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Goals:

> to present a theory of boundary and defects of codimension
1,2,3 in non-chiral topological orders via Levin-Wen models;

> to show how the representation theory of tensor category
enters the study of topological order at its full strength;

» to provide the physical foundation of the so-called extended
Turaev-Viro topological field theories;



Kitaev's Toric Code Model

Levin-Wen models

Extended Topological Field Theories
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Kitaev's Toric Code Model



Kitaev's Toric Code Model

» Kitaev's Toric Code Model is equivalent to Levin-Wen model
associated to the category Repy, of representations of Z;.

» It is the simplest example that can illustrate the general
features of Levin-Wen models.



Kitaev's Toric Code Model




Vacuum properties of toric code model:

A vacuum state |0) is a state satisfying A,|0) = |0), B,|0) = |0)
for all v and p.

» If surface topology is trivial (a sphere, an infinite plane), the
vacuum is unique.

» Vacuum is given by the condensation of closed strings, i.e.
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ceall closed string configurations



Excitations

» The “set” of excitations determines the topological phase.

» An excitation is defined to be super-selection sectors
(irreducible modules) of a local operator algebra.

» There are four types of excitations: 1, e, m,e. We denote the
ground states of these sectors as |0), |e), |m), |e). We have
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= 1, e, m, e are simple objects of a braided tensor category
Z(Repy,) which is the monoidal center of Repy,.



A smooth edge

TR PEEY P
o
[ R B (.

1 — 1 e—e

m — 1 e—e

1= This assignment actually gives a monoidal functor
Z(Repz,) — Repy, = Fungrep, (Repy,; Repy,).



A rough edge
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1= This assignment gives another monoidal functor
Z(Repy,) — Repy, = FunRepZZ(HiIb, Hilb).



defects of codimension 1, 2
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defects of codimension 1
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== This assignment gives an invertible monoidal functor
Z(Repzz) — FunRepZQ|RepZ2(Hilb, Hilb) — Z(RepZZ).



defects of codimension 2
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1= Two eigenstates of Bg correspond to two simple
Repy,-Repy,-bimodule functors Hilb — Repy, .
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Levin-Wen models



Basics of unitary tensor category

unitary tensor category C = unitary spherical fusion category

» semisimple: every object is a direct sum of simple objects;

» finite: there are only finite number of inequivalent simple
objects, i,j, k,1 € Z, |Z| < oo; dimHom(A, B) < oc.

» monoidal: (i®j)RkZi®(j®k),1cZ,1iZ2i2i®l,

» the fusion rule: dimHom(i ® j, k) = Né‘- is finite;

» C is not assumed to be braided.

Theorem (Miiger): The monoidal center Z(C) of C is a modular
tensor category.



Fusion matrices

The associator (i ®j) ® k % i ® (j ® k) induces an isomorphism:

~

Hom((i @ j) @ k, 1) = Hom(i ® (j ® k), /)

Writing in basis, we obtain the fusion matrices:

Jj i

f i Z F'Jk’ n (1)
!



Levin-Wen models

We fix a unitary tensor category C with simple objects
i,j,k,l,mnelT.

Figure: Levin-Wen model defined on a honeycomb lattice.

He=C%, H,= ®ijkHome(i ® j, k).
H - ®5H5 ®v Hv-



Hamiltonian

Chose a basis of H, i,j,k € T and o'/ € Home(i' @ j/, k'),

Avl(i,J; k|04ilzj/;k/)> = 0;,in6j jr Ok k| (7,4 k|ai,’j/;k/)>.

If the spin on v is such that A, acts as 1, then it is called stable.



The definition of B, operator

g

i€l

» If there are unstable spins around the plaquette p, B,’; act on
the plaquette as zero.

» If all spins around the plaquette p is stable, B,’; acts by
inserting a loop labeled by s € 7 then evaluating the graph
according to the composition of morphisms in C.

» B, is a projector. A, and B, commute.



Remark:

» Given a unitary tensor category C, we obtain a lattice model.

» Conversely, Levin-Wen showed how the axioms of the unitary
tensor category can be derived from the requirement to have a
fix-point wave function of a string-net condensation state.



