
Levin-Wen Models and Tensor Categories

Liang Kong

CQT, National University of Singapore, Feb. 10, 2011

Institute for Advanced Study in Tsinghua University, Beijing

a joint work with Alexei Kitaev



Goals:

I to present a theory of boundary and defects of codimension
1,2,3 in non-chiral topological orders via Levin-Wen models;

I to show how the representation theory of tensor category
enters the study of topological order at its full strength;

I to provide the physical foundation of the so-called extended
Turaev-Viro topological field theories;
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Kitaev’s Toric Code Model

I Kitaev’s Toric Code Model is equivalent to Levin-Wen model
associated to the category RepZ2

of representations of Z2.

I It is the simplest example that can illustrate the general
features of Levin-Wen models.



Kitaev’s Toric Code Model

H = ⊗e∈all edgesHe ; He = C2.

H = −
∑
v

Av −
∑
p

Bp.

Av = σ1
xσ

2
xσ

3
xσ

4
x ; Bp = σ5

zσ
6
zσ

7
zσ

8
z .



Vacuum properties of toric code model:

A vacuum state |0〉 is a state satisfying Av |0〉 = |0〉,Bp|0〉 = |0〉
for all v and p.

I If surface topology is trivial (a sphere, an infinite plane), the
vacuum is unique.

I Vacuum is given by the condensation of closed strings, i.e.

|0〉 =
∑

c∈all closed string configurations

|c〉.



Excitations

I The “set” of excitations determines the topological phase.

I An excitation is defined to be super-selection sectors
(irreducible modules) of a local operator algebra.

I There are four types of excitations: 1, e,m, ε. We denote the
ground states of these sectors as |0〉, |e〉, |m〉, |ε〉. We have

∃v0, Av0 |e〉 = −|e〉,
∃p0, Bp0 |m〉 = −|m〉,

∃v1, p1, Av1 |ε〉 = −|ε〉, Bp1 |ε〉 = −|ε〉.



1 = e ⊗ e ∼ σ1
zσ

2
zσ

3
zσ

4
zσ

5
z |0〉,

1 = m ⊗m ∼ σ6
xσ

7
xσ

8
x |0〉,

e ⊗m = ε.

+ 1, e,m, ε are simple objects of a braided tensor category
Z (RepZ2

) which is the monoidal center of RepZ2
.



A smooth edge

1 −→ 1 e −→ e

m −→ 1 ε −→ e

+ This assignment actually gives a monoidal functor
Z (RepZ2

)→ RepZ2
= FunRepZ2

(RepZ2
,RepZ2

).



A rough edge

1 −→ 1 m −→ m

e −→ 1 ε −→ m

+ This assignment gives another monoidal functor
Z (RepZ2

)→ RepZ2
= FunRepZ2

(Hilb,Hilb).



defects of codimension 1, 2

Bp1 = σ7
xσ

3
xσ

2
xσ

5
x ; Bp2 = σ3

xσ
7
xσ

8
xσ

9
x ;

BQ = σ6
xσ

17
y σ

18
z σ

19
z σ

20
z .



defects of codimension 1

1 7→ 1 7→ 1, e
σ3

z−→ Extdefect
3|7,8,9

σ8
x−→ m,

m 7→ Extdefect
7|3,2,5 7→ e, ε 7→ Extdefect

2,5,7,8,9,3 7→ ε.

+ This assignment gives an invertible monoidal functor
Z (RepZ2

)→ FunRepZ2
|RepZ2

(Hilb,Hilb)→ Z (RepZ2
).



defects of codimension 2

BQ = σ6
xσ

17
y σ

18
z σ

19
z σ

20
z

+ Two eigenstates of BQ correspond to two simple
RepZ2

-RepZ2
-bimodule functors Hilb→ RepZ2

.
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Basics of unitary tensor category

unitary tensor category C = unitary spherical fusion category

I semisimple: every object is a direct sum of simple objects;

I finite: there are only finite number of inequivalent simple
objects, i , j , k , l ∈ I, |I| <∞; dim Hom(A,B) <∞.

