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Abstract. Enriched Lawvere theories are a generalization of Lawvere theories that allow us to

describe the operational semantics of formal systems. For example, a graph-enriched Lawvere

theory describes structures that have a graph of operations of each arity, where the vertices are
operations and the edges are rewrites between operations. Enriched theories can be used to

equip systems with operational semantics, and maps between enriching categories can serve to

translate between different forms of operational and denotational semantics. The Grothendieck
construction lets us study all models of all enriched theories in all contexts in a single category.

We illustrate these ideas with the SKI-combinator calculus, a variable-free version of the lambda

calculus, and with Milner’s calculus of communicating processes.

1. Introduction

Formal systems are not always explicitly connected to how they operate in practice. Lawvere
theories [19] are an excellent formalism for describing algebraic structures obeying equational laws,
but they do not specify how to compute in such a structure, for example taking a complex expression
and simplifying it using rewrite rules. Recall that a Lawvere theory is a category with finite
products T generated by a single object t, for “type”, and morphisms tn → t representing n-ary
operations, with commutative diagrams specifying equations. There is a theory for groups, a theory
for rings, and so on. We can specify algebraic structures of a given kind in some category C with
finite products by a product-preserving functor µ : T → C. This is a simple and elegant form of
denotational semantics. However, Lawvere theories know nothing of operational semantics. Our
goal here is to address this using “enriched” Lawvere theories.
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2 ENRICHED LAWVERE THEORIES FOR OPERATIONAL SEMANTICS

In a Lawvere theory, the objects are types and the morphisms are terms; however, there are no
relations between terms, only equations. The process of computing one term into another should
be given by hom-objects with more structure. In operational semantics, program behavior is often
specified by labelled transition systems, or labelled directed multigraphs [28]. The edges of such a
graph represent rewrites:

(λx.x+ x 2) 2 + 2 4
β +

We can use an enhanced Lawvere theory in which, rather than merely sets of morphisms, there are
graphs or perhaps categories. Enriched Lawvere theories are exactly for this purpose.

In a theory T enriched in a category V of some kind of “directed object”, including graphs,
categories, and posets, the theory has the following interpretation:

types: objects of T
terms: morphisms of T

equations between terms: commuting diagrams
rewrites between terms: “edges” in hom in V

To be clear, this is not a new idea. Using enriched Lawvere theories for operational semantics has
been explored in the past. For example, category-enriched theories have been studied by Seely [31]
for the λ-calculus, and poset-enriched ones by Ghani and Lüth [22] for understanding “modularity”
in term rewriting systems. They have been utilized extensively by Power, enriching in ω-complete
partial orders to study recursion [23] – in fact, there the simplified “natural number” enriched
theories which we explore were implicitly considered.

The goal of this paper is to give a simple unified explanation of enriched Lawvere theories and
some of their applications to operational semantics. We aim our explanations at readers familiar
with category theory but not yet enriched categories. To reduce the technical overhead we only
consider enrichment over cartesian closed categories.

In general for a cartesian closed category V, a V-theory is a V-enriched Lawvere theory with
natural number arities. We consider V as a choice of “method of computation” for algebraic theories.
The main idea of this paper is that product-preserving functors between enriching categories allow
for the translation between different kinds of semantics. This translation could be called “change
of computation”—or, following standard mathematical terminology, change of base.

Because operational semantics uses graphs to represent terms and rewrites, one might expect
some category like Gph, the category of directed multigraphs, to be our main example of enriching
category: that is, the “thing” of n-ary operations, or n-variable terms in a theory, is a directed
graph whose edges are rewrites. This is known as small-step operational semantics, meaning each
edge represents a single instance of a rewrite rule.

When studying formal languages, one wants to pass from this local view to a global view: given
a term, one cares about its possible evolutions after not only one rewrite but any finite sequence of
rewrites. We study how programs operate in finite time. In computer science, this corresponds to
defining a rewrite relation and forming its transitive closure, called big-step operational semantics.
This is the classic example which change of base aims to generalize.

However, there is a subtlety. We may try to model the translation from small-step to big-step
operational semantics using the “free category” functor, which for any directed multigraph forms
the category whose objects are vertices and morphisms are finite paths of edges. However, this
functor does not preserve products. One might hope to cure this using a better-behaved variant of
directed multigraphs, such as reflexive graphs. One advantage of reflexive graphs is that that each
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vertex has a distinguished edge from it to itself; these describe rewrites that “do nothing”. Thus,
in a product of reflexive graphs there are edges describing the process of rewriting one factor while
doing nothing in the other. This lets us handle parallelism. Unfortunately, as we shall explain, the
free category functor from reflexive graphs to categories still fails to preserve products.

To obtain a product-preserving change of base taking us from small-step to big-step operational
semantics, it seems the cleanest solution is to generalize graphs to simplicial sets. A simplicial
set is a contravariant functor from the category ∆ of finite linear orders and monotone maps to
the category of sets and functions. It can be visualized as a space built from “simplices”, which
generalize triangles to any dimension: point, line, triangle, tetrahedron, etc. For an introduction
to simplicial sets, see Friedman [12]. We use sSet to denote the category of simplicial sets, namely

Set∆
op

.
Simplicial sets allow one to generalize rewriting to higher-dimensional rewriting [13], but this is

not our focus here. Indeed, we only need two facts about simplicial sets in this paper:

• There is a full and faithful embedding of RGph, the category of reflexive graphs, in sSet,
so we can think of a reflexive graph as a special kind of simplicial set (namely one whose
n-simplices for n > 1 are all degenerate).

• The free category functor FC: sSet→ Cat, often called “realization”, preserves products.

We thus obtain a spectrum of cartesian closed categories V to enrich over, each connected to the
next by a product-preserving functor, which allow us to examine the computation of term calculi
in various ways:

Simplicial Sets sSet-theories represent “small-step” operational semantics:
— an edge is a single term rewrite.

Categories Cat-theories represent “big-step” operational semantics:
(Often this means a rewrite to a normal form. We use the term more generally.)
— a morphism is a finite sequence of rewrites.

Posets Pos-theories represent “full-step” operational semantics:
— a boolean is the existence of a big-step rewrite.

Sets Set-theories represent denotational semantics:
— an element is a connected component of the rewrite relation.

In Section 2 we review Lawvere theories as a more explicit, but equivalent, presentation of finitary
monads. In Section 3, we recall the basics of enrichment over cartesian closed categories. In Section
4 we give the central definition of V-theory, adapted from the work of Lucyshyn-Wright [21], which
allows us to apply his theorem relating enriched Lawvere theories and monads. In Section 5 we prove
some lemmas required for the main result of the previous section: a V-theory T gives a monadic
adjunction between V and the V-category of models of T in V. This generalizes a fundamental
result for Lawvere theories.