Edge theories

If we cut the lattice, we automatically obtain a lattice with a
boundary with all boundary strings labeled by simple objects in C.

We will call such boundary as a C-boundary or C-edge.

Question: Are there any other possibilities?



M-edge

It is possible to label the boundary strings by a different finite set
{\,0,...} which can be viewed as the set of inequivalent simples
objects of another finite unitary semisimple category M.

The requirement of giving a fix-point wave function of string-net
condensation state is equivalent to require that M has a structure
of C-module. We call such boundary an ¢ M-boundary or

cM-edge.



C-module M:

ForieC,v,Ae M,
» [/ ® is an object in M (® : C x M — M)
» dim Homup (i @ v, A) = Ni),\w < o0
» 1y,
> associator (I ®j) @A 5 i@ (j® N);

» fusion matrices:

ZFUkI



Excitations on boundary:

Two approaches:

1. Kitaev: excitations are super-selection sectors of a local
operator algebra;

2. Levin-Wen: excitations can be classified by closed string
operator which commute with the Hamiltonian.

1= Above two approaches lead to the same results.



Levin-Wen approach

Close the boundary to a circle, a closed string operator on it is
nothing but a systematic reassignment of boundary string labels
and spin labels:

v = F(y)eM,
Homa(i @ 7, A) = Homa (i ® F(7), F(X))
This assignment is essentially the same data forming a functor

from M to M. Physical requirements (Levin-Wen) add certain
consistency conditions which turn it into a C-module functor.

Theorem: Excitations on a ¢ M-edge are given by simple objects
in the category Fun¢(M, M) of C-module functors.



Kitaev's approach

We need construct the local operator algebra A.
A= @,‘7/\17)\27,Y17,Y2H0m/\/((l. X )\2, Al) X HomM(’yl, i ® ’yg).

For £ € Homa (i ® A2, A1) and ¢ € Hom (71,7 ® 72), the element
£ ® (¢ € A can be expressed by the following graph:

>\1 5 )\2
E®C= }"
m ¢ 7

for i € C and )\1,)\2,’71,’)/2 e M.



The multiplication A® A > A is defined by
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where the last graph is a linear span of graphs in A by applying
F-moves twice and removing bubbles.



Action of A on excitations

Figure: This picture show how two elements of local operator algebra A
act on an edge excitation (up to an ambiguity of the excited region).
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A is bialgebra with above comultiplication. With some small
modification, one can turn it into a weak C*-Hopf algebra so that
the boundary excitations form a finite unitary fusion category.



a defect line or a domain wall

i,j,k,1€C, A,...., g€ M,i",j/,k',I" € D. C and D are unitary
tensor categories and M is a C-D-bimodule. We call such defect
cMop-defect line or ¢ Mp-wall.



» A M-edge can be viewed as ¢ Mpy;p-wall.

» Conversely, if we fold the system along the ¢ Mp-wall, we
obtain a doubled bulk system determined by C X D°P with a
single boundary determined by M which is viewed as a
C X D°P-module.

a ceMp-wall = a ¢por M-edge



Therefore, we have:

cMop-wall excitations = ¢xpor M-edge excitations
= FUnC@Dop (M7 M)
= FunC|D(./\/l, M)

the category of C-D-bimodule.
As a special case, a line in C-bulk = a ¢C¢-wall.

C-bulk excitations = ¢Cc-wall excitations
= Fungie(C,C) = Z(C)



» A ¢ Mp-wall can fuse with a pNg-wall into a
c(MXp N)g-wall.

> cMp-wall (or pNe-wall) excitations can fuse into
c(MKXp N)g-wall as follow:

M L M) o (M Rp N R A A

W S N) s (M Bp N ME2C 0 )



A smooth edge
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1= This assignment actually gives a monoidal functor
Z(Repz,) — Repy, = Fungrep, (Repy,; Repy,).



A rough edge
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1= This assignment gives another monoidal functor
Z(Repy,) — Repy, = FunRepZZ(HiIb, Hilb).



defects of codimension 1

N
= ~ defect line

defect

1— 11 e Ext3‘7’879 — m,
defect defect
m — EXt7|37275 = e, € H— EXt27577,8’973 = €.

