Higher Gauge Theory

John C. Baez

joint work with:
Toby Bartels, Alissa Crans, Aaron Lauda,
Urs Schreiber, Danny Stevenson.

More details at:
http://math.ucr.edu/home/baez/highergauge/
Gauge Theory

Ordinary gauge theory describes how point particles transform as they move along paths:

\[
\begin{array}{c}
\bullet \\
\text{\(g\)} \\
\bullet
\end{array}
\]

It is natural to assign a group element to each path:

Why?
Composition of paths corresponds to multiplication:

\[g \quad \quad \quad \quad g' \]

Reversing the direction of a path corresponds to taking inverses:

\[g^{-1} \]

The associative law makes parallel transport along a triple composite unambiguous:

\[g \quad g' \quad g'' \]

So: *the topology dictates the algebra!*

The electromagnetic field is described using the group $U(1)$. Other forces are described using other groups.
Higher Gauge Theory

Higher gauge theory describes not just how point particles but also how 1-dimensional objects transform as we move them. This leads to the concept of a 2-group.

A 2-group has objects:

\[g \]

and also morphisms:

\[g' \]

\[f \]
We can multiply objects:

\[g \quad g' \]

multiply morphisms:

\[g_1 \quad g' \quad g_2 \quad g' \]

and also compose morphisms:

\[g \quad g' \quad f \quad f' \quad g'' \]

Various laws should hold... all obvious from the pictures!
Each operation has a unit and inverses. Each operation is associative, so these are well-defined:

Finally, the **interchange law**, holds, meaning this is well-defined:

That’s all a 2-group is.
Crossed Modules

A 2-group \mathcal{G} is determined by the quadruple (G, H, t, α) consisting of:

- the group G consisting of all objects of \mathcal{G}:

 \bullet

 ![Diagram of G](image)

- the group H consisting of all morphisms of \mathcal{G} with source 1:

 \bullet

 ![Diagram of H](image)
• the homomorphism $t: H \to G$ sending each element of H to its target:

\[
\begin{array}{c}
\bullet \\
\downarrow h \\
\bullet \\
\end{array}
\quad 1 \\
\begin{array}{c}
\bullet \\
t(h) \\
\end{array}
\]

• the action α of G on H defined by:

\[
\alpha(g)(h) = \begin{array}{c}
\bullet \\
\downarrow 1_g \\
g \\
g \\
\downarrow 1 \\
t(h) \\
\bullet \\
\downarrow 1_g^{-1} \\
g^{-1} \\
g^{-1}
\end{array}
\]

For any 2-group \mathcal{G}, the quadruple (G, H, t, α) satisfies two equations making it a **crossed module**. Conversely, any crossed module gives a 2-group.
Examples of 2-Groups

- Any group G gives a 2-group with $H = 1$. So:

 ordinary gauge theory \subseteq higher gauge theory

In ordinary gauge theory, the gauge field is a connection: locally a g-valued 1-form A. We cleverly integrate this along paths to get elements of G:

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) [circle, draw] {};
\node (b) at (1,0) [circle, draw] {};
\draw [->] (a) to node [auto] {g} (b);
\end{tikzpicture}
\end{center}
Any abelian 2-group H gives a 2-group with $G = 1$.

If we take $H = U(1)$, we get the 2-group for **2-form electromagnetism**. Here the gauge field is locally a 2-form B. The action is

$$\int_M \text{tr}(G \wedge *G)$$

where $G = dB$. Extremizing the action, we get

$$*d *G = 0$$

which looks just like the vacuum Maxwell equation!

We can integrate B over surfaces to get elements of H:

$$\bullet \quad \begin{array}{c} 1 \\ h \\ 1 \end{array} \quad \bullet$$
• Any representation α of a group G on a vector space H gives a 2-group with trivial $t: H \to G$.

If $H = \mathfrak{g}$ we get the **tangent 2-group** of G. This is the 2-group for **BF theory** in 4 dimensions. Here the fields are a \mathfrak{g}-valued 1-form A and an \mathfrak{h}-valued 2-form B. The action is

$$ \int_M \text{tr}(B \wedge F) $$

where M is a 4-manifold. Extremizing the action, we get equations of motion

$$ d_A B = 0, \quad F = 0. $$

The second implies that we get well-behaved parallel transport over surfaces!
Theorem. If M is a manifold and (G, H, t, α) is a Lie crossed module, then smooth maps sending paths and surfaces in M to objects and morphisms in the corresponding 2-group:

\[
\begin{array}{c}
\xymatrix{
 x \ar[r]^\gamma & y \ar[r]_{\text{hol}(\gamma)} & \\
 \Sigma \ar[ur]_{\eta} & \ar[u] & \ar[u]_{\text{hol}(\Sigma)}
} ,
\end{array}
\]

compatible with composition and multiplication, are in 1-1 correspondence with pairs consisting of

- a \mathfrak{g}-valued 1-form A on M
- an \mathfrak{h}-valued 1-form B on M

satisfying the **fake flatness** condition:

\[F + dt(B) = 0. \]
bullet Any group G gives a 2-group where $H = G$, $t : H \to G$ is the identity, and the action α of G on H is given by conjugation.