In Section 6 we discuss how suitable functors between enriching categories induce change-of-
base: they transform theories, and their models, from one method of rewriting to another. Our
main examples arise from this chain of adjunctions:

sSet

a

Cat

a

Pos

a

Set

FC

UsS

FP

UC

FS

UP
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The right adjoints here automatically preserve finite products, but the left adjoints do as well, and
these are what we really need:

• The functor FC: sSet → Cat maps a simplicial set (for example a reflexive graph) to the
category it freely generates. Change of base along FC maps small-step operational semantics
to big-step operational semantics.

• The functor FP: Cat→ Pos maps a category C to the poset whose elements are objects of
C, with c ≤ c′ iff C has a morphism from c to c′. Change of base along FP maps big-step
operational semantics to full-step operational semantics.

• The functor FS: Pos→ Set maps a poset P to the set of “components” of P , where p, p′ ∈ P
are in the same component if p ≤ p′. Change of base along FS maps full-step operational
semantics to denotational semantics.

In Section 7 we show that models of all V-theories for all enriching V can be assimilated into
one category using the Grothendieck construction. In Section 8 we bring all the strands together
and demonstrate these concepts in applications. First we consider the SKI-combinator calculus,
and then we show how theories enriched over the category of labelled graphs can be used to study
bisimulation.

Acknowledgements. This paper builds upon the ideas of Mike Stay and Greg Meredith presented
in “Representing operational semantics with enriched Lawvere theories” [33]. We appreciate their
offer to let us develop this work further for use in the innovative distributed computing system
RChain, and gratefully acknowledge the support of Pyrofex Corporation. We also thank Richard
Garner, Todd Trimble and others at the n-Category Café for classifying cartesian closed categories
where every object is a finite coproduct of copies of the terminal object [2].

2. Lawvere Theories

Algebraic structures are traditionally treated as sets equipped with operations obeying equations,
but we can generalize such structures to live in any category with finite products. For example,
given any category C with finite products, we can define a monoid internal to C to consist of:

an object M
an identity element e : 1→M
and multiplication m : M2 →M

obeying the associative law m ◦ (m×M) = m ◦ (M ×m)
and the right and left unit laws m ◦ (e× idM ) = idM = m ◦ (idM × e).

Lawvere theories formalize this idea. For example, there is a Lawvere theory Th(Mon), the category
with finite products freely generated by an object t equipped with an identity element e : 1→ t and
multiplication m : t2 → t obeying the associative law and unit laws listed above. This captures the
“Platonic idea” of a monoid internal to a category with finite products. A monoid internal to C
then corresponds to a functor µ : T→ C that preserves finite products.

In more detail, let N be any skeleton of the category of finite sets FinSet. Because N is the free
category with finite coproducts on 1, Nop is the free category with finite products on 1. A Lawvere
theory is a category with finite products T equipped with a functor τ : Nop → T that is bijective on
objects and preserves finite products. Thus, a Lawvere theory is essentially a category generated by
one object τ(1) = t and n-ary operations tn → t, as well as the projection and diagonal morphisms
of finite products.
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For efficiency let us call a functor that preserves finite products cartesian. Lawvere theories
are the objects of a category Law whose morphisms are cartesian functors f : T → T′ that obey
fτ = τ ′. More generally, for any category with finite products C, a model of the Lawvere theory T
in C is a cartesian functor µ : T→ C. The models of T in C are the objects of a category Mod(T,C),
in which the morphisms are natural transformations.

A theory can thus have models in many different contexts. For example, there is a Lawvere
theory Th(Mon), the theory of monoids, described as above. Ordinary monoids are models of this
theory in Set, while topological monoids are models of this theory in Top.

For completeness, it is worthwhile to mention the presentation of a Lawvere theory: after all,
we are arguing their utility in everyday programming. How exactly does the above “sketch” of
Th(Mon) produce a category with finite products? It is precisely analogous to the presentation of
an algebra by generators and relations: we form the free category with finite products on the data
given, and impose the required equations. The result is a category whose objects are powers of
M , and whose morphisms are composites of products of the morphisms in Th(Mon), projections,
deletions, symmetries and diagonals. A detailed account was given by Barr and Wells [4, Chap. 4];
for a more computer-science-oriented approach see Crole [8, Chap. 3].

Currently, monads are more widely used in computer science than Lawvere theories. However,
Hyland and Power have suggested that Lawvere theories could do much of the work that monads
do today [14]. In 1965, Linton [20] proved that Lawvere theories correspond to “finitary monads”
on the category of sets. For every Lawvere theory T, there is an adjunction:

Set

a

Mod(T,Set).

F

U

The functor
U : Mod(T,Set)→ Set

sends each model µ to its underlying set, X = µ(τ(1)). Its left adjoint, the free model functor

F : Set→ Mod(T,Set),

sends each finite set n ∈ N to the representable functor T(τ(n),−) : T → Set, and in general any
set X to the colimit of all such representables as n ranges over the poset of finite subsets of X. In
rough terms, F (X) is the model of all n-ary operations from T on the set X.

If we momentarily abbreviate Mod(T,Set) as Mod, we obtain an adjunction

Mod(F (n), µ) = Mod(T(τ(n),−), µ) ∼= µ(τ(n)) ∼= µ(τ(1))n = Set(n,U(µ))

where the left isomorphism arises from the Yoneda lemma, and the right isomorphism from the
product preservation of µ.

This adjunction induces a monad T on Set:

(1) T (X) =

∫ n∈N
Xn × T(n, 1).

The integral here is a coend, essentially a coproduct quotiented by the equations of the theory and
the equations induced by the cartesian structure of the category. This forms the set of all terms
that can be constructed from applying the operations to the elements, subject to the equations
of the theory. The monad constructed this way is always finitary: that is, it preserves filtered
colimits [1], or its action on sets is determined by its action on finite sets.
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Conversely, for a monad T on Set, its Kleisli category Kl(T ) is the category of all free algebras
of the monad, which has all coproducts. There is a functor k : Set→ Kl(T ) that is the identity on
objects and preserves coproducts. Thus,

kop : Setop → Kl(T )op

is a cartesian functor, and restricting its domain to Nop is a Lawvere theory kT . To see what this
is doing, note that:

Kl(T )op(n,m) = Kl(T )(m,n) = Set(m,T (n))

where the latter is considered as m n-ary operations in the Lawvere theory kT . When T is finitary,
the monad arising from this Lawvere theory is naturally isomorphic to T itself.

This correspondence sets up an equivalence between the category Law of Lawvere theories and the
category of finitary monads on Set. There is also an equivalence between the category Mod(T,Set)
of models of a Lawvere theory T and the category of algebras of the corresponding finitary monad
T . Furthermore, all this generalizes with Set replaced by any “locally finitely presentable” category
[1]. For more details see [4, 19, 24].

