operation of I++, because it does not keep track of
the permutations in the metatree of Figure 16. Because of these problems we find
it better to describe opetopes using metatrees. Nonetheless, the polytopes may help
the reader relate our approach to other work on n-categories.

In the opetopic approach to n-categories, we use a universal 3-cell shaped like that
in Figure 17 to represent the process of composing the 2-cells D and E in the indicated
manner to obtain a 2-cell shaped like the outface. More generally, an n-dimensional
opetope always has some number of (n− 1)-dimensional opetopes as infaces, pasted
together in a manner described by a tree, together with a single (n− 1)-dimensional
opetope as outface. A universal n-cell of this shape then describes a process of
composing (n − 1)-cells shaped like the infaces to obtain an (n − 1)-cell shaped like
the outface.
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17. A 3-dimensional opetope represented as a polytope

3.4 Algebras of slice operads

The following examples lead up to a concrete description, for any S-operad O, of the
algebras of O+.

Example 25. The free operad on one nullary operation, K, as the operad for pointed
sets. Let K be the untyped operad with one nullary operation k, one unary operation
1 (the identity operation), and no other operations. A K-algebra is simply a pointed
set.

Example 26. K+ as the operad for monoid actions. Since K has two operations,
K+ has two types, k and 1. The operations of K+ include the three operations shown
in metatree notation in Figure 18: a nullary operation with output type 1, a binary
operation with profile (1, 1, 1), and a binary operation with profile (k, 1, k). All the
operations of K+ are generated from these three by composition. A K+-algebra A
thus consists of a set A(1) and a set A(k) together with a special element i ∈ A(1),
a map m:A(1) × A(1) → A(1) and a map a:A(1) × A(k) → A(k) satisfying certain
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laws. One may check that these laws say precisely that A(1) is a monoid with a left
action on A(k). t

t
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18. Three operations of K+

Example 27. The free operad on one unary operation, F1, as the operad for func-
tions. Let F1 be the operad with two types, say x and x′, and three operations: a
unary operation f with profile (x, x′), and the two identity operations, which we call
1x and 1x′. An F1-algebra is simply a function.

Example 28. F+
1 as the operad for monoid bi-actions. Since F1 has three operations,

F+
1 has three types: f , 1x, and 1x′. Following Example 26, one may check that an
F+

1 -algebra A consists of two monoids A(1x) and A(1x′) together with a set A(f)
equipped with an action of A(1x)

op × A(1x′).

Example 29. The free operad on one k-ary operation, Fk, as the operad for k-
ary multi-functions. Generalizing from the previous examples, we let Fk be the op-
erad with k + 1 types, say x1, . . . , xk, x

′, and one k-ary operation f with profile
(x1, . . . , xk, x

′), together with the operations required by the definition of an operad:
the k+ 1 identity operations, which we call 1x1, . . . , 1xk , 1x′, and the k-ary operations
obtained from f by the action of the permutation group Sk. An Fk-algebra A is a
collection of sets A1, . . . , Ak, A

′ and a function from A1× · · ·×Ak to A′. We call this
a k-ary multi-function.

Example 30. F+
k as the operad for (k, 1) monoid multi-actions. An F+

k -algebra
consists of k + 1 monoids A1, . . . , Ak, A

′ and a set equipped with an action of

Aop
1 × · · · × Aop

k × A′.
We call this a (k, 1) multi-action of the monoids in question, since it can be thought
of as k right actions and one left action, all of which commute.
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Since every S-operad O may be presented as the quotient of a free operad on some
set of operations, Example 30 suggests the following general picture of O+-algebras.
Given an S-operad O, let us say that an operation f of On+ is degenerate if n = 0
and f is an identity operation, or if n > 0 and f is either an identity operation, a
nullary operation, or an operation with one or more degenerate operations as input
types. For example, all the operations of In+ are degenerate in this sense.

Theorem 31. For any S-operad O, an O+-algebra A consists of:

1. for each type x of O, a monoid A(x)

2. for each nondegenerate operation g of O with profile (x1, . . . , xk, x
′), a set A(g)

equipped with a (k, 1) multi-action of the monoids A(x1), . . . , A(xk), A(x′)

3. for each nondegenerate reduction law of O — that is, for each nondegenerate
operation G of O+ with profile (g1, . . . , gk, g

′) — a morphism

A(G):G(A(g1), . . . , A(gk))→ A(g′)

of multi-actions

4. for each nondegenerate way of combining reduction laws of O to obtain another
reduction law — that is, for each nondegenerate operation G of O++ with profile
(G1, . . . , Gk, G

′) — an equation

G(A(G1), . . . , A(Gk)) = A(G′).

Proof - First, points 3 and 4 require a bit of clarification. An operation G of
O+ with profile (g1, . . . , gk, g

′) corresponds to an O-metatree, and this metatree gives
a recipe for tensoring the multi-actions on A(g1), . . . , A(gk) in a tree-like pattern,
obtaining a set we denote by G(A(g1), . . . , A(gk)), equipped with a multi-action of
the same monoids that act on A(g′). Similarly, an operation G of O++ with profile
(G1, . . . , Gk, G

′) corresponds to a metatree that specifies how to compose the mor-
phisms A(G1), . . . , A(Gk) in a tree-like pattern, obtaining a morphism with the same
source and target as A(G′), which we denote by G(A(G1), . . . , A(Gk)).

Next, suppose A is an O+-algebra. We have seen that A consists of:

(a) for each type g of O+, a set A(g)

(b) for each operation G of O+ with profile (g1, . . . , gk, g
′), a function

A(G):A(g1)× . . .× A(gk)→ A(g′)

(c) for each reduction law of O+ — that is, for each operation G of O++ with profile
(G1, . . . , Gk, G

′) — an equation

G(A(G1), . . . , A(Gk)) = A(G′)
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where again we use metatree notation to compose the functions A(G1), . . . , A(Gn) in
the tree-like pattern specified by the operation G of O++. In what follows we show
how (a)-(c) give 1-4; by examining our argument one can check that the converse
holds as well.