I monoidal: (i ⊗ j)⊗ k ∼= i ⊗ (j ⊗ k); 1 ∈ I, 1⊗ i ∼= i ∼= i ⊗ 1;

I the fusion rule: dim Hom(i ⊗ j , k) = Nk
ij is finite;

I C is not assumed to be braided.

Theorem (Müger): The monoidal center Z (C) of C is a modular
tensor category.



Fusion matrices

The associator (i ⊗ j)⊗ k
α−→ i ⊗ (j ⊗ k) induces an isomorphism:

Hom((i ⊗ j)⊗ k , l)
∼=−→ Hom(i ⊗ (j ⊗ k), l)

Writing in basis, we obtain the fusion matrices:

j i

k
m

l

=
∑
n

F ijk;l
mn

j i

k

n

l

(1)



Levin-Wen models

We fix a unitary tensor category C with simple objects
i , j , k , l ,m, n ∈ I.

s
v

Figure: Levin-Wen model defined on a honeycomb lattice.

Hs = CI , Hv = ⊕i ,j ,kHomC(i ⊗ j , k).

H = ⊗sHs ⊗v Hv .



Hamiltonian

Chose a basis of H, i , j , k ∈ I and αi ′j ′;k ′ ∈ HomC(i ′ ⊗ j ′, k ′),

i

j
k

α

H = −
∑
v

Av −
∑
p

Bp.

Av |(i , j ; k |αi ′,j ′;k ′)〉 = δi ,i ′δj ,j ′δk,k ′ |(i , j ; k |αi ′,j ′;k ′)〉.

If the spin on v is such that Av acts as 1, then it is called stable.



The definition of Bp operator

Bp :=
∑
i∈I

di∑
k d2

k

B i
p

I If there are unstable spins around the plaquette p, B i
p act on

the plaquette as zero.

I If all spins around the plaquette p is stable, B i
p acts by

inserting a loop labeled by s ∈ I then evaluating the graph
according to the composition of morphisms in C.

I Bp is a projector. Av and Bp commute.



Remark:

I Given a unitary tensor category C, we obtain a lattice model.

I Conversely, Levin-Wen showed how the axioms of the unitary
tensor category can be derived from the requirement to have a
fix-point wave function of a string-net condensation state.



Edge theories

If we cut the lattice, we automatically obtain a lattice with a
boundary with all boundary strings labeled by simple objects in C.

i

j

k

l

m

i1

i2

i3

i4

We will call such boundary as a C-boundary or C-edge.

Question: Are there any other possibilities?



M-edge

It is possible to label the boundary strings by a different finite set
{λ, σ, . . . } which can be viewed as the set of inequivalent simples
objects of another finite unitary semisimple category M.

λ

γ

δ

σ

ρ

i

j

k

l

The requirement of giving a fix-point wave function of string-net
condensation state is equivalent to require that M has a structure
of C-module. We call such boundary an CM-boundary or

CM-edge.



C-module M:

For i ∈ C, γ, λ ∈M,

I i ⊗ γ is an object in M (⊗ : C ×M→M)

I dim HomM(i ⊗ γ, λ) = Nλ
i ,γ <∞;

I 1⊗ γ ∼= γ;

I associator (i ⊗ j)⊗ λ α−→ i ⊗ (j ⊗ λ);

I fusion matrices:

j i

λ
σ

γ

=
∑
n

F ijk;l
mn

j i

λ

ρ

γ

(2)



Excitations on boundary:

Two approaches:

1. Kitaev: excitations are super-selection sectors of a local
operator algebra;

2. Levin-Wen: excitations can be classified by closed string
operator which commute with the Hamiltonian.

+ Above two approaches lead to the same results.



Levin-Wen approach

Close the boundary to a circle, a closed string operator on it is
nothing but a systematic reassignment of boundary string labels
and spin labels:

γ 7→ F (γ) ∈M,

HomM(i ⊗ γ, λ) 7→ HomM(i ⊗ F (γ),F (λ))

This assignment is essentially the same data forming a functor
from M to M. Physical requirements (Levin-Wen) add certain
consistency conditions which turn it into a C-module functor.

Theorem: Excitations on a CM-edge are given by simple objects
in the category FunC(M,M) of C-module functors.



Kitaev’s approach

We need construct the local operator algebra A.