= This assignment gives an invertible monoidal functor
Z(Repz,) — FunRepZ2|RepZZ(Hilb7 Hilb) — Z(Repy,).



Definition: If M Xp N =2 C and N KXo M = D, then M and N
are called invertible; C and D are called Morita equivalent.

» C and D are Morita equivalent iff Z(C) is equivalent to Z(D)
as braided tensor categories.

» Invertible C-C-defects form a group called Picard group Pic(C).
» We denote the auto-equivalence of Z(C) as Aut(Z(C)).

Theorem (Kitaev-K., Etingof-Nikshych-Ostrik):

Aut(Z(C)) = Pic(C).



Defects of codimension 2

» A defect of codimension 2 is a junction between two defect
lines. It is given by a module functor.

» An excitation can be viewed as a defect of codimension 2.

» Conversely, a defect of codimension 2 is an excitation in the
sense that it can be realized as a super-selection sector of a
local operator algebra A’



Action of A’ on defects of codimension 2

A, A2, A3 € M, v1,72,73 €N



Defects of codimension 3 (instantons)

If one takes into account the time direction, one can define a
defect of codimension 3 by a natural transformation ¢ between
module functors.

The Hamiltonian:
H — H + H;.

where H; is a local operator defined using ¢.



Dictionary 1:

Ingredients in LW-model

\ Tensor-categorical notions

a bulk lattice

a unitary tensor category C

string labels in a bulk

simple objects in a unitary tensor category
C

excitations in a bulk

simple objects in Z(C) the monoidal cen-
ter of C

an edge

a C-module M

string labels on an edge

simple objects in a C-module M

excitations on a M-edge

Fune (M, M): the category of C-module
functors

bulk-excitations fuse into
an M-edge

Z(C) = Fung¢(C,C) — Fung(M, M)

€L 0) e (C8e M T2, 0 R M).




Dictionary 2:

Ingredients in LW-model

\ Tensor-categorical notions

a domain wall

a C-D-bimodule N/

string labels on a AV -wall

simple objects in a C-D-bimodule ¢ Np

excitations on a N -wall

Funep(N,N): the category of C-D-
bimodule functors

fusion of two walls

MXp N

an invertible ¢ Np-wall

C and D are Morita equivalent, i.e.

N Kp NP =C, NP Ke N =D.

bulk-excitation fuse into a

cNp-wall

Z(C) = Func‘c(C,C) — Func‘p(N,J\/)
€ L) (CRe N T2, 0 e ).

defects of codimension 2: a
M-N-excitation

simple objects F,G € Funcip(M,N)

a defect of codimesion 3
or an instanton

a natural transformation ¢ : F — G
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Extended Topological Field Theories



» Extended topological field theories was formulated by Baez
and Dolan in terms of n-category in 90s. The classification
was given in the so-called Baez-Dolan conjecture which was
recently proved by Lurie.

» Levin-Wen models enriched by defects of codimension 1,2,3
provides a physical foundation behind the so-called extended
Turaev-Viro topological field theories.



The building blocks of the lattice models:

C }"\'\E )9 D
v
N

which 0-1-2-3 cells of a tri-category, or “equivalently”,

AN

C-Mod ﬁ\é ' D-Mod
N

Fn



Excitations (topological phases):

Z(M) := Fungip(M, M), Z(N) := Funeip(N, N),
F,G,€ Funep(M,N), ZIM,N)F := Z(N) o F o Z(M),
ZM,N)g :=Z(N)oGoZ(M).



Conjecture (Functoriality of Holography): The assignment Z is a
functor between two tricategories.

Remark: It also says that the notion of monoidal center is
functorial.



General philosophy: for n + 1-dim extended TQFT,
pt — n-category of boundary conditions.

Extended Turaev-Viro (2+1) TQFT: the bicategory of boundary
conditions of LW-models = C-Mod,

pt, ~ +— C,D or (C-Mod = D-Mod),
an interval — ¢ Mp,pANe ( )

st — TrC) = Z(C),
Conjecturely,

Turaev-Viro(C) = Reshtikin-Turaev(Z(C)).



Thank you!
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