Recall first that the types of O+ are the operations of O. These are either identity
operations or nondegenerate operations. Item (a) applied to any identity operation
1x of O gives a set which we denote as A(x). Item (a) applied to any nondegenerate
operation g of O gives a set A(g).

Recall next that the operations of O+ are the reduction laws of O. Any operation
of O+ is either an identity operation, a nullary operation, an operation with an
identity operation of O as an input type, or a nondegenerate operation. We consider
these cases in turn.

Item (b) applied to any identity operation 1g of O+ gives a function from A(g) to
itself. However, (c) applied to the nullary operation of O++ with 1g as output type
implies that this function is the identity.

There is one nullary operation of O+ with output type 1x for each type x of O.
Item (b) applied to this operation equips the set A(x) with a distinguished element.

There are many operations of O+ having an identity operation of O as an input
type, but they are all composites of nondegenerate operations with operations of
the following three kinds, so by (c) it suffices to consider only these three kinds.
First, there are identity operations 11x of O, which we have already treated. Second,
there is the binary operation of O+ with profile (1x, 1x, 1x). By (b) it follows that
A(x) is equipped with a binary product, and (c) then implies that A(x) is a monoid
with this product and its distinguished element. Third, there are the operations of
composing an operation g of O with profile (x1, . . . , xk, x

′) with the identity operations
1x1, . . . , 1xk , 1x′. By (b) and (c) it follows that A(g) is equipped with a (k, 1) multi-
action of the monoids A(x1), . . . , A(xk), A(x′).

Item (b) applied to any nondegenerate operationG ofO+ with profile (g1, . . . , gk, g
′)

gives a function
A(G):A(g1)× . . .× A(gk)→ A(g′)

and (c) implies that this function defines a morphism of multi-actions

A(G):G(A(g1), . . . , A(gk))→ A(g′).

Recall finally that the operations of O++, or reduction laws of O+, are ways of
combining reduction laws of O to give other reduction laws of O. Applying (c) to an
operation G of O++ with profile (G1, . . . , Gk, G

′) we obtain an equation

G(A(G1), . . . , A(Gk)) = A(G′).

One can check that the equations coming from nondegenerate operations G imply
those coming from degenerate operations. ut

37



3.5 Opetopic sets

In topology it is common to take simplices as the basic shapes for cells. There is
a category with simplices as objects and face and degeneracy maps as morphisms.
Presheaves on this category — i.e., set-valued functors on the opposite category —
are called ‘simplicial sets’. In our approach to n-category theory we take opetopes as
the basic shapes for cells. Opetopes form a category, and presheaves on this category
are called ‘opetopic sets’.

Here, however, we give a recursive definition of opetopic sets that does not rely
on the category of opetopes. For this it is convenient to introduce some notation.

Definition 32. Given a set S, a set over S is a set Y equipped with a function to
S. Given an S-operad O and a set Y over S, we define OY to be the pullback operad
F ∗O, where F is the function from Y to S.

We then define opetopic sets as follows:

Definition 33. Given an S-operad O, an O-opetopic set X is defined recursively as
a set X(0) over S together with a (OX(0))

+-opetopic set.

If we work out the implications of this definition, we see that if O is an S-operad,
an O-opetopic set X consists of an set X(n) over S(n) for each integer n ≥ 0, where

S(0) = S, S(n + 1) = elt(O(n)X(n)),

and O(n) is the S(n)-operad given by

O(0) = O, O(n+ 1) = (O(n)X(n))
+.

Note also that
S(n) = type(O(n)).

Definition 34. Let O be an S-operad and X an O-opetopic set. We define an
n-dimensional cell (or n-cell) of X to be an element of X(n). We define an n-
dimensional frame in X to be an element of S(n). For n ≥ 1, we define an n-
dimensional opening in X to be an operation of O(n− 1).

Since X(n) is a set over S(n), there is a map from n-dimensional cells to n-
dimensional frames, and for any cell of X we may speak of the frame of that cell.
Also, for n ≥ 1, the tautologous morphism from the pullback of an operad to the
operad itself gives a map from operations of O(n− 1)X(n−1), which are n-dimensional
frames, to operations of O(n− 1), which are n-dimensional openings. Thus for n ≥ 1
we may speak of any frame s of X as being in some opening o, and given any cell x
with frame s, we also say that x is in o.
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Let o be an n-dimensional opening in X. We define an o-cell to be a cell x in o.
The frame of x is an operation of O(n)X(n), and has profile (a1, . . . , ak, b) for some
(n− 1)-dimensional cells a1, . . . , ak, b. It is convenient to use the following schematic
picture of x:

(a1, . . . , ak) b-x

We call a1, . . . , ak the infaces of x, and b the outface of x.
Similarly, we define an o-frame to be a frame in o, and depict an o-frame with

profile (a1, . . . , ak, b) as follows:

(a1, . . . , ak) b-?

An ‘o-niche’ is like an o-frame with the outface missing. Suppose that the opening
o has profile (s1, . . . , sk, t). We define an o-niche to be a tuple (a1, . . . , ak) of (n− 1)-
dimensional cells with ai having si as its frame. We depict this o-niche as follows:

(a1, . . . , ak) ?-?

The concept of niche serves as our substitute for the concept of a horn in a simplicial
set.

Similarly, a ‘punctured o-niche’ is like an o-frame with the outface and one inface
missing. We define a punctured o-niche to be a tuple (a1, . . . , aj−1, aj+1, . . . , ak) of
cells with ai having si as its frame, and depict this as:

(a1, . . . , aj−1, ?, aj+1, . . . , ak) ?-?

In the case where one of these configurations (o-frame, o-niche, or punctured
o-niche) can be extended to an actual o-cell, the o-cell is called an occupant of the
configuration. Occupants of the same frame (resp. niche) are called frame-competitors
(resp. niche-competitors).