3. Enrichment

To allow more general semantics, we now turn to Lawvere theories that have hom-objects rather
than mere hom-sets. To do this we use enriched category theory [17] and replace sets with objects
of a cartesian closed category V, called the “enriching” category or “base”. A V-enriched category
or V-category C is:

a collection of objects Ob(C)
a hom-object function C(−,−) : Ob(C)×Ob(C)→ Ob(V)

composition morphisms ◦a,b,c : C(b, c)× C(a, b)→ C(a, c) ∀a, b, c ∈ Ob(C)
identity-assigning morphisms ia : 1V → C(a, a) ∀a ∈ Ob(C)

such that composition is associative and unital. A V-functor F : C→ D is:

a function F : Ob(C)→ Ob(D)
a collection of morphisms Fab : C(a, b)→ D(F (a), F (b)) ∀a, b ∈ C

such that F preserves composition and identity. A V-natural transformation α : F ⇒ G is:

a family αa : 1V → D(F (a), G(a)) ∀a ∈ Ob(C)

such that α is “natural” in a: an evident square commutes. There is a 2-category VCat of V-
categories, V-functors, and V-natural transformations.

We can construct new V-categories from old by taking products and opposites in an obvious way.
There is also a V-category denoted V with the same objects as V and with hom-objects given by
the internal hom:

V(v, w) = wv ∀v, w ∈ V.

The concepts of adjunction and monad generalize straightforwardly to V-categories, and when we
speak of an adjunction or monad in the enriched context this generalization is what we mean [17].
For example, there is an adjunction

V(u× v, w) ∼= V(u,wv)

called “currying”.
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We can generalize products and coproducts to the enriched context. Given a V-category C, the
V-coproduct of an n-tuple of objects b1, . . . , bn ∈ Ob(C) is an object b equipped with a V-natural
isomorphism

C(b,−) ∼=
n∏
i=1

C(bi,−).

If such an object exists, we denote it by
∑n
i=1 bi. This makes sense even when n = 0: a 0-ary

V-coproduct in C is called a V-initial object and denoted as 0C. When V is cartesian closed, any
finite coproduct that exists in V is also a V-coproduct in V. In particular,

uv+w ∼= uv × uw and w0 ∼= 1V

whenever 0 is an initial object of V. Conversely, any finite V-coproduct that exists in V is also a
coproduct in the usual sense.

Similarly, a V-product of objects b1, . . . , bn ∈ Ob(C) is an object b equipped with a V-natural
isomorphism

(2) C(−, b) ∼=
n∏
i=1

C(−, bi).

If such an object b exists, we denote it by
∏n
i=1 bi. A 0-ary product in C is called a V-terminal

object and denoted as 1C. Whenever V is cartesian closed, the finite products in V are also
V-products in V. In particular,

(u× v)w ∼= uw × vw and 1wV
∼= 1V

where our chosen terminal object 1V is also V-terminal. Conversely, any finite V-product in V is
also a product in the usual sense.

A general V-category C does not exactly have projections from a V-product to its factors, since
given two objects c, c′ ∈ Ob(C) there is not, fundamentally, a set of morphisms from c to c′. Instead
there is the hom-object C(c, c′), which is an object of V. However, any object v of V has a set of
elements, namely morphisms f : 1V → v. Elements of C(c, c′) act like morphisms from c to c′.

In particular, any V-product b =
∏n
i=1 bi gives rise to elements

pi : 1V → C(b, bi)

which serve as substitutes for the projections in a usual product. These elements are defined as
composites

1V
ib−→ C(b, b)

∼−→
n∏
i=1

C(b, bi)→ C(b, bi)

where the isomorphism comes from Eq. (2) and the last arrow is a projection in V.
Even better, we can bundle up all these elements pi into a single element

p : 1V →
n∏
i=1

C(b, bi)

which serves as a substitute for the universal cone in a usual product. Starting from p we can
recover the V-natural isomorphism in Eq. (2) as follows:

(3) C(−, b) ∼−→ 1V × C(−, b) p×1−−→
n∏
i=1

C(b, bi)× C(−, b) −→
n∏
i=1

C(−, bi)
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where the last arrow is given by composition. Thus, we say a universal cone exhibiting b as
the V-product of objects b1, . . . , bn is an element p : 1V →

∏n
i=1 C(b, bi) such that the V-natural

transformation C(−, b)→
∏n
i=1 C(−, bi) given by Eq. (3) is an isomorphism.

The advantage of this reformulation is that we can say a V-functor F : C→ D preserves finite
V-products if for every universal cone p : 1V →

∏n
i=1 C(b, bi) exhibiting b as the V-product of the

objects bi, the composite

1V
p−→

n∏
i=1

C(b, bi)
∏

i F−−−→ D(F (b), F (bi))

is universal cone exhibiting F (b) as the V-product of the objects F (bi).
A bit more subtly, generalizing the exponentials in V, a V-category C can have “powers”. Given

v ∈ Ob(V), we say an object cv ∈ Ob(C) is a v-power of c ∈ Ob(C) if it is equipped with a
V-natural isomorphism

(4) C(−, cv) ∼= C(−, c)v.
In the special case V = Set this forces cv to be the v-fold product of copies of c. As with V-products,
it is useful to repackage the isomorphism of Eq. (4) so we can say what it means for a V-functor to
preserve v-powers. First, note that this isomorphism gives rise to an element

q : 1V → C(cv, c)v,

namely the composite

1V
icv−→ C(cv, cv)

∼−→ C(cv, c)v.

Conversely, any element q : 1V → C(cv, c)v determines a V-natural transformation e : C(−, cv) →
C(−, c)v, and we say e is a universal cone if this V-natural transformation is an isomorphism.
Next, suppose C and D are V-categories with v-powers. We say a V-functor F : C→ D preserves
v-powers if it maps universal cones to universal cones.

There are just a few more technicalities. A category is locally finitely presentable if it is the
category of models for a finite limits theory, and an object is finite if its representable functor is
finitary: that is, it preserves filtered colimits [1]. A V-category C is locally finitely presentable
if its underlying category C0 is locally finitely presentable, C has finite powers, and (−)x : C0 → C0 is
finitary for all finitely presentable x. The details are not crucial here: all categories to be considered
are locally finitely presentable. We will use Vf to denote the full subcategory of V of finite objects:
in sSet, these are simplicial sets with finitely many n-simplices for each n.

4. Enriched Lawvere Theories

Power introduced the notion of enriched Lawvere theory about twenty years ago, “in seeking a
general account of what have been called notions of computation” [29]. The original definition is
as follows: for a symmetric monoidal closed category (V,⊗, 1), a “V-enriched Lawvere theory” is a
V-category T that has powers by objects in Vf , equipped with an identity-on-objects V-functor

τ : Vop
f → T

that preserves these powers. A “model” of a V-theory is a V-functor µ : T → V that preserves
powers by finite objects of V. There is a category Mod(T,V) whose objects are models and whose
morphisms are V-natural transformations. The monadic adjunction and equivalence of Section 2
generalize to the enriched setting.

