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The Big Idea

The theory of∞-categories seeks to formalize our notions of thing,
process, metaprocess, meta-metaprocess and so on:
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At first glance, this has no more to do with topology than with any
other subject.



But, a point in a topological space is a ‘thing’:
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A path is a ‘process’:
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A homotopy between paths is a ‘metaprocess’:
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and so on.



So, any space X should give an∞-category! This amounts to using
X as a ‘blackboard’ on which to draw diagrams:
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This ∞-category should be an ∞-groupoid: the fundamental
∞-groupoid, Π∞(X).

In its rawest form, the homotopy hypothesis asks:

To what extent are spaces ‘the same’ as
∞-groupoids?

Let’s warm up with ordinary groupoids....



The Fundamental Groupoid

From any space X we can try to build a category whose objects are
points of X and whose morphisms are paths in X :
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If we use homotopy classes of paths, this works and we get a
groupoid: the fundamental groupoid, Π1(X).

There is a 2-functor
Π1 : Top→ Gpd

sending spaces, maps and homotopy classes of homotopies to groupoids,
functors and natural transformations. So we can ask:

To what extent are spaces secretly the same as
groupoids?



Eilenberg–Mac Lane Spaces

We can try to find an ‘inverse’ to Π1, building a space from any
groupoid G: the Eilenberg–Mac Lane space |G|. To do this
we take a vertex for each object of G:
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an edge for each morphism of G:
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a triangle for each composable pair of morphisms:

• •

•

fg
//

g

��222222222

f
FF���������

a tetrahedron for each composable triple:
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and so on!



|G| has G as its fundamental groupoid, up to equivalence. |G| is
a homotopy 1-type: a CW complex whose homotopy groups
above the 1st vanish for any basepoint. These facts characterize it
up to homotopy equivalence.

Indeed, we have 2-functors going both ways:

Top
Π1 // Gpd
|−|

oo

We have an equivalence

i : G
∼−→Π1(|G|)

for every groupoid G. We also have a map

e : |Π1(X)| −→X

for every space X . This is a homotopy equivalence if X is a
homotopy 1-type.



In fact, one can prove:

Homotopy Hypothesis (dimension 1). Let 1Type be the
2-category of homotopy 1-types, maps, and homotopy classes of
homotopies between maps. Then

Π1 : 1Type→ Gpd

is an equivalence of 2-categories.

Even better, Lack and Leinster have shown these 2-functors

Top
Π1 // Gpd
|−|

oo

are adjoints (technically a ‘biadjunction’).



The Homotopy Hypothesis

Generalizing to (weak) n-groupoids:

The Homotopy Hypothesis (dimension n). There is an
equivalence of (n + 1)-categories

Πn : nType→ nGpd

where a homotopy n-type is a CW complex whose homotopy
groups above the nth vanish for all basepoints, and nType is the
(n + 1)-category with:

homotopy n-types as objects,
continuous maps as 1-morphisms,
homotopies as 2-morphisms,
homotopies between homotopies as 3-morphisms,...

...homotopy classes of (n+1)-fold homotopies as (n+1)-morphisms.



The homotopy hypothesis for all finite n should follow from:

The Homotopy Hypothesis (dimension ∞). There is an
equivalence of ∞-categories

Π∞ : ∞Type→∞Gpd

where ∞Type is the ∞-category of homotopy types, with:

CW complexes as objects,
continuous maps as 1-morphisms,
homotopies as 2-morphisms,
homotopies between homotopies as 3-morphisms,
homotopies between homotopies between homotopies as 4-morphisms,....



(∞, 1)-Categories

Both∞Type and∞Gpd should be (∞,1)-categories: ∞-categories
where all j-morphisms are weakly invertible for j > 1.

Any definition of ∞-category should give a definition of (∞, 1)-
category, as a special case. For example, Street’s simplicial ∞-
categories have quasicategories as a special case.

There are also many ‘stand-alone’ approaches to (∞, 1)-categories:

• simplicially enriched categories: categories enriched over SimpSet

• A∞-categories

• Segal categories

We can try to state and prove the homotopy hypothesis in any of
these approaches. In some, it’s already been done!

But: no pain, no gain.



