A categorified supergroup for string theory

John Huerta

http://math.ucr.edu/~huerta

Department of Mathematics UC Riverside

HGT, TQFT & QG

A **weak 2-group** is a category \mathcal{G} with invertible morphisms, equipped with a functor:

$$\otimes \colon \mathcal{G} \times \mathcal{G} \to \mathcal{G}$$

satisfying the group axioms up to specified natural isomorphisms—the **associator**:

$$a_{x,y,z}$$
: $(x \otimes y) \otimes z \rightarrow x \otimes (y \otimes z)$

and the left- and right-unitors:

$$I_X: 1 \otimes X \to X, \quad r_X: X \otimes 1 \to X,$$

such that every object x has a specified weak inverse \overline{x} :

$$x \otimes \overline{x} \cong 1 \cong \overline{x} \otimes x$$
.

Theorem (Joyal–Street)

Every weak 2-group is equivalent to a skeletal weak 2-group with:

- A group G of objects.
- ▶ A group $G \ltimes H$ of morphisms.
- The left- and right-unitors trivial.
- The associator

$$a_{x,y,z}$$
: $(x \otimes y) \otimes z \rightarrow x \otimes (y \otimes z)$,

given by a normalized H-valued group 3-cocycle $a: G^3 \to H$.

We call a 2-group of this form a **slim 2-group**, $String_a(G, H)$.

A **2-vector space** is a category in vector spaces. A **semistrict Lie 2-algebra** is a 2-vector space *L* equipped with an antisymmetric, bilinear functor:

$$[-,-]: L \times L \rightarrow L,$$

satisfying the Jacobi identity up to a natural isomorphism, the **Jacobiator**:

$$J_{x,y,z} \colon [[x,y],z] \to [x,[y,z]] + [[x,z],y].$$

Theorem (Baez-Crans)

Every Lie 2-algebra is equivalent to a skeletal Lie 2-algebra with:

- ► A Lie algebra g of objects.
- ▶ A Lie algebra g k h of morphisms.
- The Jacobiator

$$J_{X,y,z}: [[x,y],z] \to [x,[y,z]] + [[x,z],y],$$

given by an \mathfrak{h} -valued Lie algebra cocycle $J \colon \Lambda^3 \mathfrak{g} \to \mathfrak{h}$.

We call a Lie 2-algebra of this form a **slim Lie 2-algebra**, $\mathfrak{string}_{I}(\mathfrak{g},\mathfrak{h})$.

Example

The string Lie 2-algebra, where:

- $ightharpoonup \mathfrak{g} = \mathfrak{so}(n).$
- ightharpoonup $\mathfrak{h}=\mathbb{R}.$
- ► J(x, y, z) = tr(x, [y, z]) is the canonical 3-cocycle.

In this case, we just write $\mathfrak{string}(n)$ for $\mathfrak{string}_J(\mathfrak{g},\mathfrak{h})$.

When G and H are Lie groups and a is smooth, we call $String_a(G,H)$ a **slim Lie 2-group**. There's a naive scheme to integrate slim Lie 2-algebras to slim Lie 2-groups:

- ▶ Integrate g to G.
- ► Find a cocycle $a: G^3 \to H$ which somehow integrates $J: \Lambda^3 \mathfrak{g} \to \mathfrak{h}$.

Unfortunately, this fails even for $\mathfrak{string}(n)$:

- ▶ We can integrate $\mathfrak{g} = \mathfrak{so}(n)$ to SO(n) or Spin(n).
- ▶ We can integrate $\mathfrak{h} = \mathbb{R}$ to \mathbb{R} or U(1).
- But compact Lie groups like SO(n) and Spin(n) admit no globally smooth, nontrivial cocycles. So we have no hope of integrating J!

For $\mathfrak{string}(n)$, there are alternative approaches like those of Baez–Crans–Schreiber–Stevenson and Schommer-Pries.

Here, I'll describe a special case where the naive scheme *does* work:

Theorem

For spacetimes of dimension n = 3, 4, 6 and 10, there is a skeletal Lie 2-superalgebra where:

The objects are

$$\mathfrak{siso}(n-1,1)=\mathfrak{so}(n-1,1)\ltimes (V\oplus \mathcal{S}),$$

the Poincaré superalgebra.

- ▶ The morphisms are $\mathfrak{siso}(n-1,1) \times \mathbb{R}$.
- ▶ The Jacobiator is $J(v, \psi, \phi) = g(v, [\psi, \phi])$ when $v \in V$ and $\psi, \phi \in S$, and zero otherwise.

We call this superstring(n-1,1). We'll integrate it to Superstring(n-1,1).

- $V = \mathbb{R}^{n-1,1}$ has a nondegenerate quadratic form.
- ▶ Spinor representations of $\mathfrak{so}(n-1,1)$ are representations arising from left-modules of $\mathrm{Cliff}(V) = \frac{TV}{V^2 = ||V||^2}$, since

$$\mathfrak{so}(n-1,1) \hookrightarrow \mathrm{Cliff}(V).$$

▶ Let *S* be such a representation.

- $V = \mathbb{R}^{n-1,1}$ has a nondegenerate quadratic form.
- ▶ Spinor representations of $\mathfrak{so}(n-1,1)$ are representations arising from left-modules of $\mathrm{Cliff}(V) = \frac{TV}{V^2 = ||V||^2}$, since

$$\mathfrak{so}(n-1,1) \hookrightarrow \mathrm{Cliff}(V).$$

- Let S be such a representation.
- ▶ For n = 3, 4, 6 and 10, there is a symmetric map:

$$[-,-]$$
: Sym² $S \rightarrow V$.