However, this sort of V-enriched Lawvere theory has arities for every finite object of V. These
generalized arities may be very powerful—rather than only inputting n-tuples of terms, we can input
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any finite object of terms. Despite its potential, this generalization remains largely unexploited
in computer science. Power [18] introduced “enriched sketches” as a way of presenting enriched
Lawvere theories, but to the authors’ knowledge these are not yet widely understood or used. What
does it mean for an operation to take in a finite graph of terms? How can we learn to use this
generality? One clue that we note in Example 7 is that limits and colimits are operations whose
arity is a “diagram shape” rather than a natural number. We hope that this idea is explored more
widely, so that we can use more general arities in both mathematics and computer programming.

In this paper, however, we only consider natural number arities, while still retaining enrichment.
To do this we use the work of Lucyshyn-Wright [21], who along with Power [27] has generalized
Power’s original ideas to allow a more flexible choice of arities. We also limit ourselves to the case
where the tensor product of V is cartesian. This has a significant simplifying effect, yet it suffices
for many cases of interest in computer science.

Thus, in all that follows, we let (V,×, 1V) be a cartesian closed category equipped with chosen
finite coproducts of the terminal object 1V, say

nV =
∑
i∈n

1V.

Define NV to be the full subcategory of V containing just these objects nV. There is also a V-
category NV whose objects are those of NV and whose hom-objects are given as in V. We define the
V-category of arities for V to be

AV := Nop
V .

We shall soon see that AV has finite V-products.

Definition 1. We define a V-theory (T, τ) to be a V-category T equipped with a V-functor

τ : AV → T

that is bijective on objects and preserves finite V-products.

Definition 2. A model of T in a V-category C is a V-functor

µ : T→ C

that preserves finite V-products.

Just as all the objects of a Lawvere theory are finite products of a single object, we shall see
that all the objects of T are finite V-products of the object

t = τ(1V).

Definition 3. We define VLaw, the category of V-theories, to be the category for which an
object is a V-theory and a morphism from (T, τ) to (T′, τ ′) is a V-functor f : T→ T′ that preserves
finite V-products and has fτ = τ ′.

Definition 4. For every V-theory (T, τ) and every V-category C with finite V-products, we define
Mod(T,C), the category of models of (T, τ) in C, to be the category for which an object is a
V-functor µ : T→ C that preserves finite V-products and a morphism is a V-natural transformation.

The basic monadicity results for Lawvere theories generalize to V-theories when V is complete
and cocomplete, as in the main examples we consider: V = sSet,Cat,Pos, and Set. Under this
extra assumption VLaw and Mod(T,C) can be promoted to V-categories, which we call VLaw and
Mod(T,C). Furthermore, there is a V-functor

U : Mod(T,V)→ V
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sending any model µ : T→ V to its underlying object µ(t) ∈ V. Recall that monads and adjunctions
make sense in VCat, just as they do in Cat. The V-functor U has a left adjoint

F : V→ Mod(T,V),

and Mod(T,V) is equivalent to the V-category of algebras of the resulting monad T = UF . More
precisely:

Theorem 5. Suppose V is cartesian closed, complete and cocomplete, and has chosen finite co-
products of the terminal object. Let (T, τ) be a V-theory. Then there is a monadic adjunction

V

a

Mod(T,V).

F

U

Proof. This follows from Lucyshyn-Wright’s general theory [21], so our task is simply to explain
how. He allows V to be a symmetric monoidal category, and uses a more general concept of algebraic
theory with a system of arities given by any fully faithful symmetric monoidal V-functor j : J→ V.
For us J = NV and j : NV → V is the obvious inclusion; this is his Example 3.7.

Lucyshyn-Wright defines a J-theory to be a V-functor τ : Jop → T that is the identity on objects
and preserves powers by objects in J (or more precisely, their images under j). For us Jop = AV.
We are only demanding that τ : AV → T be bijective on objects, but we can make it the identity
on objects simply by renaming the objects of T. So, to apply his theory, we need to show that a
V-functor τ : AV → T preserves powers by objects in NV if and only if it preserves finite V-products.
This is Lemma 12 below.

He defines a model (or “algebra”) of a J-theory to be a V-functor τ : T→ V that preserves powers
by objects in J. He defines a morphism of models to be a V-natural transformation between such
V-functors. So, to apply his theory, we also need to show that when J = NV, a V-functor µ : T→ V
preserves powers by objects of J if and only if it preserves finite V-products. This is Lemma 13
below.

A technical concept fundamental to Lucyshyn-Wright’s theory is that of an eleutheric system of
arities j : J→ V. This is one where the left Kan extension of any V-functor f : J→ V along j exists
and is preserved by each V-functor V(x,−) : V→ V. In Example 7.5.5 he shows that j : NV → V is
eleutheric when V is countably cocomplete. In Thm. 8.9 shows that when j : J → V is eleutheric,
and has equalizers, we may form the V-category Mod(T,V), and that the forgetful V-functor

U : Mod(T,V)→ V

is monadic. This is the result we need. So, our theorem actually holds whenever V is cartesian closed,
with equalizers and countable colimits, and has chosen finite coproducts of the initial object. �

Before turning to examples, a word about Lucyshyn-Wright’s construction of the left adjoint
F and the monad T is in order. These rely on the “free model” on an object nV ∈ V. This
is the enriched generalization of the free model described in Section 2: it is the composite of
τop : Aop

V → Top with the enriched Yoneda embedding y : Top → [T,V]:

Aop
V

τop

−−→ Top y−→ [T,V]

nV 7→ tnV 7→ T(tnV ,−)
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Since an object of V does not necessarily have a “poset of finite subobjects” over which to take a
filtered colimit (as in Set), the extension of this “free model” functor yτop to all of V is specified
by a somewhat higher-powered generalization: it is the left Kan extension of yτop along j.

NV [T,V]

V

yτop

j F :=Lanjyτ
op

η

This is the universal “best solution” to the problem of making the triangle commute up to a V-
natural transformation. That is, for any functor G : V → [T,V] and V-natural transformation
θ : yτop ⇒ Gj, the latter factors uniquely through η. From the adjunction between V and the
category of models Mod(T,V) we obtain a V-enriched monad

T = UF : V→ V,

and this has a more concrete formula as an enriched coend:

T (V ) =

∫ nV∈NV

V nV × T(tnV , t).

We next give two examples of a rather abstract nature, where we show how Cat-enriched Lawvere
theories can describe categories with extra structure. In Section 8 we study examples more directly
connected to operational semantics.

