Levin-Wen Models and Tensor Categories

Liang Kong

CQT, National University of Singapore, Feb. 10, 2011

Institute for Advanced Study in Tsinghua University, Beijing

a joint work with Alexei Kitaev

Goals:

- to present a theory of boundary and defects of codimension 1,2,3 in non-chiral topological orders via Levin-Wen models;
- to show how the representation theory of tensor category enters the study of topological order at its full strength;
- to provide the physical foundation of the so-called extended Turaev-Viro topological field theories;

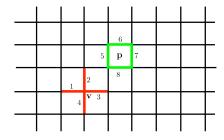
Levin-Wen models

Extended Topological Field Theories

Levin-Wen models

Extended Topological Field Theories

- ► Kitaev's Toric Code Model is equivalent to Levin-Wen model associated to the category Rep_{Z2} of representations of Z₂.
- It is the simplest example that can illustrate the general features of Levin-Wen models.



$$\begin{aligned} \mathcal{H} &= \otimes_{e \in \mathsf{all edges}} \mathcal{H}_e; \qquad \mathcal{H}_e = \mathbb{C}^2. \\ H &= -\sum_{v} A_v - \sum_{p} B_p. \\ A_v &= \sigma_x^1 \sigma_x^2 \sigma_x^3 \sigma_x^4; \qquad B_p = \sigma_z^5 \sigma_z^6 \sigma_z^7 \sigma_z^8. \end{aligned}$$

Vacuum properties of toric code model:

A vacuum state $|0\rangle$ is a state satisfying $A_v|0\rangle=|0\rangle, B_p|0\rangle=|0\rangle$ for all v and p.

- If surface topology is trivial (a sphere, an infinite plane), the vacuum is unique.
- Vacuum is given by the condensation of closed strings, i.e.

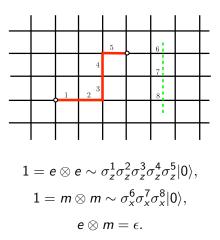
$$|0
angle = \sum_{c\in {\sf all \ closed \ string \ configurations}} |c
angle.$$

Excitations

► The "set" of excitations determines the topological phase.

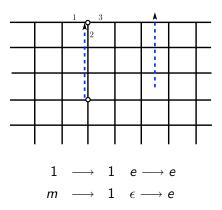
- An excitation is defined to be super-selection sectors (irreducible modules) of a local operator algebra.
- ► There are four types of excitations: 1, e, m, e. We denote the ground states of these sectors as |0⟩, |e⟩, |m⟩, |e⟩. We have

$$\begin{array}{ll} \exists v_0, & A_{v_0} | e \rangle = - | e \rangle, \\ \exists p_0, & B_{p_0} | m \rangle = - | m \rangle, \\ \exists v_1, p_1, & A_{v_1} | \epsilon \rangle = - | \epsilon \rangle, \ B_{p_1} | \epsilon \rangle = - | \epsilon \rangle. \end{array}$$



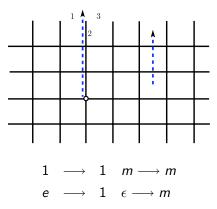
■ 1, e, m, ϵ are simple objects of a braided tensor category $Z(\text{Rep}_{\mathbb{Z}_2})$ which is the monoidal center of $\text{Rep}_{\mathbb{Z}_2}$.

A smooth edge



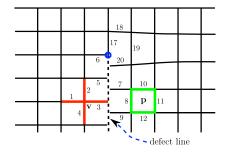
➡ This assignment actually gives a monoidal functor $Z(\operatorname{Rep}_{\mathbb{Z}_2}) \to \operatorname{Rep}_{\mathbb{Z}_2} = \operatorname{Fun}_{\operatorname{Rep}_{\mathbb{Z}_2}}(\operatorname{Rep}_{\mathbb{Z}_2}, \operatorname{Rep}_{\mathbb{Z}_2}).$

