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Classical Mechanics

A particle of mass m moving in a potential V : Rn → R feels a
force

®F = −®∇V

and obeys Newton’s law

®F = m®a

so its path ®q : R→ Rn obeys

m
d2

dt2
®q(t) = −®∇V (®q(t))



A potential like

V (®x) = −
1
‖®x ‖p

with p > 0 creates a central force that pulls the particle
towards the origin.

If p ≥ 2 the particle can easily spiral in to the origin!
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If p < 2 the particle only hits the origin for initial positions and
velocities in a set of measure zero. Otherwise it either:

I Approaches ∞ as t → ±∞ (an unbound orbit)
I Stays in a compact subset of Rn − {®0} (a bound orbit).

For most choices of p, the bound orbits are typically not
periodic:
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Bertrand’s Theorem. If V : Rn → R is a spherically symmetric
potential all of whose bound orbits are periodic, then either:

V (®x) = k ‖®x ‖2

or

V (®x) = −
k
‖®x ‖

for some k ≥ 0.

The first case is the harmonic oscillator. The second case is
the Kepler problem: the motion of a particle in the gravitational
field of a fixed mass. These are the two most famous exactly
solvable problems in classical mechanics.



The Kepler problem has solutions where the particle traces out
a conic section:



Amazingly, the theory of conic sections was developed by
Apollonius around 200 BC, developed further by the Arabs
around 1000 AD...

... and was waiting for Kepler and then Newton, who showed
conic sections were the solutions to his differential equation for
planets and comets moving around the Sun!



For a particle in any potential, energy is conserved:

E =
1
2

m‖ Û®q‖2 + V (®q)

For a particle in a central force, angular momentum is also
conserved. In 3 dimensions it is

®J = m ®q × Û®q

These 4 conserved quantities come from time translation
symmetry and rotation symmetry, via Noether’s theorem.
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But the Kepler problem also has 3 more conserved quantities,
the components of the Laplace–Runge–Lenz vector! For a
bound orbit, this vector always points in the direction of the
ellipse’s major axis:



The formula for the Laplace–Runge–Lenz vector is unpleasant:

®A = m Û®q × ®J −mk
®q
‖®q‖

But it has wonderful properties!

You can use the conservation of ®J and ®A to quickly solve the
Kepler problem and prove the solutions are conic sections.

But what is the meaning of the Laplace–Runge–Lenz vector?

https://en.wikipedia.org/wiki/Laplace%E2%80%93Runge%E2%80%93Lenz_vector#Derivation_of_the_Kepler_orbits
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Noether’s theorem relates symmetries to conserved quantities.

The rotation invariance of the 3d Kepler problem gives 3
conserved quantities — the components of angular momentum
— because the rotation group SO(3) is a 3-dimensional Lie
group.

But in fact a larger group, SO(4), acts on the space of bound
orbits of the 3d Kepler problem. This is a 6-dimensional Lie
group.

These ‘hidden symmetries’ give 3 more conserved quantities:
the components of the Laplace–Runge–Lenz vector!



To understand these hidden symmetries, go down a dimension
and look at the 2d Kepler problem.

We can rotate any solution and get a new solution with the
same energy: this gives an action of SO(2). How can we extend
this to an action of SO(3)?

For a great explanation, see:

I Greg Egan, The ellipse and the atom.

I’ll borrow some pictures and ideas from there!

http://www.gregegan.net/SCIENCE/Ellipse/Ellipse.html


We can transform any elliptical orbit to others with the same
energy by taking the particle at either point where it’s travelling
parallel to the axis of the ellipse, and swinging it along a circular
arc centered on the Sun, while keeping its velocity the same:

These are some of the hidden symmetries.



Less obviously, the velocity vector of any elliptical orbit traces
out a circle! The orbits just discussed give circles that meet at
two points:



Such circles are obtained by stereographically projection from
great circles on a 2-sphere of suitable radius!

The hidden symmetries are rotations of this 2-sphere. They
form the group SO(3).



In the end, we get SO(3) acting on the space of bound orbits of
a fixed energy!

This space is isomorphic to the unit tangent bundle of S2:

{(x, v ) ∈ TS2 : x ∈ S2, v ∈ TxS2, ‖v ‖ = 1}

or equivalently the unit cotangent bundle. The action of SO(3) is
the natural one. The space of all bound orbits is isomorphic to
the punctured cotangent bundle

T+S2 = {(x, p) ∈ T ∗S2 : x ∈ S2, p ∈ T ∗x S2, p , 0}



All this generalizes easily to the 3d Kepler problem!

I The velocity vectors of all bound orbits of fixed energy
trace out circles in R3 that are stereographic projections of
great circles in S3.

I The space of all bound orbits is isomorphic to the
punctured cotangent bundle T+S3.