To make O-opetopic sets into a category we need to define morphisms between
them. Roughly speaking, a morphism φ:X → X ′ between O-opetopic sets is a
function sending each cell x ∈ X(n) to a cell φ(x) ∈ X ′(n) of the same shape, such
that φ of any face of x is the corresponding face of φ(x). To make this precise requires
a bit of technical work.

We begin with some remarks on the functoriality of the slice operad construction.
Suppose O is an S-operad, O′ is an S ′-operad, and F :S → S ′ is a function. By
Proposition 11 we obtain a lax monoidal functor F ∗: sig(S ′)→ sig(S). As in Section
2.2 this allows us to speak of morphisms from S ′-operads to S-operads, but we can
also define morphisms going the other way. Namely, we define an operad morphism
f :O→ O′ riding F to be an operad homomorphism f :O→ F ∗(O′).

Given such an operad morphism there is an obvious function from |elt(O)| to
|elt(O′)|, which we call F+. We also obtain a operad morphism f+:O+ → O′+ riding
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this function. To see this it is easiest to use metatree notation: an operation of O+

is given by a 1-dimensional O-metatree, and using f :O → O′ one can convert this to
a 1-dimensional O′-metatree, which specifies an operation of O′ and thus of F+∗(O′).
One can then check this defines an operad morphism f+:O+ → O′+.

Now suppose that Y is a set over S and Y ′ is a set over S ′. We define a function
φ:Y → Y ′ over F :S → S ′ to be a function making the following diagram commute:

Y Y ′

S S ′

-φ

? ?
-F

Given an operad morphism f :O→ O′ riding F , there is an obvious operad morphism
from OY to O′Y ′ riding φ, which we call fφ.

Finally, suppose that X is an O-opetopic set and X ′ is an O′-opetopic set. Suppose
that f :O→ O′ is an operad morphism riding F :S → S ′. We define an opetopic map
φ:X → X ′ riding f to consist of, for each n ≥ 0, a function

φn:X(n)→ X ′(n)

over the function
Fn:S(n)→ S ′(n)

given as follows. We set F0 = F , and define Fn for higher n recursively, along with a
sequence of operad morphisms

fn:O(n)→ O′(n),

starting with f0 = f . To do so, we let

fn+1 = ((fn)φn)+

and note that this operad morphism gives a map from S(n+1) to S ′(n+1), which we
take as Fn+1. Unrolling this recursive construction one sees that, fixing f and F , the
morphism φ:X → X ′ is completely determined by the functions φn sending n-cells of
X to n-cells of X ′.

Definition 35. Given an S-operad O, we define the category of O-opetopic sets to
be that with O-opetopic sets as objects and opetopic morphisms riding the identity
function as morphisms.

In fact, this category is equivalent to the category of presheaves on a certain category
of O-opetopes. To save space we shall not prove this here, but only seek to make it
plausible by showing that every n-cell of an O-opetopic set X has some n-dimensional
opetope as its ‘shape’. This is trivial in the case n = 0, so we assume n ≥ 1.
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Recall that every n-dimensional cell of X is in some opening, which is an operation
ofO(n−1). On the other hand, each n-dimensional opetope is an operation ofO(n−1)+.
Thus to associate an n-dimensional opetope to each n-cell of X, we construct, for all
n ≥ 0, an operad morphism

pn:O(n)→ On+.

Since O(0) = O, we take pn to be the identity when n = 0. Given pn, to define pn+1

we first form the composite

O(n)X(n) O(n) On+- -pn

where the first arrow is the tautologous morphism from a pullback of an operad to
the operad itself. Taking the ‘+’ of this composite, we then obtain pn+1.

4 n-Categories

In Section 4.1 we define ‘n-coherent O-algebras’. The basic idea is that for any operad
O, an n-coherent O-algebra is an n times categorified analog of an O-algebra. For
example, just an I-algebra is a set, an n-coherent I-algebra is an n-category. Other
examples are also interesting: just as an I+-algebra is a monoid, an n-coherent I+-
algebra is a ‘monoidal n-category’, and just as T -operad is a commutative monoid, an
n-coherent T -algebra is a ‘stable n-category’. Stable n-categories play an important
role in the program sketched in HDA0, and also in the foundations of n-category
theory itself, since the (n + 1)-category of all n-categories will be a stable (n + 1)-
category.

In Section 4.2 we define ‘k-ary virtual n-functors’ to be n-coherent Fk-algebras,
where Fk is the free operad on one k-ary operation. This concept allows us to rein-
terpret and clarify some of the previous material. For example, in Theorem 53 we
use it to give a recursive characterization of n-coherent O-algebras that is often more
useful than the original definition. We also use it in Propositions 54 and 55 to char-
acterize the concepts of ‘balanced’ punctured niche and ‘universal’ niche-occupant,
introduced in the previous section. Finally, in Section 4.3 we give a rather general
precise statement of the ‘microcosm principle’.

4.1 n-Coherent O-algebras

In what follows we fix a nonnegative integer n and define the notion of ‘n-coherent
O-algebra’, which will be an O-opetopic set with certain properties. To do so, we
need the notions of ‘balanced punctured niche’ and ‘universal niche-occupant’, which
we define in a recursively interlocking way.

As the definitions are a bit complicated, let us first explain them in a heuristic
way. We shall see in Section 4.2 that in an n-coherent O-algebra, any m-dimensional
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punctured niche

(a1, . . . , aj−1, ?, aj+1, . . . , ak) ?-?

determines a ‘virtual (n−m)-functor’. In Proposition 54 we show that the punctured
niche is balanced if and only if this virtual (n − m)-functor is an ‘equivalence’. On
the other hand, for a niche-occupant

(c1, . . . , ck) d-u

to be ‘universal’ means roughly that any other occupant of the same niche factors
through the given one — at least ‘up to equivalence’. We make this precise in Propo-
sition 55.