▶ There is thus a Lie superalgebra siso(n-1,1) where:

$$\mathfrak{siso}(n-1,1)_0=\mathfrak{so}(n-1,1)\ltimes V,\quad \mathfrak{siso}(n-1,1)_1=S.$$

called the Poincaré superalgebra.

In the physics literature, the classical superstring require a certain spinor identity to hold:

Superstring In dimensions 3, 4, 6 and 10, and *only these dimensions*, we have:

$$g([\psi,\psi],[\psi,\psi])=0$$

for all spinors $\psi \in S$.

But this is exactly a cocycle condition for the Poincaré superalgebra, for the cocycle defined by:

$$\alpha(\mathbf{v}, \psi, \phi) = \mathbf{g}(\mathbf{v}, [\psi, \phi]),$$

when $v \in V$ and $\psi, \phi \in S$, and vanishing otherwise.

A **2-supervector space** is a category in supervector spaces. A **semistrict Lie 2-superalgebra** is a 2-supervector space *L* equipped with a graded-antisymmetric, bilinear functor:

$$[-,-]: L \times L \rightarrow L,$$

satisfying the Jacobi identity up to a natural isomorphism, the **Jacobiator**:

$$J_{x,y,z}$$
: $[[x,y],z] \rightarrow [x,[y,z]] + (-1)^{|y||z|}[[x,z],y].$

Theorem (Baez-Crans-Huerta)

There is a Lie 2-algebra with:

- A Lie superalgebra g of objects.
- ► A Lie superalgebra g × h of morphisms.
- The Jacobiator

$$J_{x,y,z} \colon [[x,y],z] \to [x,[y,z]] + (-1)^{|y||z|}[[x,z],y],$$

given by an \mathfrak{h} -valued Lie superalgebra cocycle $J \colon \Lambda^3 \mathfrak{g} \to \mathfrak{h}$.

So: superstring(n-1,1) is a Lie 2-superalgebra!

Now we would like to integrate superstring(n-1,1) to Superstring(n-1,1), a "skeletal Lie 2-supergroup" with:

- ▶ The Lie supergroup SISO(n-1,1) as objects.
- ▶ The Lie supergroup $SISO(n-1,1) \times \mathbb{R}$ as morphisms.
- ▶ Associator given by the Lie supergroup 3-cocycle $\int \alpha : (SISO(n-1,1))^3 \to \mathbb{R}$.

A **Lie 2-supergroup** is a weak 2-group in the category of supermanifolds.

Theorem

There is a skeletal Lie 2-supergroup with:

- A Lie supergroup G of objects.
- A Lie supergroup G ⋉ H of morphisms.
- Trivial left- and right- unitors.
- The associator given by a normalized H-valued Lie supergroup 3-cocycle a: G³ → H.

So: constructing Superstring(n-1,1) boils down to constructing $\int \alpha$.

This is possible because α is supported on the Lie subalgebra $\mathcal{T} = V \oplus S$, a *nilpotent Lie superalgebra*.

We can integrate \mathbb{R} -valued cocycles on any nilpotent Lie algebra \mathfrak{n} to cocycles on the corresponding group N, using a technique due to Houard.

- ▶ Lie algebra cochains $\omega : \Lambda^p \mathfrak{n} \to \mathbb{R}$ can be identified with left-invariant differential forms on N.
- We can define left-invariant simplices in N to be simplices:

$$[n_0,\cdots,n_p]:\Delta^p\to N,$$

with the property:

$$n[n_0, \cdots, n_p] = [nn_0, \cdots, nn_p].$$

We integrate to get Lie group cochains on N:

$$\int \omega(n_1,\cdots,n_p) = \int_{[1,n_1,n_1n_2,\cdots,n_1\cdots n_p]} \omega.$$

This defines a cochain map by Stokes' theorem!

Now, we superize using the functor of points:

Theorem (Balduzzi-Carmeli-Fioresi)

There is a full and faithful functor:

h: SuperManifolds \rightarrow Hom(SuperWeilAlg, A_0 -Manifolds).

So: for any supermanifold M and supercommutative Weil algebra A, we get a manifold $h(M)(A) = M_A$, the **A-points** of M.

The A-points of \mathcal{T} are $\mathcal{T}_A = A_0 \otimes \mathcal{T}_0 \oplus A_1 \otimes \mathcal{T}_1$.

- ▶ \mathcal{T} a nilpotent Lie superalgebra $\Rightarrow \mathcal{T}_A$ a nilpotent Lie algebra.
- α a 3-cocycle on $\mathcal{T} \Rightarrow \alpha_A$ a 3-cocycle on \mathcal{T}_A .
- ▶ T_A has a group structure, $T_A \Rightarrow T$ has a supergroup structure T.

So: we integrate to get $\int \alpha_A$ and transfer this back to T, defining $\int \alpha$ on T.

Theorem

 $\int \alpha$ defines a Lie supergroup 3-cocycle on T, which extends to a Lie supergroup 3-cocycle on SISO(n-1,1).

Corollary

There is a Lie 2-supergroup Superstring (n-1,1).

Final thoughts:

- ▶ We want to do higher gauge theory with Superstring(n - 1, 1). This should be related to string theory, and to the work of Sati-Schreiber-Stasheff.
- ► There is also a Lie 3-supergroup 2-Brane(n, 1) associated with super-2-branes. The higher gauge theory should be related to M-theory.