A rough edge



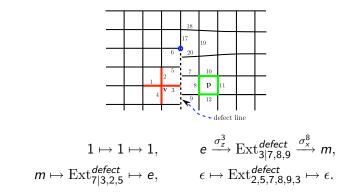
This assignment gives another monoidal functor $Z(\operatorname{Rep}_{\mathbb{Z}_2}) \to \operatorname{Rep}_{\mathbb{Z}_2} = \operatorname{Fun}_{\operatorname{Rep}_{\mathbb{Z}_2}}(\operatorname{Hilb}, \operatorname{Hilb}).$

defects of codimension 1, 2



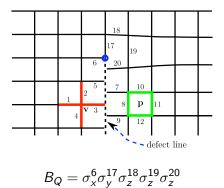
$$B_{p_1} = \sigma_x^7 \sigma_x^3 \sigma_x^2 \sigma_x^5; \quad B_{p_2} = \sigma_x^3 \sigma_x^7 \sigma_x^8 \sigma_x^9; \\ B_Q = \sigma_x^6 \sigma_y^{17} \sigma_z^{18} \sigma_z^{19} \sigma_z^{20}.$$

defects of codimension 1



This assignment gives an invertible monoidal functor $Z(\operatorname{Rep}_{\mathbb{Z}_2}) \to \operatorname{Fun}_{\operatorname{Rep}_{\mathbb{Z}_2}}(\operatorname{Rep}_{\mathbb{Z}_2}(\operatorname{Hilb},\operatorname{Hilb}) \to Z(\operatorname{Rep}_{\mathbb{Z}_2}).$

defects of codimension 2



■ Two eigenstates of B_Q correspond to two simple $\operatorname{Rep}_{\mathbb{Z}_2}$ - $\operatorname{Rep}_{\mathbb{Z}_2}$ -bimodule functors $\operatorname{Hilb} \to \operatorname{Rep}_{\mathbb{Z}_2}$.

Levin-Wen models

Extended Topological Field Theories

Basics of unitary tensor category

unitary tensor category $\mathcal{C}=$ unitary spherical fusion category

- semisimple: every object is a direct sum of simple objects;
- Finite: there are only finite number of inequivalent simple objects, i, j, k, l ∈ I, |I| < ∞; dim Hom(A, B) < ∞.</p>
- ▶ monoidal: $(i \otimes j) \otimes k \cong i \otimes (j \otimes k)$; $\mathbf{1} \in \mathcal{I}$, $\mathbf{1} \otimes i \cong i \cong i \otimes \mathbf{1}$;
- the fusion rule: dim Hom $(i \otimes j, k) = N_{ii}^k$ is finite;
- \blacktriangleright C is not assumed to be braided.

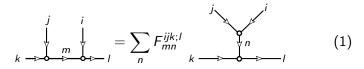
Theorem (Müger): The monoidal center $Z(\mathcal{C})$ of \mathcal{C} is a modular tensor category.

Fusion matrices

The associator $(i \otimes j) \otimes k \xrightarrow{\alpha} i \otimes (j \otimes k)$ induces an isomorphism:

$$\mathsf{Hom}((i \otimes j) \otimes k, l) \xrightarrow{\cong} \mathsf{Hom}(i \otimes (j \otimes k), l)$$

Writing in basis, we obtain the fusion matrices:



Levin-Wen models

We fix a unitary tensor category C with simple objects $i, j, k, l, m, n \in I$.

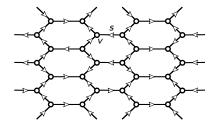
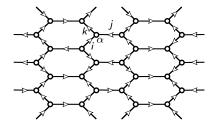


Figure: Levin-Wen model defined on a honeycomb lattice.

$$\mathcal{H}_{s} = \mathbb{C}^{\mathcal{I}}, \quad \mathcal{H}_{v} = \bigoplus_{i,j,k} \operatorname{Hom}_{\mathcal{C}}(i \otimes j, k).$$
$$\mathcal{H} = \bigotimes_{s} \mathcal{H}_{s} \bigotimes_{v} \mathcal{H}_{v}.$$

Hamiltonian

Chose a basis of \mathcal{H} , $i, j, k \in \mathcal{I}$ and $\alpha^{i'j';k'} \in \operatorname{Hom}_{\mathcal{C}}(i' \otimes j', k')$,



$$H=-\sum_{v}A_{v}-\sum_{p}B_{p}.$$

 $A_{\mathbf{v}}|(i,j;k|\alpha^{i',j';k'})\rangle = \delta_{i,i'}\delta_{j,j'}\delta_{k,k'}|(i,j;k|\alpha^{i',j';k'})\rangle.$

If the spin on v is such that A_v acts as 1, then it is called stable.