The definitions are as follows:

Definition 36. For an m-dimensional opening o, a punctured o-niche:

(a1, . . . , aj−1, ?, aj+1, . . . , ak) ?-?

is said to be balanced if and only if m > n+ 1 or:

1. any extension

(a1, . . . , aj−1, ?, aj+1, . . . , ak) b-?

extends further to:

(a1, . . . , aj−1, aj, aj+1, . . . , ak) b-u

with u universal in its niche, and

2. for any occupant

(a1, . . . , aj−1, aj, aj+1, . . . , ak) b-u

universal in its niche, and frame-competitor a′j of aj, the (m + 1)-dimensional
punctured niches:

(a′j
?−→aj, (a1, . . . , aj−1, aj, aj+1, . . . , ak)

u−→b)

(a1, . . . , aj−1, a
′
j, aj+1, . . . , ak)

?−→b
?

?
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and
((a1, . . . , aj−1, aj, aj+1, . . . , ak)

u−→b, a′j
?−→aj)

(a1, . . . , aj−1, a
′
j, aj+1, . . . , ak)

?−→b
?

?

are balanced.

Definition 37. An m-dimensional niche-occupant:

(c1, . . . , ck) d-u

is said to be universal if and only if m > n and u is its own unique niche-competitor,
or m ≤ n and for any frame-competitor d′ of d, the (m + 1)-dimensional punctured
niches:

((c1, . . . , ck)
u−→d, d ?−→d′)

(c1, . . . , ck)
?−→d′

?

?

and

(d
?−→d′, (c1, . . . , ck)

u−→d)

(c1, . . . , ck)
?−→d′

?

?

are balanced.

Definition 38. Given a universal o-cell:

(a1, . . . , ak) b-u

we call b a composite of (a1, . . . , ak), or o-composite if we need to be more specific.

Definition 39. An n-coherent O-algebra is an O-opetopic set such that 1) every
niche has a universal occupant, and 2) composites of universal cells are universal.
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The dependence on n in this definition is implicit in how the definition of ‘universal’
depends on n. Note that in an n-coherent O-algebra, for m > n every m-dimensional
niche has a unique occupant, which is automatically universal, and for m > n+1 every
m-dimensional punctured niche is balanced. One can also check that for m > n + 1
every m-dimensional frame has a unique occupant. This is analogous to how a Kan
complex represents an n-groupoid if, for m > n + 1, any configuration in which all
the faces of m-simplex are filled in by (m − 1)-dimensional cells in a consistent way
can be uniquely extended to a m-dimensional cell.

A 0-coherent O-algebra is essentially the same thing as an O-algebra. Given a
0-coherent O-algebra A, the types of O are the 0-dimensional frames of A, so for any
type s there is a set Ã(s) of 0-cells of A having s as frame. For any operation f of O
with profile (s1, . . . , sk, s

′), and any 0-cells ai ∈ Ã(si), the 1-dimensional niche

(a1, . . . , ak) ?-?

has a unique occupant

(a1, . . . , ak) a′.-u

Thus one can check that there is an O-algebra Ã with the sets Ã(s) given as above,
and with the operation f acting by

f(a1, . . . , ak) = a′.

In fact, one can check that this construction gives an equivalence between the category
of O-algebras and the category of 0-coherent O-algebras in which morphisms are
defined as follows:

Definition 40. Let O be an S-operad and let A,A′ be n-coherent O-algebras. Then
a morphism of O-opetopic sets f :A→ A′ is called an n-coherent O-algebra morphism
if it preserves universality of niche-occupants.

We study n-coherent O-algebras for higher n in the following two sections. In
Theorem 53 we recursively describe n-coherent O-algebras in terms of (n−1)-coherent
O-algebras. In Theorem 58 we use this to give a concrete description of 1-coherent
O-algebras.

The simplest sort of operad algebra is an I-algebra, which by Example 16 is just
a set. Similarly, the simplest sort of n-coherent O-algebra is an n-category:

Definition 41. An n-category is an n-coherent I-algebra. An n-functor is a mor-
phism of n-coherent I-algebras.

44



Example 42. 1-categories as categories. A 1-coherent I-algebra C has a set C(0)
of 0-cells, and given 0-dimensional cells c and c′ we may denote the set of occupants
of the frame

c c′-?

as hom(c, c′). Given a 0-cell c the 2-dimensional niche

c
?−→c
?

?

has a unique occupant

c
1c−→c
?

u

so we have 1c ∈ hom(c, c). Similarly, given 0-cells c, c′, c′′, the 2-dimensional niche

(c
f−→c′, c′ g−→c′′)

c
?−→c′′
?

?

has a unique occupant

c
f−→c′, c′ g−→c′′

c
fg−→c′′
?

u

so given f ∈ hom(c, c′), g ∈ hom(c′, c′′) we get fg ∈ hom(c, c′′). By examining the
3-dimensional cells of C one can check that these operations give a category C̃ with
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C(0) as its set of objects and the sets hom(c, c′) as hom-sets. One can also check
that this construction gives an equivalence between the category with 1-categories
as objects and 1-functors as morphisms, and the category with small categories as
objects and functors as morphisms.

In Examples 17 and 19 we saw that an I+-algebra is a monoid, and a T -algebra
is a commutative monoid. By analogy we make the following definitions:

Definition 43. A monoidal n-category is an n-coherent I+-algebra.

Definition 44. A stable n-category is an n-coherent T -algebra.

Since there are unique operad homomorphisms from I to I+ and from I+ to T ,
the following result lets us extract an n-category from any monoidal n-category, and
a monoidal n-category from any stable n-category.

Proposition 45. Suppose O is an S-operad, O′ is an S ′-operad, F :S → S ′ is a
function, and f :O → O′ is an operad morphism riding F . Suppose X ′ is an O′-
opetopic set and X = f ∗X ′ is the pullback O-opetopic set. Then a punctured niche in
X is balanced if and only if the corresponding punctured niche in X ′ is balanced, and
a niche-occupant in X is universal if and only the corresponding niche-occupant in X ′

is universal. Thus X is an n-coherent O-algebra if X ′ is an n-coherent O′-algebra.

