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We often picture the flow of information about mathematics a bit
like this:

SCIENCE AND ENGINEERING

APPLIED MATHEMATICS

PURE MATHEMATICS

FOUNDATIONS OF MATHEMATICS



Of course this picture is oversimplified in many ways!

For example:

I The details depend enormously on time and place.

I There are many branches of science and engineering, and a
very complex flow of information among these.

I In academia, only some applications of mathematics are now
officially classified as “applied mathematics”.

I Some branches of physics communicate more directly to “pure
mathematics” than “applied mathematics”.

I Computer science also plays a distinctive role.

But the picture is close enough to true that deviations are
interesting.
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In particular: can developments in applied mathematics force
changes in the foundations of mathematics?

Applied mathematics often provokes new developments in pure
mathematics. But can it demand new foundations?

If some techniques are important in applied math, but resist
formalization, maybe the foundations of mathematics should be
improved!

For example: pure mathematicians tried to eliminate infinitesimals,
but applied mathematicians kept using them... leading to
nonstandard analysis and synthetic differential geometry. The
latter approach drops the law of excluded middle!

http://plato.stanford.edu/entries/continuity/
http://en.wikipedia.org/wiki/Non-standard_analysis
http://home.imf.au.dk/kock/sdg99.pdf
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Computer science is the biggest example of “applied math” that
grew directly out of work in logic, where new ideas directly impact
foundations:

I uncomputability, undecidability,...

I computer-aided proofs: what is a proof?

I category-theoretic logic.

But I want to talk about some other applications of mathematics
that seem to call for category-theoretic foundations.



In many areas of science and engineering, people use diagrams.

I’m mainly interested in ‘string diagrams’, where boxes or other
units are connected by wires — because these diagrams can be
understood using category theory.

Let me sketch some applications of these diagrams... in the order
in which I met them (a sign of old age).

http://math.ucr.edu/home/baez/networks/networks_1.html
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In the 1980s, string diagrams became important at the interface of
knot theory and quantum field theory:

http://www.worldscientific.com/worldscibooks/10.1142/8338


By 1986, these diagrams were seen to describe morphisms in
braided monoidal categories:

http://ncatlab.org/nlab/show/braided+monoidal+category
http://maths.mq.edu.au/~street/JS1.pdf


It became clear that Feynman diagrams, developed back in the
1940s, fit nicely into this theory:

They describe morphisms in certain symmetric monoidal categories.

http://web.mit.edu/dikaiser/www/FdsAmSci.pdf
http://web.mit.edu/dikaiser/www/FdsAmSci.pdf
http://ncatlab.org/nlab/show/symmetric+monoidal+category


Penrose’s ‘spin networks’, going back to 1971, also fit nicely into
this theory:

By 1995, they were adopted by loop quantum gravity to describe
quantum states of the geometry of space.

http://math.ucr.edu/home/baez/penrose/
http://math.ucr.edu/home/baez/penrose/
http://arxiv.org/abs/gr-qc/9505006


In 1997, higher-dimensional diagrams called ‘spin foams’ were
introduced to describe the geometry of spacetime:

These are connected to higher categories, where we have objects,
morphisms, morphisms between morphisms, etc.

http://arxiv.org/abs/gr-qc/9905087
http://arxiv.org/abs/gr-qc/9709052
http://arxiv.org/abs/0908.2469


There is by now a huge flowering of work on higher categories and
their applications to physics, computer science, many areas of pure
mathematics...

... and also the foundations of mathematics, as in

I higher topos theory,

I homotopy type theory, and

I univalent foundations.

which are all closely connected.

http://arxiv.org/abs/math/0608040
http://homotopytypetheory.org/
http://video.ias.edu/univalent


An overall lesson is that every interesting equation is only a
half-truth!

x = x

is true, but not interesting.

x = y

is interesting, but not the whole truth. It really means

∃f : x
∼−→ y

“There is some reversible process f taking us from x to y .”
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f : x
∼−→ y

In physics, this process is often the passage of time, addressing an
old puzzle of Heraclitus.

In logic, this process is often a proof.

In computation, this process is often a computation.

Higher categorical foundations are starting to give us an outlook in
which computation, proof and the passage of time are intimately
linked.

http://arxiv.org/abs/0903.0340
http://arxiv.org/abs/0903.0340
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With powerful and charismatic mathematicians such as Jacob
Lurie and Vladimir Voevodsky involved, we might think the
communication channels are working perfectly now.