The definition of B_p operator

$$B_p := \sum_{i \in \mathcal{I}} \frac{d_i}{\sum_k d_k^2} B_p^i$$

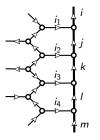
- If there are unstable spins around the plaquette p, Bⁱ_p act on the plaquette as zero.
- If all spins around the plaquette p is stable, Bⁱ_p acts by inserting a loop labeled by s ∈ I then evaluating the graph according to the composition of morphisms in C.
- B_p is a projector. A_v and B_p commute.

Remark:

- ▶ Given a unitary tensor category C, we obtain a lattice model.
- Conversely, Levin-Wen showed how the axioms of the unitary tensor category can be derived from the requirement to have a fix-point wave function of a string-net condensation state.

Edge theories

If we cut the lattice, we automatically obtain a lattice with a boundary with all boundary strings labeled by simple objects in C.

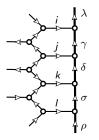


We will call such boundary as a C-boundary or C-edge.

Question: Are there any other possibilities?

$\mathcal{M} ext{-edge}$

It is possible to label the boundary strings by a different finite set $\{\lambda, \sigma, \ldots\}$ which can be viewed as the set of inequivalent simples objects of another finite unitary semisimple category \mathcal{M} .

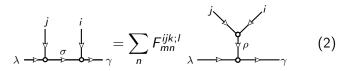


The requirement of giving a fix-point wave function of string-net condensation state is equivalent to require that \mathcal{M} has a structure of \mathcal{C} -module. We call such boundary an $_{\mathcal{C}}\mathcal{M}$ -boundary or $_{\mathcal{C}}\mathcal{M}$ -edge.

\mathcal{C} -module \mathcal{M} :

For $i \in \mathcal{C}$, $\gamma, \lambda \in \mathcal{M}$,

- ▶ $i \otimes \gamma$ is an object in \mathcal{M} ($\otimes : \mathcal{C} \times \mathcal{M} \to \mathcal{M}$)
- dim Hom $_{\mathcal{M}}(i \otimes \gamma, \lambda) = N_{i,\gamma}^{\lambda} < \infty;$
- $\blacktriangleright \mathbf{1} \otimes \gamma \cong \gamma;$
- associator $(i \otimes j) \otimes \lambda \xrightarrow{\alpha} i \otimes (j \otimes \lambda);$
- fusion matrices:



Excitations on boundary:

Two approaches:

- Kitaev: excitations are super-selection sectors of a local operator algebra;
- 2. Levin-Wen: excitations can be classified by closed string operator which commute with the Hamiltonian.
- Above two approaches lead to the same results.

Levin-Wen approach

Close the boundary to a circle, a closed string operator on it is nothing but a systematic reassignment of boundary string labels and spin labels:

 $\begin{array}{rcl} \gamma & \mapsto & F(\gamma) \in \mathcal{M}, \\ \mathsf{Hom}_{\mathcal{M}}(i \otimes \gamma, \lambda) & \mapsto & \mathsf{Hom}_{\mathcal{M}}(i \otimes F(\gamma), F(\lambda)) \end{array}$

This assignment is essentially the same data forming a functor from \mathcal{M} to \mathcal{M} . Physical requirements (Levin-Wen) add certain consistency conditions which turn it into a C-module functor.

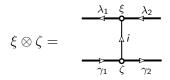
Theorem: Excitations on a $_{\mathcal{C}}\mathcal{M}$ -edge are given by simple objects in the category $\operatorname{Fun}_{\mathcal{C}}(\mathcal{M}, \mathcal{M})$ of \mathcal{C} -module functors.