Proof - The proof is a straightforward verification once we have clarified the notion
of ‘pullback’ used here. Suppose that O is an S-operad and O′ is an S ′-operad. Given
an operad morphism f :O → O′ riding a function F :S → S ′, the pullback X = f ∗X ′

of an O′-opetopic set X ′, which is an O-opetopic set. The set X(0) over S is defined
to be the pullback of the set X ′(0) over S, and the underlying (OX(0))

+-opetopic set
of X is defined (recursively) to be the pullback of the underlying (OX′(0))

+-opetopic
set of X ′. ut

In a future paper we plan to discuss the stable (n + 1)-category of n-categories,
nCat. This is needed for most of the interesting applications of n-category theory.
The 1-cells in nCat are ‘k-ary virtual functors’. We study a version of these in the
following section, defined in a way that is convenient now but not necessarily best in
the long run.

4.2 k-ary virtual n-functors

As we saw in Example 29, the free operad on one k-ary operation, Fk, is the operad
for k-ary multi-functions. By analogy we make the following definition:

Definition 46. A k-ary virtual n-functor is an n-coherent Fk-algebra. We omit the
term ‘k-ary’ if k = 1, and the reference to n if n = 1.

46



Suppose that A is k-ary virtual n-functor. Recall that Fk has one operation f of
type (x1, . . . , xk, x

′), together with k+1 identity operations 1x1, . . . , 1xk, and 1x′. Thus
there are k + 1 operad morphisms from I to Fk, and by Proposition 45, the pullback
of A along any one of these is an n-category. Calling these n-categories C1, . . . , Ck
and C ′, respectively, we say that A is a k-ary virtual n-functor from C1× . . .×Ck to
C ′, and write

A:C1 × . . .× Ck ⇀ C ′.

Example 47. Virtual functors as saturated anafunctors. A virtual functor is essen-
tially the same as what Makkai [23] calls a ‘saturated anafunctor’, which may be
viewed as a special sort of distributor. A distributor A from the category C to the
category D is a functor A:Cop×D → Set, and A is a saturated anafunctor if for every
object c ∈ C, the functor A(c, ·) is naturally isomorphic to hom(d, ·) for some object
d ∈ D. Thus, in keeping with the philosophy of this paper, a saturated anafunctor
does not specify a unique object d ∈ D for each object c ∈ C. Instead, it specifies a
universal property, which automatically determines an object d ∈ D up to a specified
isomorphism.

Suppose that A:C ⇀ D is a virtual functor. Then we obtain 1-categories C and
D, which by Example 42 we may think of as categories. Given objects c ∈ C, d ∈ D,
we denote the set of occupants of the f -frame

c d-?

by Ã(c, d). Since 1-cells in a 1-coherent O-algebra have unique composites, any mor-
phism f : c→ c′ in C gives a function

Ã(c′, d)→ Ã(c, d)

for each d ∈ D, and any morphism f : d→ d′ gives a function

Ã(c, d)→ Ã(c, d′)

for each c ∈ C. Thus Ã can be thought of as a distributor from C to D. Because
every f -niche

c ?-?

has a universal occupant, Ã is a saturated anafunctor. Conversely, every saturated
anafunctor can be thought of as a virtual functor.

Example 48. 0-ary virtual functors as representable presheaves. Generalizing the
previous example, one can show that k-ary virtual functors are essentially the same
as ‘k-ary saturated anafunctors’. The case k = 0 is particularly interesting. A 0-
ary virtual functor with codomain C is just a functor P :C → Set that is naturally
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isomorphic to hom(c, ·) for some c ∈ C. This is also called a ‘representable presheaf’
on Cop.

Recall from Example 25 that we gave the operad F0 another name, K. This stands
for ‘constant’, since a K-algebra is just a pointed set. Here we see that a 1-coherent
K-algebra, or in other words a representable presheaf, is a categorified version of a
pointed set: it is a category equipped, not quite with a distinguished object, but with
a universal property that determines an object up to natural isomorphism.

Generalizing, we call an n-coherent K-algebra a representable n-prestack. It fol-
lows from Theorem 53 that a representable n-prestack P may be regarded as a special
sort of n-prestack, which we define as an (n − 1)-coherent (KP (0))

+-algebra. We ex-
pect that prestacks are to the ‘stacks’ sought by Grothendieck [19] as presheaves are
to sheaves.

As noted earlier, the concept of balanced punctured niche is closely related to the
concept of ‘equivalence’. We can now begin to make this more precise:

Definition 49. A virtual n-functor A:C ⇀ C ′ is an n-equivalence, or simply an
equivalence, if the punctured f -niche

? ?-?

is balanced.

A functor is an equivalence if and only if it is essentially surjective and fully
faithful. The same is true for virtual n-functors. Note the similarity of the following
two definitions to the two clauses in the definition of ‘balanced’:

Definition 50. A virtual n-functor A:C ⇀ C ′ is essentially surjective if any exten-
sion

? c′-?

of the punctured f -niche extends further to

c c′-u

with u universal in its niche.

Definition 51. A virtual n-functor A:C ⇀ C ′ is fully faithful if for any universal
occupant

c c′-u
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of the punctured f -niche, and any niche-competitor b of c, the punctured niches

(b
?−→c, c u−→c′)

b
?−→c′
?

?

and

(c
u−→c′, b ?−→c)

b
?−→c′
?

?

are balanced.

Proposition 52. A virtual n-functor is an equivalence if and only if it is essentially
surjective and fully faithful.

Proof - A straightforward consequence of the definitions. ut

To further explain the relation between balanced punctured niches and equiva-
lences, we need the following characterization of n-coherent O-algebras. Recall that
if O is an S-operad, an O-opetopic set A consists of a set A(0) over S together with
an (OA(0))

+-opetopic set.

Theorem 53. Suppose that O is an S-operad. For any n ≥ 1, an O-opetopic set A
is an n-coherent O-algebra if and only if:

1. The underlying (OA(0))
+-opetopic set of A is an (n − 1)-coherent (OA(0))

+-
algebra.

2. For any k-ary operation of O, the pullback of A along the resulting operad
morphism from Fk to O is a k-ary virtual n-functor.