Example 6. When V = Cat, a V-category is a 2-category, so a V-theory deserves to be called a 2-
theory. For example, let T = Th(PsMon) be the 2-theory of pseudomonoids [9]. A pseudomonoid
is a weakened version of a monoid: rather than associativity and unitality equations, it has 2-
isomorphisms called the associator and unitors, which we can treat as rewrite rules. To equate
various possible rewrite sequences, these 2-isomorphisms must obey equations called “coherence
laws”. Here is a presentation of the 2-theory for pseudomonoids:

Th(PsMon)

sort M pseudomonoid
operations m : M2 →M multiplication

e : 1→M identity

rewrites α : m ◦ (m× idM )
∼

=⇒ m ◦ (idM ×m) associator

λ : m ◦ (e× idM )
∼

=⇒ idM left unitor

ρ : m ◦ (idM × e)
∼

=⇒ idM right unitor
equations

M4 M3 M4 M3

M3 M2 = M2

M3 M3 M2

M2 M M2 M

1×1×m

1×m×1

m×1×1

1×m1×α

1×1×m

m×1×1 m×1

1×m

1×m

m×1

α×1

m m

α

α

m×1

1×m

m×1
mα

m m
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M2 M2

M3 M2 = M3 M2

M2 M M2 M

1×e×1 1
1×λ

1×e×1 1

1m×1

1×m
m

α
m×1

ρ×1

m

m m

We write the equations as commutative diagrams merely for convenience; they could also be written
as equations in a more traditional style. The top diagram expresses the pentagon identity for the
associator, while the bottom one expresses the usual coherence law involving the left and right
unitors.

Models of T = Th(PsMon) in Cat are monoidal categories: let us explore this example in more
detail. A model of T is a finite-product-preserving 2-functor µ : T→ Cat, which sends

t 7→ C
m 7→ ⊗ : C2 → C
e 7→ I : 1→ C
α 7→ a : ⊗ ◦ (⊗× 1C)⇒ ⊗ ◦ (1C ×⊗)
λ 7→ ` : I ◦ 1C ⇒ 1C
ρ 7→ r : 1C ◦ I ⇒ 1C

such that the coherence laws of the rewrites are preserved. Thus, a model is a category equipped
with a tensor product ⊗ and unit object I such that these operations are associative and unital up
to natural isomorphism; so these models are precisely monoidal categories.

Given two models µ, ν : T→ Cat, a morphism of models is a 2-natural transformation ϕ : µ⇒ ν;
this amounts to a strict monoidal functor ϕ : (C,⊗C , IC) → (D,⊗D, ID). The strictness arises be-
cause morphisms between models are 2-natural transformations rather than pseudonatural trans-
formations. There is a substantial amount of theory on pseudomonads and pseudoalgebras [6, 10],
but to the authors’ knowledge the theory-monad correspondence has not yet been extended to weak
enrichment.

Finally, because Cat is complete and cocomplete, the category of models Mod(T,Cat) can be
promoted to a 2-category Mod(T,Cat). This is the 2-category of monoidal categories, strict monoidal
functors, and monoidal natural transformations.

We can accomplish the same thing on the monad side: a Cat-enriched monad is called a 2-
monad, and T gives rise to the “free monoidal category” 2-monad T on Cat [6]. To apply this
2-monad to C ∈ Cat we first form the free model on C by taking a left Kan extension as above, and
then evaluate this model at the generating object. In the same way that the (underlying set of the)
free monoid on a set X consists of all finite strings of elements of X, T (C) is the monoidal category
consisting of all finite tensor products of objects of C and all morphisms built from those of C by
composition and tensoring together with associators and unitors obeying the necessary coherence
laws. Morphisms of these algebras are strict monoidal functors, while 2-morphisms are natural
transformation. We thus have a 2-equivalence between Mod(T,Cat) and the 2-category of algebras
of T .

In this way, 2-theories generalize equipping set-like objects with operations obeying equations to
equipping category-like objects with operations obeying equations up to transformations that obey
equations of their own. In particular, this gives us a way to present graphical calculi such as string
diagrams – the language of monoidal categories.
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Example 7. Enrichment generalizes operations in more ways than by weakening equations to
coherent isomorphisms. We can also use 2-theories to describe other structures that make sense
inside 2-categories, such as adjunctions.

For example, we may define a cartesian category X to be one equipped with right adjoints to the
diagonal ∆X : X → X × X and the unique functor !X : X → 1Cat. These right adjoints are a functor
m : X2 → X describing binary products in X and a functor e : 1→ X picking out the terminal object
in X. We can capture the fact that they are right adjoints by providing them with units and counits
and imposing the triangle equations. There is thus a 2-theory Th(Cart) whose models in Cat are
categories with chosen finite products. More generally a model of this 2-theory in any 2-category
C with finite products is called a cartesian object in C.

Th(Cart)

type X cartesian object

operations m : X2 → X product
e : 1→ X terminal element

rewrites 4 : idX =⇒ m ◦ ∆X unit of adjunction between m and ∆X

π : ∆X ◦m =⇒ idX2 counit of adjunction between m and ∆X

> : idX =⇒ e ◦ !X unit of adjunction between e and !X
ε : !X ◦ e =⇒ id1 counit of adjunction between e and !X

equations

∆X m

∆X ◦m ◦∆X ∆X m ◦∆X ◦m m

∆X◦4
1 4◦m 1

π◦∆X
m◦π

!X e

!X ◦ e ◦ !X !X e ◦ !X ◦ e e

!X◦>
1 >◦e 1

ε◦!X e◦ε

Again we write the equations as commutative diagrams, but this time commutative triangles of
2-morphisms in Th(Cart). These are the triangle equations that force m to be the right adjoint
of ∆X and e to be the right adjoint of !X. A model of Th(Cart) is a category with chosen binary
products and a chosen terminal object; morphisms in Mod(Th(Cart),Cat) are functors that strictly
preserve this extra structure.

The subtle interplay between the cartesian structure of Th(Cart) and the cartesian structure of
the object X ∈ Th(Cart) is an example of the “microcosm principle”: objects with a given structure
are most generally defined in a context that has the same sort of structure. As seen in the previous
example, we can also define pseudomonoids in any 2-category with finite products, but this is excess
to requirements: one can in fact define them more generally in any monoidal 2-category [9].

In fact, if we let arities be finite categories, we would have Cat-theories of categories with finite
limits and colimits. However, for the purposes of this paper we are using only natural number
arities. This suffices for constructing Th(Cart) and also Th(CoCart), the theory of categories with
chosen binary coproducts and a chosen initial object. Various other kinds of categories—distributive
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categories, rig categories, etc.—can also be expressed using Cat-theories with natural number arities.
This gives a systematic formalization of these categories, internalizes them to new contexts, and
allows for the generation of 2-monads that describe them.

5. Natural Number Arities

In this section we prove the lemmas required for Theorem 5 and our study of base change in
Section 6. Throughout this section V is cartesian closed with chose n-fold coproducts nV of its
terminal object.

We begin with a study of NV, the full subcategory of V on the objects nV. First we must resolve
a potential ambiguity. On the one hand, for any object b of V we can form the exponential bnV . On
the other hand, we can take the product of n copies of b, which we call bn. Luckily these are the
same, or at least naturally isomorphic:

Lemma 8. The functors (−)nV : V→ V and (−)n : V→ V are naturally isomorphic.