Kitaev's approach

We need construct the local operator algebra A.

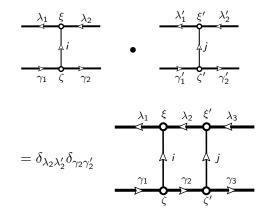
$$A := \oplus_{i,\lambda_1,\lambda_2,\gamma_1,\gamma_2} \operatorname{Hom}_{\mathcal{M}}(i \otimes \lambda_2,\lambda_1) \otimes \operatorname{Hom}_{\mathcal{M}}(\gamma_1, i \otimes \gamma_2).$$

For $\xi \in \text{Hom}_{\mathcal{M}}(i \otimes \lambda_2, \lambda_1)$ and $\zeta \in \text{Hom}_{\mathcal{M}}(\gamma_1, i \otimes \gamma_2)$, the element $\xi \otimes \zeta \in A$ can be expressed by the following graph:



for $i \in C$ and $\lambda_1, \lambda_2, \gamma_1, \gamma_2 \in \mathcal{M}$.

The multiplication $A \otimes A \xrightarrow{\bullet} A$ is defined by



where the last graph is a linear span of graphs in A by applying F-moves twice and removing bubbles.

Action of A on excitations

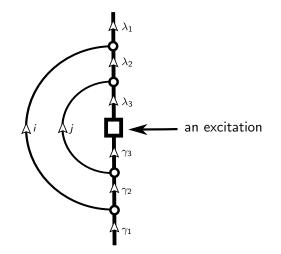
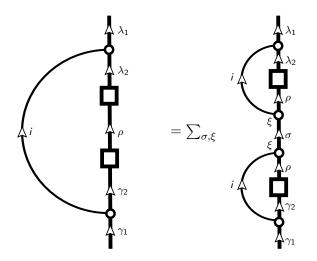
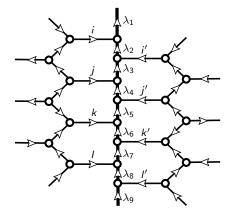


Figure: This picture show how two elements of local operator algebra A act on an edge excitation (up to an ambiguity of the excited region).



A is bialgebra with above comultiplication. With some small modification, one can turn it into a weak C^* -Hopf algebra so that the boundary excitations form a finite unitary fusion category.

a defect line or a domain wall



 $i, j, k, l \in C, \lambda_1, \ldots, \lambda_9 \in \mathcal{M}, i', j', k', l' \in \mathcal{D}.$ C and \mathcal{D} are unitary tensor categories and \mathcal{M} is a C- \mathcal{D} -bimodule. We call such defect $_{\mathcal{C}}\mathcal{M}_{\mathcal{D}}$ -defect line or $_{\mathcal{C}}\mathcal{M}_{\mathcal{D}}$ -wall.

- A \mathcal{M} -edge can be viewed as $_{\mathcal{C}}\mathcal{M}_{\text{Hilb}}$ -wall.
- Conversely, if we fold the system along the _CM_D-wall, we obtain a doubled bulk system determined by C ⊠ D^{op} with a single boundary determined by M which is viewed as a C ⊠ D^{op}-module.

 $\mathsf{a}_{\mathcal{C}}\mathcal{M}_{\mathcal{D}}\text{-}\mathsf{wall}=\mathsf{a}_{\mathcal{C}\boxtimes\mathcal{D}^{\mathsf{op}}}\mathcal{M}\text{-}\mathsf{edge}$

Therefore, we have:

 $_{\mathcal{C}}\mathcal{M}_{\mathcal{D}}$ -wall excitations = $_{\mathcal{C}\boxtimes\mathcal{D}^{\operatorname{op}}}\mathcal{M}$ -edge excitations = $\operatorname{Fun}_{\mathcal{C}\boxtimes\mathcal{D}^{\operatorname{op}}}(\mathcal{M},\mathcal{M})$ = $\operatorname{Fun}_{\mathcal{C}\mid\mathcal{D}}(\mathcal{M},\mathcal{M})$

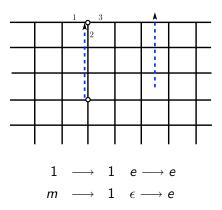
the category of C-D-bimodule.