3. Composites of universal 1-cells in A are universal.

Proof - We denote the underlying (OA(0))
+-opetopic set of A by A−. Suppose

that A is an n-coherent O-algebra: in other words, every niche of A has a universal
occupant, and composites of universal niche-occupants are universal. One can check
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using the formalism developed in Section 3.5 that for m ≥ 1, the m-dimensional
frames (resp. cells) of A correspond to the (m− 1)-dimensional frame (resp. cells) of
A−. The same is also true for openings, niches and punctured niches when m ≥ 2.
Also, the definitions of ‘balanced’ and ‘universal’ are set up so that an m-dimensional
punctured niche of A is balanced if and only if the corresponding punctured niche of
A− is balanced, and an m-dimensional niche-occupant of A is universal if and only if
the corresponding niche-occupant of A− is universal. Thus 1 holds. Proposition 45
implies 2, and 3 is immediate.

Conversely, suppose that 1, 2, and 3 hold. By 1, for m ≥ 2 every m-dimensional
niche of A has a universal occupant, and composites of m-dimensional universal niche-
occupants are universal. The former also holds for m = 1 by 2, and the latter holds
for m = 1 by 3. ut

Let O be an S-operad and let A be an n-coherent O-algebra. Given m ≤ n, we
now describe how:

1. Every m-dimensional frame in A determines an (n−m)-category.

2. For m ≥ 1, every m-dimensional opening in A determines a k-ary virtual
(n−m+ 1)-functor.

3. For m ≥ 1, every m-dimensional punctured niche in A determines a virtual
(n−m+ 1)-functor.

4. For m ≥ 1, every m-dimensional niche in A determines a representable
(n−m+ 1)-prestack.

For example, when A is an n-category there is a unique 1-dimensional frame for any
pair of 0-cells a, b in A, and we denote the corresponding (n−1)-category by hom(a, b).

As in Section 3.5, let

S(0) = S, S(i+ 1) = elt(O(i)A(i)),

where O(i) is the S(i)-operad given by

O(0) = O, O(i+ 1) = (O(i)A(i))
+.

Also let A0− = A, and let A(i+1)− be the underlying O(i + 1)-opetopic set of the
O(i)-opetopic set Ai−. By Theorem 53, Ai− is an (n − i)-coherent O(i)-algebra if
i ≤ n. By remarks in the proof of the theorem, the m-dimensional cells (resp. frames)
of A correspond to the (m− i)-dimensional cells (resp. frames) of Ai− if i ≤ m, and
the same is true for openings, niches, and punctured niches if i < m.

Using this ‘level-shifting’ trick, to deal with 1-4 above it suffices to explain how:

1. Every 0-dimensional frame in A determines an n-category.
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2. Every 1-dimensional opening in A determines a k-ary virtual n-functor.

3. Every 1-dimensional punctured niche in A determines a virtual n-functor.

4. Every 1-dimensional niche in A determines a representable n-prestack.

For 1, note that a 0-dimensional frame in A is just an element s of the set S
of types of O. This determines a unique operad morphism from I to O riding the
function F : 1→ S that sends the one element of 1 to s. The pullback of A under this
morphism is the desired n-category.

For 2, recall that a 1-dimensional opening in A is simply an operation of O. As
noted in Theorem 53, any k-ary operation o of O determines an operad morphism
from Fk to O, and the pullback of A under this morphism is a k-ary virtual n-functor,
say

G:C1 × · · · × Ck ⇀ C ′

For 3 and 4, note that if we fix an operation o of O, an o-niche then consists
of a choice of one 0-cell from each of the n-categories Ci, while a punctured o-niche
consists of a choice of 0-cells from all but one of the Ci. Thus it suffices to explain
how to extract a (k − `)-ary virtual n-functor from G by choosing 0-cells in ` of the
n-categories Ci. By induction it suffices to consider the case ` = 1, so supposing
without loss of generality that we have chosen a 0-cell ck ∈ Ck, let us construct a
(k − 1)-ary virtual n-functor

H:C1 × · · · × Ck−1 ⇀ C ′.

By Theorem 53, G gives an (n− 1)-coherent ((Fk)G(0))
+-algebra G−. Concretely,

G(0) is the (k + 1)-tuple of disjoint sets (C1(0), . . . , Ck(0), C ′(0)), where each Ci(0)
is the set of 0-cells of the corresponding n-category Ci, and C ′(0) is the set of 0-
cells of the n-category C ′. To construct H, we first construct an (n − 1)-coherent
((Fk−1)H(0))

+-algebraH−, where H(0) is the k-tuple of disjoint sets (C1(0), . . . , Ck−1(0),
C ′(0)). Note that there is a unique operad morphism

f : (Fk−1)H(0) → (Fk)G(0)

sending each operation with profile (c1, . . . , ck−1, c
′) to the unique operation with

profile (c1, . . . , ck, c
′). This gives an operad morphism

f+: ((Fk−1)H(0))
+ → ((Fk)G(0))

+,

and we define
H− = (f+)∗G−.

Together with H(0), H− defines an Fk−1-opetopic set H. To see that H is an n-
coherent Fk−1-algebra, it suffices to check that 1-dimensional niches have universal
occupants, and that composites of universal 1-cells are universal. These follow from
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the corresponding properties for G. Thus H is a (k − 1)-ary virtual n-functor as
desired.

Now we can finish clarifying the relationship between balanced punctured niches
and equivalences:

Proposition 54. Suppose that A is an n-coherent O-algebra. Then an m-dimensional
punctured niche in A is balanced if and only if the (n − m)-functor it defines is an
(n−m)-equivalence.

Proof - Suppose that an m-dimensional punctured o-niche p in A defines the
(n−m)-functor G. Then one can check that p is balanced if and only if the punctured
f -niche of G is balanced, that is, if and only if G is an (n−m)-equivalence. ut

We conclude by explaining the sense in which a given niche-occupant is universal
if and only if any of its niche-competitors factors through it, up to equivalence. Recall
that associated to any m-dimensional o-frame

(a1, . . . , ak) b ,-?

in A there is an (n − m)-category. We denote this by homo(a1, . . . , ak, b), though
when o is an identity operation, we may follow more traditional practice and omit it.