A := ⊕i ,λ1,λ2,γ1,γ2HomM(i ⊗ λ2, λ1)⊗ HomM(γ1, i ⊗ γ2).

For ξ ∈ HomM(i ⊗ λ2, λ1) and ζ ∈ HomM(γ1, i ⊗ γ2), the element
ξ ⊗ ζ ∈ A can be expressed by the following graph:

ξ ⊗ ζ = i

λ1 λ2ξ

γ1 γ2ζ

for i ∈ C and λ1, λ2, γ1, γ2 ∈M.



The multiplication A⊗ A
•−→ A is defined by

i

λ1 λ2ξ

γ1 γ2ζ

• j

λ′1 λ′2ξ′

γ′1 γ′2ζ′

= δλ2λ′2
δγ2γ′2

i j

λ1 λ2 λ3ξ ξ′

γ1 γ2 γ3

ζ ζ′

where the last graph is a linear span of graphs in A by applying
F-moves twice and removing bubbles.



Action of A on excitations

i j

λ1

λ2

λ3

γ3

γ2

γ1

an excitation

Figure: This picture show how two elements of local operator algebra A
act on an edge excitation (up to an ambiguity of the excited region).



i

λ1

λ2

ρ

γ2

γ1

=
∑

σ,ξ

λ1

λ2

ρ

σ

ρ

γ2

γ1

i

i

ξ

ξ

A is bialgebra with above comultiplication. With some small
modification, one can turn it into a weak C ∗-Hopf algebra so that
the boundary excitations form a finite unitary fusion category.



a defect line or a domain wall

i

j

k

l

λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8

λ9

i ′

j ′

k ′

l ′

i , j , k , l ∈ C, λ1, . . . , λ9 ∈M, i ′, j ′, k ′, l ′ ∈ D. C and D are unitary
tensor categories and M is a C-D-bimodule. We call such defect

CMD-defect line or CMD-wall.



I A M-edge can be viewed as CMHilb-wall.

I Conversely, if we fold the system along the CMD-wall, we
obtain a doubled bulk system determined by C �Dop with a
single boundary determined by M which is viewed as a
C �Dop-module.

a CMD-wall = a C�DopM-edge



Therefore, we have:

CMD-wall excitations = C�DopM-edge excitations

= FunC�Dop(M,M)

= FunC|D(M,M)

the category of C-D-bimodule.

As a special case, a line in C-bulk = a CCC-wall.

C-bulk excitations = CCC-wall excitations

= FunC|C(C, C) = Z (C)



I A CMD-wall can fuse with a DNE -wall into a

C(M�D N )E -wall.

I CMD-wall (or DNE -wall) excitations can fuse into

C(M�D N )E -wall as follow:

(M F−→M) 7→ (M�D N
F�D idM−−−−−→M�D N )

(N G−→ N ) 7→ (M�D N
idM�DG−−−−−−→M�D N )



A smooth edge

1 −→ 1 e −→ e

m −→ 1 ε −→ e

+ This assignment actually gives a monoidal functor
Z (RepZ2

)→ RepZ2
= FunRepZ2

(RepZ2
,RepZ2

).



A rough edge

1 −→ 1 m −→ m

e −→ 1 ε −→ m

+ This assignment gives another monoidal functor
Z (RepZ2

)→ RepZ2
= FunRepZ2

(Hilb,Hilb).



defects of codimension 1

1 7→ 1 7→ 1, e 7→ Extdefect
3|7,8,9 7→ m,

m 7→ Extdefect
7|3,2,5 7→ e, ε 7→ Extdefect

2,5,7,8,9,3 7→ ε.

+ This assignment gives an invertible monoidal functor
Z (RepZ2

)→ FunRepZ2
|RepZ2

(Hilb,Hilb)→ Z (RepZ2
).



Definition: If M�D N ∼= C and N �CM∼= D, then M and N
are called invertible; C and D are called Morita equivalent.

I C and D are Morita equivalent iff Z (C) is equivalent to Z (D)
as braided tensor categories.

I Invertible C-C-defects form a group called Picard group Pic(C).

I We denote the auto-equivalence of Z (C) as Aut(Z (C)).

Theorem (Kitaev-K., Etingof-Nikshych-Ostrik):

Aut(Z (C)) ∼= Pic(C).