As a special case, a line in C-bulk = a $_{C}C_{C}$ -wall.

- ► A $_{\mathcal{C}}\mathcal{M}_{\mathcal{D}}$ -wall can fuse with a $_{\mathcal{D}}\mathcal{N}_{\mathcal{E}}$ -wall into a $_{\mathcal{C}}(\mathcal{M}\boxtimes_{\mathcal{D}}\mathcal{N})_{\mathcal{E}}$ -wall.
- _CM_D-wall (or _DN_E-wall) excitations can fuse into _C(M ⊠_D N)_E-wall as follow:

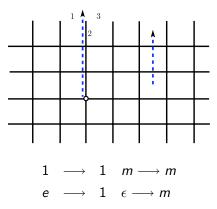
$$(\mathcal{M} \xrightarrow{F} \mathcal{M}) \mapsto (\mathcal{M} \boxtimes_{\mathcal{D}} \mathcal{N} \xrightarrow{F \boxtimes_{\mathcal{D}} \mathrm{id}_{\mathcal{M}}} \mathcal{M} \boxtimes_{\mathcal{D}} \mathcal{N})$$
$$(\mathcal{N} \xrightarrow{G} \mathcal{N}) \mapsto (\mathcal{M} \boxtimes_{\mathcal{D}} \mathcal{N} \xrightarrow{\mathrm{id}_{\mathcal{M}} \boxtimes_{\mathcal{D}} G} \mathcal{M} \boxtimes_{\mathcal{D}} \mathcal{N})$$

A smooth edge



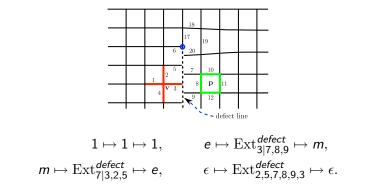
➡ This assignment actually gives a monoidal functor $Z(\operatorname{Rep}_{\mathbb{Z}_2}) \to \operatorname{Rep}_{\mathbb{Z}_2} = \operatorname{Fun}_{\operatorname{Rep}_{\mathbb{Z}_2}}(\operatorname{Rep}_{\mathbb{Z}_2}, \operatorname{Rep}_{\mathbb{Z}_2}).$

A rough edge



This assignment gives another monoidal functor $Z(\operatorname{Rep}_{\mathbb{Z}_2}) \to \operatorname{Rep}_{\mathbb{Z}_2} = \operatorname{Fun}_{\operatorname{Rep}_{\mathbb{Z}_2}}(\operatorname{Hilb}, \operatorname{Hilb}).$

defects of codimension 1



This assignment gives an invertible monoidal functor $Z(\operatorname{Rep}_{\mathbb{Z}_2}) \to \operatorname{Fun}_{\operatorname{Rep}_{\mathbb{Z}_2}|\operatorname{Rep}_{\mathbb{Z}_2}}(\operatorname{Hilb},\operatorname{Hilb}) \to Z(\operatorname{Rep}_{\mathbb{Z}_2}).$ **Definition**: If $\mathcal{M} \boxtimes_{\mathcal{D}} \mathcal{N} \cong \mathcal{C}$ and $\mathcal{N} \boxtimes_{\mathcal{C}} \mathcal{M} \cong \mathcal{D}$, then \mathcal{M} and \mathcal{N} are called invertible; \mathcal{C} and \mathcal{D} are called Morita equivalent.

- C and D are Morita equivalent iff Z(C) is equivalent to Z(D) as braided tensor categories.
- ▶ Invertible C-C-defects form a group called Picard group Pic(C).
- We denote the auto-equivalence of $Z(\mathcal{C})$ as $Aut(Z(\mathcal{C}))$.