I SO(4) acts on this space in a natural way.
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The Hydrogen Atom

Even more wonderfully, the Kepler problem is also what we
need to understand the hydrogen atom. The electron moves in
a potential

V (®x) = −
k
‖®x ‖

attracted by the much heavier proton, just as a planet is
attracted by the heavier Sun! But to understand the hydrogen
atom we need the quantum version of the Kepler problem.

This was figured out by Bohr, Sommerfeld, de Broglie,
Schrödinger, Heisenberg and many others. Pauli and Fock
used the Laplace–Runge–Lenz vector!



Quantum Mechanics

A particle of mass m moving in a potential V : Rn → R has a
wavefunction ψ : R × Rn → C obeying Schrödinger’s equation

i~
∂

∂t
ψ(t, ®x) = −

~2

2m
∇2ψ(t, x) + V (®x)ψ(t, ®x)

where ~ is Planck’s constant.

More abstractly, and choosing units where ~ = 2m = 1,
Schrödinger’s equation is

∂ψ

∂t
= −iHψ

where the Hamiltonian H is

H = −∇2 + V
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If the operator H is self-adjoint on L2(Rn), we can solve
Schrödinger’s equation by

ψ(t) = e−itHψ(0)

where ψ(t) ∈ L2(R3) is the wavefunction at time t .

For the 3d Kepler problem, choosing units where k = 1,

H = −∇2 −
1
‖®x ‖

is indeed a self-adjoint operator on L2(R3), so this method
works. But it’s only practical if we know the eigenvectors of H.



The spectrum of a self-adjoint operator H is the set of numbers
λ such that H − λI does not have a bounded inverse. For the 3d
Kepler problem, the spectrum is{

−
1

4n2

}∞
n=1
∪ [0,∞)

The negative numbers in the spectrum are eigenvalues of H;
the eigenvectors are bound states, the quantum analogue of
bound orbits.

All nonnegative numbers are in the spectrum; these correspond
to scattering states, the quantum analogue of unbound orbits.
We shall not discuss these, even though they’re interesting!



The space of eigenvectors ψ with Hψ = − 1
4n2ψ is 1-dimensional

when n = 1. Here’s one:

or more accurately:

This space is the 1-dimensional trivial representation of SO(3).



The space of eigenvectors ψ with Hψ = − 1
4n2ψ is 4-dimensional

when n = 2.

It’s the direct sum of the 1d and 3d irreducible representations
of SO(3).



The space of eigenvectors ψ with Hψ = − 1
4n2ψ is 9-dimensional

when n = 3.

It’s the direct sum of the 1d, 3d and 5d irreducible
representations of SO(3). And so on....



The space

Hn =

{
ψ ∈ L2(Rn) : Hψ = −

1
4n2

ψ

}
has dimension n2. It’s a unitary representation of SO(3), and it’s
a direct sum of irreducible representations of dimensions
1, 3, 5, . . . , 2n − 1.

But in fact Hn is a representation of SO(4)! In quantum
mechanics, the components of angular momentum and the
Laplace–Runge–Lenz vectors become self-adjoint operators on
L2(Rn), and these generate a unitary representation of SO(4) on
this space, with Hn as an invariant subspace.
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Indeed, the space of bound states of the 3d Kepler problem is
isomorphic to L2(S3):

L2(S3) �
∞⊕

n=1

Hn

and the action of SO(4) on the sphere S3 gives its
representation on the space of bound states! Each summand
Hn is an irrep of SO(4): an irreducible representation.

This becomes more beautiful using the Peter–Weyl theorem.
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Peter–Weyl Theorem. Suppose G is a compact topological
group equipped with its Haar measure, the unique
translation-invariant Borel measure µ with µ(G) = 1. Then

L2(G) �
⊕
ρ

ρ ⊗ ρ∗

as representations of G ×G. Here G ×G acts on G by left and
right translations, and ρ runs over representatives of all
isomorphism classes of continuous irreps of G.

All the continuous irreps ρ of G are finite-dimensional. Each
space ρ ⊗ ρ∗ is an irrep of G ×G.
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We can think of S3 as SU(2). Then SU(2) × SU(2) acts as left
and right translations of SU(2). We get all rotations of S3 this
way, giving a double cover

SU(2) × SU(2) → SO(4)

There’s a continuous irrep of SU(2) on Sn(C2), the space of
homogeneous degree-n polynomials in 2 variables:

Sn(C2) �
{
a0xn + a1xn−1y + · · · + an−1xyn−1 + anyn : ai ∈ C

}
This representation has dimension n+1. Every continuous irrep
of SU(2) is isomorphic to one of these! So, they’re all self-dual.
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Putting these facts together, we get
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So
Hn � Sn−1(C2) ⊗ Sn−1(C2)

and this is the deep reason why

dim(Hn) = n2

There is much more to say, but go here for more:

I John Baez, Mysteries of the gravitational 2-body problem.

http://math.ucr.edu/home/baez/gravitational.html
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