Suppose that in above situation b′ is a frame-competitor of b. Then there is an
(n −m)-category hom(b, b′). Given any 0-cell x ∈ homo(a1, . . . , ak, b), there are two
virtual (n−m)-functors

x∗1, x
∗
2: hom(b, b′)→ homo(a1, . . . , ak, b

′)

either one of which we may think of as ‘composition with x’. The first is the virtual
(n−m)-functor determined by the (m + 1)-dimensional punctured niche in A,

((a1, . . . , ak)
u−→b, b ?−→b′)

(a1, . . . , ak)
?−→b′

?

?

The second is the one determined by the punctured niche

(b
?−→b′, (a1, . . . , ak)

u−→b)

(a1, . . . , ak)
?−→b′

?

?
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We now show that x is universal in its niche if and only if both these are equivalences
— i.e., heuristically speaking, all the niche-competitors of x factor through x, up to
equivalence.

Proposition 55. Suppose that A is an n-coherent O-algebra. Let

(a1, . . . , ak) b-x

be an occupant of an m-dimensional o-niche

(a1, . . . , ak) ?-?

Then x is universal if and only if for any frame-competitor b′ of b, the virtual (n−m)-
functors x∗1 and x∗2 are (n−m)-equivalences.

Proof - By definition x is universal if and only the punctured niches corresponding
to x∗1 and x∗2 above are balanced, or equivalently, by Proposition 54, if x∗1 and x∗2 are
equivalences. ut

It is a bit annoying to have two virtual (n −m)-functors with an equal claim to
being ‘composition with x’, but it is not very surprising in the present context. In
fact we conjecture that x∗1 is an equivalence if and only if x∗2 is.

4.3 The microcosm principle

In Section 2.2 we gave a rough statement of the microcosm principle as follows:
certain algebraic structures can be defined in any category equipped with a categorified
version of the same structure. To make this more precise one needs to work with
some particular class of algebraic structures. Since our approach to n-categories is
especially suited to studying operad algebras, we work with these.

Recall that for any S-operad O, a 1-coherent O-algebra can be thought of as a cat-
egorified analog of an O-algebra. Here we show the following version of the microcosm
principle: O-algebra objects can be defined in any 1-coherent O-algebra. For example,
monoid objects can be defined in any monoidal 1-category, and commutative monoid
objects can be defined in any stable 1-category. Another example is the fact that we
may define morphisms ‘riding’ virtual functors. These are simply F1-algebra objects
in 1-coherent F1-algebras.

More generally, we show that n-coherent O-algebra objects can be defined in any
(n+1)-coherent O-algebra. For example, ‘monoidal n-category objects’ can be defined
in any monoidal (n + 1)-category, and ‘stable n-category objects’ can be defined in
any stable (n+ 1)-category.

Proposition 56. Let O be an S-operad. There exists a terminal n-coherent O-
algebra τ , that is, one such that for any n-coherent O-algebra A, there is a unique
n-coherent O-algebra morphism f :A→ τ .
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Proof - Let τ be a terminal O-opetopic set, that is, one having only one cell
occupying each frame, and thus one cell for each O-opetope. We prove that τ is an
n-coherent O-algebra by showing inductively ‘from the top down’ that every niche-
occupant in τ is universal, so that every niche has a universal occupant and composites
of universal cells are universal. It then follows that τ is universal as an n-coherent
O-algebra, since is already terminal as an O-opetopic set.

We claim that every occupant of an m-dimensional niche is universal, and every m-
dimensional punctured niche is balanced. By the definition of n-coherent O-algebra,
both of these are true if m > n + 1. Supposing they are true for a given m, let us
show they hold for m− 1. Given an (m− 1)-dimensional punctured niche, condition
1 in the definition of ‘balanced’ holds because every frame has an occupant, while
condition 2 holds by our inductive hypothesis. Similarly, every (m − 1)-dimensional
niche-occupant is universal by our inductive hypothesis. ut

Definition 57. Let O be an S-operad, let A be an (n+1)-coherent O-algebra, and let
τ be the terminal (n+1)-coherent O-algebra. Then we define an n-coherent O-algebra
object in A to be a morphism of O-opetopic sets a: τ → A. If n = 0, we call this
simply an O-algebra object in A.

Since τ has one cell for each O-opetope, we see that an n-coherent O-algebra
object in A gives:

1. a 0-cell of A for each type of O

2. a 1-cell of A for each operation of O

3. a 2-cell of A for each reduction law of O

4. a 3-cell of A for each way of combining reduction laws of O to obtain another
reduction law

and so on, satisfying certain conditions. We can work out what this amounts to quite
explicitly in the case n = 1. First we give a ‘nuts-and-bolts’ description of 1-coherent
O-algebras:

Theorem 58. A 1-coherent O-algebra A consists of:

1. for each type x of O, a category A(x)

2. for each nondegenerate operation g of O with profile (x1, . . . , xk, x
′), a k-ary

virtual functor
A(g):A(x1)× · · · × A(xk) ⇀ (x′)

3. for each nondegenerate reduction law of O — that is, for each nondegenerate
operation G of O+ with profile (g1, . . . , gk, g

′) — a natural isomorphism

A(G):G(A(g1), . . . , A(gk))→ A(g′)
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4. for each nondegenerate way of combining reduction laws of O to obtain another
reduction law — that is, for each operation G of O++ with profile (G1, . . . , Gk, G

′)
— an equation

G(A(G1), . . . , A(Gk)) = A(G′)

Proof - Note from Example 47 that a k-ary virtual functor F :C1× · · ·×Ck ⇀ C ′

is a special sort of set-valued functor on Cop
1 × . . . × Cop

k × C ′, so the concept of
‘natural isomorphism’ between k-ary virtual functors makes sense. Also, much as
in Theorem 31, metatree notation makes it clear how to compose the ki-ary virtual
functors A(gi) in a tree-like pattern specified by the operation G of O+ to obtain
G(A(g1), . . . , A(gk)), and how to compose the natural isomorphisms A(Gi) in a tree-
like pattern specified by the operation G of O++ to obtain a natural isomorphism
G(A(G1), . . . , A(Gk)).