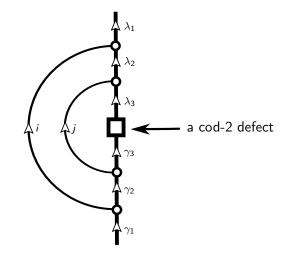
Theorem (Kitaev-K., Etingof-Nikshych-Ostrik):

 $\operatorname{Aut}(Z(\mathcal{C})) \cong \operatorname{Pic}(\mathcal{C}).$

Defects of codimension 2

- A defect of codimension 2 is a junction between two defect lines. It is given by a module functor.
- ► An excitation can be viewed as a defect of codimension 2.
- Conversely, a defect of codimension 2 is an excitation in the sense that it can be realized as a super-selection sector of a local operator algebra A'.

Action of A' on defects of codimension 2



 $\lambda_1,\lambda_2,\lambda_3\in\mathcal{M},\gamma_1,\gamma_2,\gamma_3\in\mathcal{N}$

If one takes into account the time direction, one can define a defect of codimension 3 by a natural transformation ϕ between module functors.

The Hamiltonian:

$$H \rightarrow H + H_t$$
.

where H_t is a local operator defined using ϕ .

Dictionary 1:

Ingredients in LW-model	Tensor-categorical notions
a bulk lattice	a unitary tensor category ${\cal C}$
string labels in a bulk	simple objects in a unitary tensor category ${\cal C}$
excitations in a bulk	simple objects in $Z(\mathcal{C})$ the monoidal cen-
	ter of $\mathcal C$
an edge	a \mathcal{C} -module \mathcal{M}
string labels on an edge	simple objects in a $\mathcal C$ -module $\mathcal M$
excitations on a $\mathcal M$ -edge	$\operatorname{Fun}_{\mathcal{C}}(\mathcal{M},\mathcal{M})$: the category of \mathcal{C} -module
	functors
bulk-excitations fuse into	$Z(\mathcal{C}) = Fun_{\mathcal{C} \mathcal{C}}(\mathcal{C},\mathcal{C}) \to Fun_{\mathcal{C}}(\mathcal{M},\mathcal{M})$
an $\mathcal M$ -edge	
	$(\mathcal{C} \xrightarrow{\mathcal{F}} \mathcal{C}) \mapsto (\mathcal{C} \boxtimes_{\mathcal{C}} \mathcal{M} \xrightarrow{\mathcal{F} \boxtimes \operatorname{id}_{\mathcal{M}}} \mathcal{C} \boxtimes_{\mathcal{C}} \mathcal{M}).$

Dictionary 2:

Ingredients in LW-model	Tensor-categorical notions
a domain wall	a $\mathcal{C} extsf{-}\mathcal{D} extsf{-} extsf{bimodule}$ \mathcal{N}
string labels on a $\mathcal N$ -wall	simple objects in a C - D -bimodule $_{\mathcal{C}}\mathcal{N}_{\mathcal{D}}$
excitations on a $\mathcal N$ -wall	$\operatorname{Fun}_{\mathcal{C} \mathcal{D}}(\mathcal{N},\mathcal{N})$: the category of \mathcal{C} - \mathcal{D} -
	bimodule functors
fusion of two walls	$\mathcal{M} \boxtimes_{\mathcal{D}} \mathcal{N}$
an invertible $_{\mathcal{C}}\mathcal{N}_{\mathcal{D}}$ -wall	${\mathcal C}$ and ${\mathcal D}$ are Morita equivalent, i.e.
	$\mathcal{N} \boxtimes_{\mathcal{D}} \mathcal{N}^{op} \cong \mathcal{C}, \ \mathcal{N}^{op} \boxtimes_{\mathcal{C}} \mathcal{N} \cong \mathcal{D}.$
bulk-excitation fuse into a	${\sf Z}({\mathcal C})={\sf Fun}_{{\mathcal C} {\mathcal C}}({\mathcal C},{\mathcal C})\to{\sf Fun}_{{\mathcal C} {\mathcal D}}({\mathcal N},{\mathcal N})$
$_{\mathcal{C}}\mathcal{N}_{\mathcal{D}}$ -wall	$(\mathcal{C} \xrightarrow{\mathcal{F}} \mathcal{C}) \mapsto (\mathcal{C} \boxtimes_{\mathcal{C}} \mathcal{N} \xrightarrow{\mathcal{F} \boxtimes \operatorname{id}_{\mathcal{N}}} \mathcal{C} \boxtimes_{\mathcal{C}} \mathcal{N}).$
defects of codimension 2: a	simple objects $\mathcal{F}, \mathcal{G} \in Fun_{\mathcal{C} \mathcal{D}}(\mathcal{M}, \mathcal{N})$
$\mathcal{M} ext{-}\mathcal{N} ext{-} ext{excitation}$, , , , , , , , , , , , , , , , , , , ,
a defect of codimesion 3	a natural transformation $\phi:\mathcal{F} ightarrow\mathcal{G}$
or an instanton	