This is the 2-group for **BF theory with cosmological term** in 4 dimensions. Here the fields are a \mathfrak{g}-valued 1-form A and a \mathfrak{g}-valued 2-form B. The action is

$$\int_M \text{tr}(B \wedge F + \frac{1}{2} B \wedge B)$$

Extremizing this, we get equations of motion

$$d_A B = 0, \quad F + B = 0.$$

Since $F + dt(B) = 0$, we again get well-behaved parallel transport over surfaces!
Our last example is related to the String group.

Suppose G is a compact, simply-connected, simple Lie group — for example $SU(n)$ or $Spin(n)$. Then

$$\pi_3(G) = \mathbb{Z}$$

and the topological group obtained by killing the third homotopy group of G is called \hat{G}.

When $G = Spin(n)$, \hat{G} is called String(n):

$$\text{String}(n) \rightarrow Spin(n) \rightarrow SO(n) \rightarrow O(n).$$

To define spinors on M, we need to pick a spin structure. To define spinors on the free loop space LM, we need to pick a ‘string structure’. So, getting our hands on String(n) is important — but tricky!
For any $k \in \mathbb{Z}$ there is a 2-group called $\mathcal{P}_k G$. We will use this to construct \hat{G}.

An object of $\mathcal{P}_k G$ is a smooth path $f : [0, 2\pi] \to G$ starting at the identity. A morphism from f_1 to f_2 is an equivalence class of pairs (D, λ) consisting of a disk D going from f_1 to f_2 together with $\lambda \in U(1)$:

What’s the equivalence relation?
Any two such pairs \((D_1, \lambda_1)\) and \((D_2, \lambda_2)\) have a 3-ball \(B\) whose boundary is \(D_1 \cup D_2\). The pairs are equivalent when
\[
\exp \left(2\pi i k \int_B \nu \right) = \frac{\lambda_2}{\lambda_1}
\]
where \(\nu\) is the left-invariant closed 3-form on \(G\) with
\[
\nu(x, y, z) = \langle [x, y], z \rangle
\]
and \(\langle \cdot, \cdot \rangle\) is the Killing form, normalized so that \([\nu]\) generates \(H^3(G, \mathbb{Z})\).

Theorem. The morphisms in \(\mathcal{P}_k G\) starting at the constant path form the level-\(k\) central extension of the loop group \(\Omega G\):
\[
1 \longrightarrow U(1) \longrightarrow \Omega_k G \longrightarrow \Omega G \longrightarrow 1
\]
So, the 2-group P_kG corresponds to the crossed module $(PG, \widehat{\Omega_kG}, t, \alpha)$ where:

- PG consists of paths in G starting at the identity.
- $\widehat{\Omega_kG}$ is the level-k central extension of the loop group ΩG.
- $t : \widehat{\Omega_kG} \to PG$ is given by:

\[
1 \xrightarrow{} U(1) \xrightarrow{} \widehat{\Omega_kG} \xrightarrow{} \Omega G \xrightarrow{} 1 \xrightarrow{t} PG
\]

- α is ‘conjugation’ of elements of $\widehat{\Omega_kG}$ by paths in PG. One must prove this is well-defined!
The **nerve** of a topological 2-group \(G \) is a simplicial topological group. When we take its **geometric realization** we get a topological group \(|G| \).

Theorem. When \(k = \pm 1 \),

\[
|\mathcal{P}_kG| \simeq \hat{G}.
\]

So, when \(G = \text{Spin}(n) \), \(|\mathcal{P}_kG| \) is the string group!
QUESTION: Which higher gauge theory uses the 2-group $\mathcal{P}_k G$ as its ‘gauge 2-group’?

POSSIBLE ANSWER: Chern–Simons theory in 3 dimensions! This is normally viewed as an ordinary gauge theory, but we may be able to see it as a higher gauge theory with this gauge 2-group.

For more detail, see the work of Urs Schreiber online at the n-Category Café.
The M-theory 3-Group?

String theory involves 1-dimensional objects — strings! Higher gauge theory with 2-groups describes the parallel transport of 1-dimensional objects. So, we should not be surprised to find some 2-groups (like $\mathcal{P}_k G$) that are related to string theory.

M-theory involves 2-dimensional objects — 2-branes! Higher gauge theory with 3-groups should describe the parallel transport of 2-dimensional objects. So, we should not be surprised to find some 3-groups that are related to M-theory.
QUESTION: Which 3-groups – or 3-supergroups – show up in M-theory?

POSSIBLE ANSWER: M-theory is the mysterious quantized version of 11d supergravity. 11d supergravity involves these fields:

- a 1-form valued in the 11d Poincaré Lie superalgebra
- a 3-form

So, maybe it is a higher gauge theory whose 3-supergroup has ‘Lie 3-superalgebra’ with:

- the 11d Poincaré Lie superalgebra as objects
- $\{0\}$ as morphisms
- \mathbb{R} as 2-morphisms
In fact the concept of Lie 3-superalgebra is understood — and a nontrivial one like this exists!

For this and other reasons, it seems 11d supergravity is a higher (super)gauge theory. But, much more work needs to be done to understand this. The Lie 3-supergroup for M-theory seems to involve extra ingredients — like the exceptional group E_8.

For more detail see the work of Castellani, D’Auria and Fré, Aschieri and Jurčo, and Urs Schreiber.