Proof. If a, b ∈ V, then

V(a, bnV) ∼= V(a× nV, b) hom-tensor adjunction
= V(a× (n · 1V), b) definition of nV
∼= V(n · (a× 1V), b) products distribute over coproducts
∼= V(n · a, b) unitality
∼= V(a, b)n definition of coproduct
∼= V(a, bn) definition of product.

Each of these isomorphisms is natural in a and b, so by the Yoneda lemma (−)nV ∼= (−)n. �

We can now understand coproducts, products and exponentials in NV:

Lemma 9. If V is any cartesian closed category with chosen coproducts of the initial object then
NV is cartesian closed, with finite coproducts. The unique initial object of NV is 0V. The binary
coproducts in NV are unique, given by

mV + nV = (m+ n)V.

The unique terminal object of NV is 1V, and the binary products are unique, given by

mV × nV = (mn)V.

Exponentials in NV are also unique, given by

mV
nV = (mn)V.

Proof. In V we know that 0V is an initial object and 1V is a terminal object, by definition. Since
the subcategory NV is skeletal 0V is the unique initial object and 1V is the unique terminal object
in NV. Similarly, in V we have defined (m+ n)V to be a coproduct of mV and nV, so in NV it is the
unique such, and we can unambiguously write

mV + nV = (m+ n)V.

Products distribute over coproducts in any cartesian closed category, so in V we have

mV × nV ∼= (1V + · · ·+ 1V)× (1V + · · ·+ 1V) ∼= (mn)V

where in the second step we use the distributive law twice. It follows that NV has finite products,
and since this subcategory is skeletal they are unique, given by

mV × nV = (mn)V.
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Finally, by Lemma 8 we have

mV
nV ∼= mn

V
∼=

n∏
i=1

mV
∼= (mn)V.

It follows that NV has exponentials, and since this subcategory is skeletal they are unique, given by

mnV

V = (mn)V. �

We warn the reader that hom(mV, nV) may not have nm elements. It does in sSet,Cat,Pos and

of course Set, but not in V = Setk, where |hom(mV, nV)| = nkm. In fact, whenever NV has finite

hom-sets it is equivalent to FinSetk for some k. The reason is that 2V is an internal Boolean algebra
in V, so its set of elements hom(1V, 2V) must be some Boolean algebra B in Set. A further argument
due to Garner and Trimble shows that NV is completely characterized, up to equivalence, by this
Boolean algebra, and any Boolean algebra can occur [2]. If this Boolean algebra is finite it must be

isomorphic to {0, 1}k for some k ≥ 0. In this case, NV is equivalent to FinSetk.
Now suppose C is a V-category. The question arises whether the power of an object c ∈ C by nV

must also be the V-product of n copies of c. The answer is yes:

Lemma 10. Let C be a V-category and c ∈ Ob(C). Then the power cnV exists if and only if the
n-fold V-product cn exists, in which case they are isomorphic.

Proof. In Section 3 we saw that an object b ∈ Ob(C) is an n-fold V-product of copies of c precisely
when it is equipped with a universal cone

p : 1V → C(b, c)n.

Similarly, b is an nV-power of c when it is equipped with a universal cone

q : 1V → C(b, c)nV .

The universality properties have the same form, and by Lemma 8 the functors (−)n : V → V and
(−)nV : V→ V are naturally isomorphic. Thus, given either sort of universal cone we get the other,
so an object is an n-fold product of copies of c if and only if it is the nV-power of c. �

Lemma 11. Suppose C is a V-category such that every object is the n-fold V-product cn of some
object c. Then a V-functor F : C→ D preserves finite V-products if and only if it preserves powers
by all objects of NV.

Proof. Define a “finite V-power” to be a finite V-product of n copies of the same object. The
V-functor F preserves finite V-powers if and only if it maps any universal cone

p : 1V → C(b, c)n

in C to a universal cone in D. Similarly, F preserves powers by all objects of NV if and only if it
maps any universal cone

q : 1V → C(b, c)nV

in C to a universal cone in D. Two kinds of universality are involved here, but since they have the
same form, and since Lemma 8 says the functors (−)n : V → V and (−)nV : V → V are naturally
isomorphic, it follows that F preserves finite V-powers if and only if it preserves powers by all
objects of NV.

It thus suffices to show that F preserves finite V-products if and only if it preserves finite V-
powers. This follows from the assumption that every object is the n-fold V-product cn of some
object c. �
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Lemma 12. Let V be cartesian closed with chosen finite coproducts of the terminal object and let
T be a V-category. These conditions for a V-functor τ : AV → T are equivalent:

(1) (T, τ) is a V-theory,
(2) τ preserves finite V-products,
(3) τ preserves powers by objects of NV.

Proof. Conditions 1 and 2 are equivalent by definition. Since AV = Nop
V , finite V-products in AV

are the same as finite V-coproducts in NV, which are the same as finite coproducts in NV. Since
every object in NV is a finite coproduct of copies of 1V, Lemma 11 implies that conditions 2 and 3
are equivalent. �

Lemma 13. Given a V-theory (T, τ) and a V-functor µ : T → C, the following conditions are
equivalent:

• µ is a model of (T, τ),
• µ preserves finite V-products,
• µ preserves powers by objects of NV.

Proof. Conditions 1 and 2 are equivalent by definition. Since τ is bijective on objects and preserves
V-products each object of T is of the form tn where t = τ(1V). Thus, Lemma 11 implies that
conditions 2 and 3 are equivalent. �

6. Change of Base

We now have the tools to formulate the main idea: a choice of enrichment for Lawvere theories
corresponds to a choice of computation, and changing enrichments corresponds to a change of
computation. We propose a general framework in which one can translate between different forms
of computation: small-step, big-step, full-step operational semantics, and denotational semantics.

6.1. General results. Suppose that V and W are enriching categories of the sort we are con-
sidering: cartesian closed categories equipped with chosen finite coproducts of the terminal ob-
ject. Suppose F : V → W preserves finite products. This induces a change of base functor
F∗ : VCat → WCat [7] which takes any V-category C and produces a W-category F∗(C) with the
same objects but with

F∗(C)(a, b) := F (C(a, b))

for all objects a, b. Composition in F∗(C) is defined by

F (C(b, c))× F (C(a, b))
∼−→ F (C(b, c)× C(a, b))

F (◦a,b,c)−−−−−−→ F (C(a, b)).

The identity-assigning morphisms are given by

1W
∼−→ F (1V)

F (ia)−−−→ F (C(a, a)).

Moreover, if f : C→ D ∈ VCat is a V-functor, there is a W-functor F∗(f) : F∗(C)→ F∗(D) that
on objects equals f and on hom-objects equals F (f). If α : f ⇒ g is a V-natural transformation
and c ∈ Ob(C), then we define

F∗(α)c : 1W
∼−→ F (1V)

F (αc)−−−−→ F (D(f(c), g(c))).