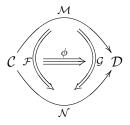
Kitaev's Toric Code Model

Levin-Wen models

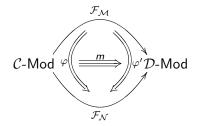
Extended Topological Field Theories

Extended topological field theories was formulated by Baez and Dolan in terms of n-category in 90s. The classification was given in the so-called Baez-Dolan conjecture which was recently proved by Lurie.

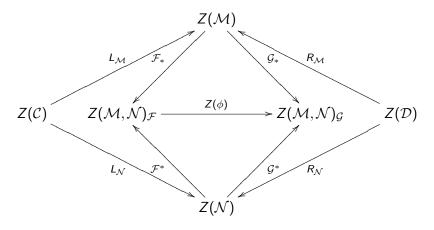
Levin-Wen models enriched by defects of codimension 1,2,3 provides a physical foundation behind the so-called extended Turaev-Viro topological field theories. The building blocks of the lattice models:



which 0-1-2-3 cells of a tri-category, or "equivalently",



Excitations (topological phases):



$$\begin{aligned} & Z(\mathcal{M}) := \mathsf{Fun}_{\mathcal{C}|\mathcal{D}}(\mathcal{M},\mathcal{M}), \ Z(\mathcal{N}) := \mathsf{Fun}_{\mathcal{C}|\mathcal{D}}(\mathcal{N},\mathcal{N}), \\ & \mathcal{F}, \mathcal{G}, \in \mathsf{Fun}_{\mathcal{C}|\mathcal{D}}(\mathcal{M},\mathcal{N}), \ Z(\mathcal{M},\mathcal{N})_{\mathcal{F}} := Z(\mathcal{N}) \circ \mathcal{F} \circ Z(\mathcal{M}), \\ & Z(\mathcal{M},\mathcal{N})_{\mathcal{G}} := Z(\mathcal{N}) \circ \mathcal{G} \circ Z(\mathcal{M}). \end{aligned}$$

Conjecture (Functoriality of Holography): The assignment Z is a functor between two tricategories.

Remark: It also says that the notion of monoidal center is functorial.

General philosophy: for n + 1-dim extended TQFT,

 $pt \mapsto n$ -category of boundary conditions.

Extended Turaev-Viro (2+1) TQFT: the bicategory of boundary conditions of LW-models = C-Mod,

$$\mathsf{pt}_{+,-} \mapsto \mathcal{C}, \mathcal{D} \text{ or } (\mathcal{C}\operatorname{-\mathsf{Mod}} \cong \mathcal{D}\operatorname{-\mathsf{Mod}}),$$

an interval
$$\mapsto _{\mathcal{C}}\mathcal{M}_{\mathcal{D}}, _{\mathcal{D}}\mathcal{N}_{\mathcal{C}}$$
 (invertible)

$$S^1 \mapsto Tr(\mathcal{C}) = Z(\mathcal{C}),$$

Conjecturely,

Turaev-Viro(
$$\mathcal{C}$$
) = Reshtikin-Turaev($Z(\mathcal{C})$).

Thank you!