By item 1 of Theorem 53, the 1-coherent O-algebra A has an underlying 0-coherent
(OA(0))

+-algebra, which we may think of as simply an (OA(0))
+-algebra. Theorem 31

implies that such an algebra consists of 1-4 as above, but with a k-ary distributor
A(g) for each nondegenerate k-ary operation g of O, and a natural transformation
A(G) between k-ary distributors for each nondegenerate operation G of O+. Item 2
of Theorem 53 implies that the A(g) are k-ary virtual functors, and item 3 of that
theorem implies that the A(G) are natural isomorphisms. Conversely, one can show
that 1-4 as above give a 1-coherent O-algebra. ut

In particular, we see that monoidal 1-categories and stable 1-categories are almost
the same as monoidal categories and symmetric monoidal categories, respectively,
though there is a bit of work required to translate between our concepts and the
traditional ones.

To describe O-algebra objects in the language of Theorem 58, it is convenient
to define a k-ary morphism b: c1 × · · · × ck → c′ riding the k-ary virtual functor
B:C1 × · · · × Ck → C ′ to be an Fk-algebra object b in the 1-coherent Fk-algebra H.
Concretely, this amounts to a choice of objects ci ∈ Ci and c′ ∈ C ′, together with a
0-cell b in homf(c1, . . . , ck, c

′).

Theorem 59. Given a 1-coherent O-algebra A, an O-algebra object a in A consists
of:

1. for each type x of O, an object a(x) in the category A(x)

2. for each nondegenerate operation g of O with profile (x1, . . . , xk, x
′), a k-ary

morphism a(g): a(x1) × · · · × a(xk) → a(x′) riding the k-ary virtual functor
A(g)

3. for each nondegenerate reduction law G of O with profile (g1, . . . , gk, g
′), an

equation
A(G)(a(g1), . . . , a(gk)) = a(g′)
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Proof - This is straightforward except that item 3 may need some clarification.
Given `i-ary morphisms a(gi) riding the `i-ary virtual functors A(gi), and a reduction
law G of O with profile (g1, . . . , gk, g

′), one obtains an `′-ary morphism riding the `′-
ary virtual functor G(A(g1), . . . , A(gk)). Applying the natural isomorphism A(G) to
this we obtain an `′-ary morphism riding A(g′), which we call A(G)(a(g1), . . . , a(gk)).
In item 3 we require this to equal a(g′). ut

5 Conclusions

In addition to our approach to weak n-categories, there are a number of others. We
have already mentioned Street’s original simplicial approach [29]. After a sketch of
our definition appeared [5], Makkai has begun studying it, and a modified version
has been developed by Makkai, Hermida, and Power, but the details of this have
not yet been published. Independently, Tamsamani [30] developed an approach using
multisimplicial sets: simplicial objects in the category of simplicial objects in the
category of simplical objects in the category of . . . sets. More recently, Batanin [7]
has developed a globular approach to weak ω-categories, and thus in particular weak
n-categories, using the notion of an ‘ω-operad’. We expect that as time goes by even
more definitions will be proposed.

The question thus arises of when two definitions of weak n-category may be con-
sidered ‘equivalent’. This question was already raised, and a solution proposed, in
Grothendieck’s 600-page letter to Quillen [19]. Suppose that for all n we have two
different definitions of weak n-category, say ‘n-category1’ and ‘n-category2’. Then we
should try to construct the (n + 1)-category1 of all n-categories1 and the (n + 1)-
category1 of all n-categories2 and see if these are equivalent as objects of the (n+ 2)-
category1 of all (n+1)-categories1. If so, we may say the two definitions are equivalent
as seen from the viewpoint of the first definition. Of course, there are some ‘size’ is-
sues involved here, but they should not be a serious problem. More importantly,
there is some freedom of choice involved in constructing the two (n+1)-categories1 in
question. Also, we would be in an embarrassing position if we got a different answer
for the question with the roles of the two definitions reversed. Nonetheless, it should
be interesting to compare different definitions of weak n-category in this way.

A second solution is suggested by homotopy theory, where many superficially
different approaches turn out to be fundamentally equivalent. Different approaches
use objects from different ‘model categories’ to represent homotopy types: compactly
generated topological spaces, CW complexes, Kan complexes, and so on [8, 11]. These
categories are not equivalent, but each one is equipped with a class of morphisms
playing the role of weak homotopy equivalences. Given a category C equipped with a
specified class of morphisms called ‘weak equivalences’, under mild assumptions one
can ‘localize’ C with respect to this class, which amounts to adjoining inverses for
these morphisms [17]. The resulting category is called the ‘homotopy category’ of
C. Two categories with specified equivalences may be considered the same for the
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purposes of homotopy theory if their homotopy categories are equivalent. All the
model categories above are the same in this sense.

It is natural to adopt the same attitude in n-category theory. (Indeed, this attitude
is also implicit in Grothendieck’s letter to Quillen, which was in part inspired by the
latter’s work on model categories [27].) Thus we propose the following homotopy
category of n-categories. We define an n-functor F :C → D to be an equivalence if:

1. Every 0-cell in C is connected to a 0-cell in the image of F by a universal 1-cell.

2. For any 0-cells c, c′ in C, the restriction of F to the (n− 1)-category hom(c, c′)
is an equivalence.

where to ground this recursive definition we define equivalences between 0-categories
to be bijections, using the identification of 0-categories with sets. Condition 1 above
says that F is ‘essentially surjective’, while condition 2 says that F is ‘fully faithful’.
We then define the following category:

Definition 60. The homotopy category of n-categories is the localization of the cat-
egory of n-categories and n-functors with respect to the equivalences.

We regard any other definition of n-category as fundamentally ‘the same’ as ours if
it gives an equivalent homotopy category of n-categories.
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