Thus, change of base actually gives a 2-functor from the 2-category of V-categories, V-functors and
V-natural transformations to the corresponding 2-category for W.
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In fact, the change of base operation gives a 2-functor

MonCat
(−)∗−−−→ 2Cat

(F : V→W) 7→ (F∗ : VCat→WCat)

In particular, if V has not just finite coproducts of the terminal object, but all coproducts of this
object, there is a map of adjunctions

Set

a

V Cat

a

VCat.

−·1

V(1,−)

(−·1)∗

(V(1,−))∗

Each set X is mapped to the X-indexed coproduct of the terminal object in V and conversely
each object v of V is represented in Set by the hom-set from the unit to v. The latter induces
the “underlying category” change of base, which forgets the enrichment. The former induces the
“free V-enrichment” change of base, whereby ordinary Set-categories are converted to V-categories,
denoted C 7→ C. These form an adjunction, because 2-functors preserve adjunctions.

We now study how change of base affects theories and their models. We start by asking when a
functor F : V→W induces a change of base F∗ : VCat→WCat that “preserves enriched theories”.
That is, given a V-theory

τ : AV → T

we want to determine conditions for the base-changed functor

F∗(τ) : F∗(AV)→ F∗(T)

to induce a W-theory in a canonical way. Recall that we require V and W to be cartesian closed,
equipped with chosen finite coproducts of their terminal objects. We thus expect the following
conditions to be sufficient: F should be cartesian, and it should preserve the chosen finite coproducts
of the terminal object:

F (nV) = nW

for all n.
Given these conditions there is a W-functor, in fact an isomorphism

F̃ : AW → F∗(AV).

On objects this maps nW to nV, and on hom-objects it is simply the identity from

AW(mW, nW) = nmW

W = (nm)W

to

F (AV(mV, nV)) = F (nmV

V ) = F ((nm)V) = (nm)W

where we use Lemma 9 in these computations.
Using this we obtain a composite W-functor

AW
F̃−→ F∗(AV)

F∗(τV)−−−−→ F∗(T).

This is a bijection on objects and preserves finite V-products because each of the factors has these
properties. It is thus a W-theory.
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Theorem 14. Let V, W be cartesian closed categories with chosen finite coproducts of their
terminal objects, and let F : V→W be a cartesian functor that preserves these chosen coproducts.
Then F∗ preserves enriched theories: that is, for every V-theory τV : AV → T, the W-functor

τW := F∗(τV) ◦ F̃ : AW → F∗(T)

is a W-theory. Moreover, F∗ preserves models: for every model µ : T→ C of (T, τV), the W-functor
F∗(µ) : F∗(T)→ F∗(C) is a model of (F∗(T), τW).

Proof. We have shown the first part. For the second, by Lemma 13 it suffices to assume that µ
preserves finite NV -powers and check that F∗(µ) preserves NW-powers. We leave this as an exercise
to the reader. �

Hence, any cartesian functor that preserves chosen finite coproducts of the terminal object gives
a change of base. It thus provides for a method of translating formal languages between various
“modes of operation”. Moreover, this reasoning generalizes to multisorted V-theories, enriched
theories which have multiple sorts: given any n ∈ N, the monoidal subcategory (NV)n is also an
eleutheric system of arities, so Lucyshyn-Wright’s monadicity theorem still applies. In Section 8.3
we show how this is useful in the study of bisimulation.

6.2. Examples. Now let us look at some examples. The most important changes of base are the
left adjoints in this diagram from Sec. 1:

sSet

a

Cat

a

Pos

a

Set

FC

UsS

FP

UC

FS

UP

The first step describes the translation from small-step to big-step operational semantics. As already
mentioned, we need to use simplicial sets rather than graphs; let us now say more about why.

A first attempt might use directed multigraphs. Such graphs have directed edges and allow
multiple edges between any pair of vertices. The category Gph of directed multigraphs is SetG

where G is the category with two objects v and e and two morphisms s, t : e → v. The “free
category” functor F: Gph→ Cat gives for every graph G a category F(G) as follows:

objects vertices of G
morphisms (e1, e2, ..., en) : s(e1)→ t(en) : ∀i < n t(ei) = s(ei+1)

composition (e1, e2, ..., em) ◦ (e′1, e
′
2, ..., e

′
n) = (e′1, ..., e

′
n, e1, ..., em) : t(e′n) = s(e1).

The morphisms in F(G) are called edge paths. Just as an edge describes a single rewrite in small-
step operational sematics, an edge path describes a sequence of rewrites in big-step operational
semantics. The edge paths with n = 0 serve as identity morphisms.

Unfortunately, F: Gph → Cat does not preserve products, so it is not a valid base change. To

see this, let G1 be {0 e−→ 1}, the graph with two vertices and one edge. The product G1 ×G1 looks
like this:

(0, 0) (0, 1)

(1, 0) (1, 1).

(e,e)
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Thus the free category F(G1×G1) has just one non-identity morphism. On the other hand F(G1)×
F(G1) has five non-identity morphisms, shown here:

(0, 0) (0, 1)

(1, 0) (1, 1).

(id0,e)

(e,id0) (e,e) (e,id1)

(id1,e)

where we write id for identity morphisms and e for the edge path consisting of the single edge e.
Note that the triangles in this diagram commute. In terms of rewriting, the category F(G1 ×G1)
only allows the rewrite e : 0 → 1 to occur simultaneously in both factors, while F(G1) × F(G1)
allows it to occur independently in either factor, in a commuting way.

To solve this problem one, might try to use reflexive graphs. Such graphs have directed edges
and allows multiple edges between any pair of vertices; further, each vertex v is equipped with a
distinguished identity edge i(v) from v to itself. The category RGph of reflexive graphs is SetR,
where R is the category with two objects v and e, two morphisms s, t : e → v, and a morphism
i : v → e obeying si = ti = 1v. There is a free category functor F′ : RGph → Cat, which is like
the free category functor for Gph except that we identify an edge path (e1, . . . , en) with the same
path having ei omitted when ei is an identity edge. Thus, the identity edges of a reflexive graph R
become identity morphisms in F′(R).

The advantage of reflexive graphs is that they allow rewrites in a product to occur independently
in either factor. For example, let R1 be the reflexive graph with two vertices and one non-identity

edge, {0 e−→ 1} (where we do not draw identity edges). The product R1 × R1 has five non-identity
edges:

(0, 0) (0, 1)

(1, 0) (1, 1).

(i(0),e)

(e,i(0)) (e,e) (e,i(1))

(i(1),e)

Thus, the free category F′(R1×R1) has two noncommuting triangles. On the other hand, F′(R1)×
F′(R1) is the product of the category with a single non-identity morphism e : 0→ 1 with itself, so
it is this category:

(0, 0) (0, 1)

(1, 0) (1, 1)

(id0,e)

(e,id0) (e,e) (e,id1)

(id1,e)

with two commuting triangles. Thus F′ : RGph → Cat again fails to preserve products, though in
some sense it comes closer. Simply put, while F′(R1×R1) allows rewrites to be done independently
in either factor, these rewrites fail to commute.