Defects of codimension 2

I A defect of codimension 2 is a junction between two defect
lines. It is given by a module functor.

I An excitation can be viewed as a defect of codimension 2.

I Conversely, a defect of codimension 2 is an excitation in the
sense that it can be realized as a super-selection sector of a
local operator algebra A′.



Action of A′ on defects of codimension 2

i j

λ1

λ2

λ3

γ3

γ2

γ1

a cod-2 defect

λ1, λ2, λ3 ∈M, γ1, γ2, γ3 ∈ N
.



Defects of codimension 3 (instantons)

If one takes into account the time direction, one can define a
defect of codimension 3 by a natural transformation φ between
module functors.

The Hamiltonian:
H → H + Ht .

where Ht is a local operator defined using φ.



Dictionary 1:

Ingredients in LW-model Tensor-categorical notions

a bulk lattice a unitary tensor category C
string labels in a bulk simple objects in a unitary tensor category

C
excitations in a bulk simple objects in Z (C) the monoidal cen-

ter of C
an edge a C-module M
string labels on an edge simple objects in a C-module M
excitations on a M-edge FunC(M,M): the category of C-module

functors
bulk-excitations fuse into
an M-edge

Z (C) = FunC|C(C, C)→ FunC(M,M)

(C F−→ C) 7→ (C�CM
F�idM−−−−−→ C�CM).



Dictionary 2:

Ingredients in LW-model Tensor-categorical notions

a domain wall a C-D-bimodule N
string labels on a N -wall simple objects in a C-D-bimodule CND
excitations on a N -wall FunC|D(N ,N ): the category of C-D-

bimodule functors
fusion of two walls M�D N
an invertible CND-wall C and D are Morita equivalent, i.e.

N �D N op ∼= C, N op �C N ∼= D.
bulk-excitation fuse into a Z (C) = FunC|C(C, C)→ FunC|D(N ,N )

CND-wall (C F−→ C) 7→ (C �C N
F�idN−−−−→ C �C N ).

defects of codimension 2: a
M-N -excitation

simple objects F ,G ∈ FunC|D(M,N )

a defect of codimesion 3 a natural transformation φ : F → G
or an instanton
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I Extended topological field theories was formulated by Baez
and Dolan in terms of n-category in 90s. The classification
was given in the so-called Baez-Dolan conjecture which was
recently proved by Lurie.

I Levin-Wen models enriched by defects of codimension 1,2,3
provides a physical foundation behind the so-called extended
Turaev-Viro topological field theories.



The building blocks of the lattice models:

F
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G

x�

φ _ *4C D

M
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N
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which 0-1-2-3 cells of a tri-category, or “equivalently”,

ϕ
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ϕ′
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FN

DD



Excitations (topological phases):

Z (M)

F∗

����
��

��
��

��
��

��
��

G∗

��?
??

??
??

??
??

??
??

?

Z (C)

LM

77ooooooooooooooooooooooooo

LN

''OOOOOOOOOOOOOOOOOOOOOOOOO Z (M,N )F
Z(φ) // Z (M,N )G Z (D)

RM

ggOOOOOOOOOOOOOOOOOOOOOOOO

RN

wwoooooooooooooooooooooooo

Z (N )

F∗

__????????????????

G∗

??����������������

Z (M) := FunC|D(M,M), Z (N ) := FunC|D(N ,N ),
F ,G,∈ FunC|D(M,N ), Z (M,N )F := Z (N ) ◦ F ◦ Z (M),
Z (M,N )G := Z (N ) ◦ G ◦ Z (M).



Conjecture (Functoriality of Holography): The assignment Z is a
functor between two tricategories.

Remark: It also says that the notion of monoidal center is
functorial.



General philosophy: for n + 1-dim extended TQFT,

pt 7→ n-category of boundary conditions.

Extended Turaev-Viro (2+1) TQFT: the bicategory of boundary
conditions of LW-models = C-Mod,

pt+,− 7→ C,D or (C-Mod ∼= D-Mod),

an interval 7→ CMD,DNC (invertible)

S1 7→ Tr(C) = Z (C),

Conjecturely,

Turaev-Viro(C) = Reshtikin-Turaev(Z (C)).



Thank you!
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