There are, however, uses of string diagrams in applied math,
science and engineering that have yet to be reckoned with!

http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.ias.edu/~vladimir/Site3/home.html
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Most challenging are the diagrams in biology, which often describe
qualitative — that is, non-numerical — information.

The Systems Biology Graphical Notation project is trying to
standardize these diagrams. They are developing 3 diagram
languages:

I process diagrams

I entity relationship diagrams

I activity flow diagrams

http://www.sbgn.org/Main_Page
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Process Diagrams show how entities change from one type to
another over time:

http://precedings.nature.com/documents/3721/version/4
http://precedings.nature.com/documents/3721/version/4


Entity Relationship Diagrams show how entities influence the
behavior of each other:

http://precedings.nature.com/documents/3719/version/2
http://precedings.nature.com/documents/3719/version/2


Activity Flow Diagrams show the flow of information between
entities:

http://precedings.nature.com/documents/3724/version/1
http://precedings.nature.com/documents/3724/version/1


While they arose in biology, these diagram languages could apply
to more general systems.

I What is, or could be, the scope of these languages?

I How are these 3 languages connected?

I Is there any deep reason for having exactly three?

I What mathematical structures are at work here?

While biology is one of the biggest and most exciting branches of
science today, I know of no mathematicians, logicians or
philosophers studying these questions!
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I’ve been working on easier examples.

Petri nets are presentations
of symmetric monoidal categories free on some objects and
morphisms. They’ve been much studied in computer science, but
in biology and chemistry we mostly need ‘stochastic’ Petri nets,
where each generating morphism is equipped with a ‘rate constant’
in (0,∞):

This one describes the interaction between white blood cells and
the virus that causes AIDS.

http://en.wikipedia.org/wiki/Petri_net
http://johncarlosbaez.wordpress.com/2012/06/27/the-mathematics-of-biodiversity-part-3/
http://johncarlosbaez.wordpress.com/2012/06/27/the-mathematics-of-biodiversity-part-3/
http://johncarlosbaez.wordpress.com/2012/06/27/the-mathematics-of-biodiversity-part-3/


I’ve been working on easier examples. Petri nets are presentations
of symmetric monoidal categories free on some objects and
morphisms. They’ve been much studied in computer science, but
in biology and chemistry we mostly need ‘stochastic’ Petri nets,
where each generating morphism is equipped with a ‘rate constant’
in (0,∞):

This one describes the interaction between white blood cells and
the virus that causes AIDS.

http://en.wikipedia.org/wiki/Petri_net
http://johncarlosbaez.wordpress.com/2012/06/27/the-mathematics-of-biodiversity-part-3/
http://johncarlosbaez.wordpress.com/2012/06/27/the-mathematics-of-biodiversity-part-3/
http://johncarlosbaez.wordpress.com/2012/06/27/the-mathematics-of-biodiversity-part-3/


Stochastic Petri nets give a probabilistic analogue of quantum field
theory, which deserves a book.

http://math.ucr.edu/home/baez/stoch_stable.pdf
http://math.ucr.edu/home/baez/networks/networks_7.html


String diagrams describe morphisms, but as soon as we draw them,
they become ‘things’, and we become interested in morphisms
between them: morphisms between morphisms.

So, not just categories but bicategories pervade applied math!
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This is especially clear in control theory, which uses ‘signal flow
graphs’ to describe physical systems:

http://en.wikipedia.org/wiki/Signal-flow_graph
http://en.wikipedia.org/wiki/Signal-flow_graph
http://store.doverpublications.com/0486442780.html


For linear systems, signal flow graphs can be seen as giving linear
relations between finite-dimensional vector spaces over the field of
rational functions in one complex variable, C(z).

Pure mathematicians would treat these relations as morphisms in a
category.

But control theorists use different signal flow graphs to describe
the same relation. The same process can be implemented in
different ways! So, they are dealing with bicategory, where two
signal flow graphs are isomorphic if they give the same relation.
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While the intuitive language of diagrams can be formalized using
higher categories, and higher categories can be developed on
set-theoretic foundations, applied mathematicians are not
proceeding this way.

They are directly using diagrams to express the higher categorical
ideas they need for their work.

For most logicians, syntax is fundamentally 1-dimensional: strings
of symbols. They then encode reasoning with higher-dimensional
diagrams into manipulations of strings. But for applied
mathematicians, this is too clumsy. Their syntax more closely
models the things they are studying!

Perhaps research on categorical foundations of mathematics should
look to applied mathematics for inspiration here.
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