∞-Groupoids

Any definition of (∞, 1)-category should give a definition of ∞-
groupoid, as a special case. For example, quasicategories have Kan
complexes as a special case. A Kan complex is a simplicial set
where every ‘horn’ has a ‘filler’:
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If we take Kan complexes as our definition of ∞-groupoids, it is
easy to define

Π∞ : ∞Type→∞Gpd

as an ordinary functor between categories. People usually get this
from the adjunction

Top
Sing

// SimpSet
|−|

oo

by noting the ‘singular simplicial set’ functor, Sing, maps all spaces
to Kan complexes.

Similarly, ‘geometric realization’, | − |, maps all simplicial sets to
CW complexes.

Top and SimpSet are ‘model categories’. Kan complexes are very
nice objects in the model category SimpSet: they are ‘fibrant and
cofibrant’. CW complexes are very nice in Top.

Every object in a model category is ‘weakly equivalent’ to a very
nice one.



In any model category we have:

very nice objects,
morphisms,
homotopies between morphisms,
homotopies between homotopies between morphisms,....

So, for the n-category theorist,

Model categories are a trick for getting
(∞,1)-categories.

In particular: the model category Top gives the (∞, 1)-category
∞Type. The model category SimpSet gives∞Gpd.

One way to make this precise: any model category gives a simpli-
cially enriched category — Dwyer and Kan’s ‘simplicial localization’.

This can be defined using just the very nice objects, the morphisms,
and the weak equivalences.



The adjunction

Top
Sing

// SimpSet
|−|

oo

is a ‘Quillen equivalence’ of model categories. For the n-category
theorist,

Quillen equivalences are a trick for getting
equivalences between (∞,1)-categories.

In particular: the equivalence between∞Type and ∞Gpd.

One way to make this precise: Quillen equivalent model categories
give ‘weakly equivalent’ simplicially enriched categories — as shown
by Dwyer and Kan.



So, we can work simplicially and define

• ∞-groupoid := Kan complex

• (∞, 1)-category := simplicially enriched category

• equivalent (∞, 1)-categories := weakly equivalent simplicially
enriched categories

Then Quillen, Dwyer and Kan showed:

The Homotopy Hypothesis (simplicial version). There is
an equivalence of (∞, 1)-categories

Π∞ : ∞Type→∞Gpd

where ∞Type arises from the model category Top by simplicial
localization, and ∞Gpd arises from the model category SimpSet.



So, why not just use simplicial methods...
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...and forget about ‘globular’ n-categories?
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Bad answer: because we always liked globular n-categories.

Better answer: globular methods clarify the structure of
∞-categories, and thus ∞-groupoids, and thus
homotopy types — given the homotopy hypothesis.



Dimension 1

In any globular n-category, ‘cell colonies’ like this give us 1-morphisms:

• ))• ))• composition of 1-morphisms

For any pointed n-groupoid, this operation defines multiplication in
the fundamental group, π1.

π1 classifies connected 1-groupoids up to equivalence.



Dimension 2

In any n-category, these cell colonies give 2-morphisms:
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• composition of 2-morphisms
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• ))• whiskering a 2-morphism by a 1-morphism

• ))• ))• ))• the associator

For any pointed n-groupoid, these operations give a group π2, an
action of π1 on π2, and a cohomology class

[a] ∈ H3(π1, π2) (the associator)

Together with π1, these classify connected 2-groupoids up to
equivalence.



Dimension 3 and Beyond

Can we go on? These cell colonies give interesting 3-morphisms:
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• the braiding for 2-morphisms
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the associator for 2-morphisms
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• ''• ''• pseudonaturality of the associator

for 1-morphisms

• ''• ''• ''• ''• the pentagonator for 1-morphisms



How can we use these to classify connected 3-groupoids?

And how about n-groupoids for higher n?

Most homotopy theorists consider the combinatorics of homotopy
types a complicated morass. Maybe globular n-categories
can help!

Also: the homotopy hypothesis says that any sub-∞-groupoid of
an ∞-category corresponds to a homotopy type. So, we can use
homotopy theory to study the coherence laws that hold — up to
further coherence laws — in an ∞-category.

In short:

The homotopy hypothesis may or may not help
homotopy theory — but it’s already helped n-category

theory, and will surely continue to do so!