To solve this problem we shall consider RGph as a full subcategory of the category of simplicial
sets, sSet. To do this, we treat a reflexive graph as a simplicial set with only degenerate simplices
for n > 1. There is a left adjoint FC: sSet → Cat, usually called realization, and this functor
preserves products [16]. For example, if we treat R1 above as a simplicial set and take the product
R1×R1 in sSet, this contains triangles that force the triangles in FC(R1×R1) to commute. Thus,
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realization provides a useful base change to translate from small-step operational semantics to
big-step operational semantics.

The other functors in our chain of left adjoints are simpler. The “free poset” functor FP: Cat→
Pos maps any category C to the poset whose elements are objects of C, with c ≤ c′ iff C contains a
morphism from c to c′. This is a valid change of base—i.e., it preserves finite products—because the
product of posets is defined in the same way as the product of categories. If we apply this change
of base to a model of a Cat-enriched theory, we obtain a model of a Pos-enriched theory that says
for any pair of terms the presence or absence of a rewrite sequence from one to the other, without
distinguishing between different sequences. We call this full-step operational semantics.

Finally, we can pass to the purely abstract realm where all computation is already complete.
For this we take the left adjoint FS: Pos → Set to the functor UP: Set → Pos sending any set to
the discrete poset on that set. The functor FS collapses each connected component of the poset
to a point; this too preserves finite products. If we apply this change of base to a model of a Pos-
enriched theory, we obtain a model of a Set-enriched theory that extracts its denotational semantics
by identifying all terms related by rewrites. If the rewrites are terminating and confluent, we can
choose a representative term for each equivalence class: the unique term that admits no nontrivial
rewrites.

The next section can be skipped by readers eager to see concrete applications of base change.

7. The Category of All Models

In addition to base change, there are two other natural and useful ways to go between models
of enriched theories. Suppose V is any cartesian closed category with chosen finite coproducts of
the terminal object. Let VMod(T,C) be the category of models of a V-theory T in a V-category C
with finite V-products, as in Defn. 4. A morphism of V-theories f : T → T′ induces a change of
theory functor between the respective categories of models

f∗ : VMod(T′,C)→ VMod(T,C)

defined as pre-composition with f . Similarly, a V-product-preserving V-functor g : C→ C′ induces
a change of context functor

g∗ : VMod(T,C)→ VMod(T,C′)

defined as post-composition with g.
These translations, as well as change of base, can all be packed up nicely using the Grothendieck

construction: given any functor F : D → Cat, there is a category
∫
F that encapsulates all of the

categories in the image of F , defined as follows:

objects (d, x) : d ∈ D, x ∈ F (d)
morphisms (f : d→ d′, a : F (f)(x)→ x′)

composition (f, a) ◦ (f ′, a′) = (f ◦ f ′, a ◦ F (f)(a′)).

Moreover there is a functor pF :
∫
F → D given as follows:

on objects pF : (d, x) 7→ d
on morphisms pF : (f, a) 7→ f.

For more details see [7, 15]. We noted in Section 4 that VLaw and Mod(T,C) can be promoted to
V-categories when V is complete and cocomplete: this and further conditions imply that we can use
the enriched Grothendieck construction [5], but we focus on the ordinary Grothendieck construction
for simplicity.
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First, this construction lets us bring together all models of all different V-theories in all different
contexts into one category. All the V-theories are objects of VLaw, as in Defn. 3. We can also
create a category of all “V-contexts”.

Definition 15. Let VCon, the category of V-contexts be the category for which an object is a
V-category with finite V-products and a morphism is a functor that preserves finite V-products.

There is a functor
VMod : VLawop × VCon→ Cat

that sends any object (T,C) to VMod(T,C) and any morphism (f, g) to f∗g∗ = g∗f
∗. The functori-

ality of VMod summarizes the contravariant change-of-theory and the covariant change-of-context
above. Applying the Grothedieck construction we obtain a category

∫
VMod. Technically an object

of
∫
VMod is a triple (T,C, µ), but more intuitively it is a model µ : T → C of any V-theory T in

any V-context C. Similarly, a morphism

(f, g, α) : (T,C, µ)→ (T ′,C′, µ′)

in VMod consists of:

• a morphism of V-theories f : T′ → T,
• a V-functor g : C→ C′ that preserves finite V-products, and
• a V-natural transformation α : g ◦ µ ◦ f ⇒ µ′.

This is a natural way to map between different models of different theories in different contexts.
We can go further by creating a category that even contains all choices of enriching categories

V:

Definition 16. Let Enr be the category for which an object is a cartesian closed category V with
chosen finite coproducts of the terminal object, and a morphism is a cartesian functor F : V → W
preserving the chosen finite coproducts of the initial object.

There is a functor
Mod: Enr→ Cat

that maps any object V to
∫
VMod and any morphism F : V→W to a functor

Mod(F ) :
∫
VMod→

∫
WMod

that has the following effect:

• Mod(F ) maps any object (T,C, µ) to the object (F∗(T), F∗(C), F∗(µ)).
• Mod(F ) maps any morphism (f, g, α) to the morphism (F∗(f), F∗(g), F∗(α)).

Thus, we can use the Grothendieck construction once more to pack up all choices of enrichment
into one big category:

Theorem 17. There is a category
∫

Mod in which:

• An object is a choice of cartesian closed category V with chosen finite coproducts of the
terminal object, a V-theory T, a V-category C with finite V-products, and a model µ : T→ C.

• A morphism is a cartesian functor F : V → W preserving the chosen finite coproducts of
the terminal object and a morphism (f, g, α) : (F∗(T), F∗(C), F∗(µ))→ (T,C, µ) in WMod.

This category allows us to formally treat morphisms between objects of “different kinds”, some-
thing we often use informally, for example when speaking of a map from a set to a ring, or a
group to a topological group. There are many unexplored questions about the large, heterogeneous
categories which arise from the Grothendieck construction, regarding what unusual structure may
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be gained, such as limits and colimits with objects of different types, or identifying “processes” in
which the kinds of objects change in an essential way. However, for our purposes we need only
recognize that enriched Lawvere theories can be assimilated into one category, providing a single
place in which to study change of base, change of theory, and change of context.

8. Applications

In computer science literature, enriched algebraic theories have primarily been studied in the
context of “computational effects” [23]. Stay and Meredith have proposed that enriched Lawvere
theories can be utilized for the design of programming languages [34]. The primary difference
between programming languages and enriched theories, however, is that the latter do not have
a notion of variable binding—there has certainly been progress on this idea [11], but it leads us
beyond our present focus. There is another approach which instead use an enriched theory as a
“compiler”, which can translate a higher language with binding to one without. This idea comes
from the subject of combinatory logic.

8.1. The SKI-combinator calculus. The λ-calculus is an elegant formal language which is the
foundation of functional computation, the model of intuitionistic logic, and the internal logic of
cartesian closed categories: this is the Curry–Howard–Lambek correspondence [3].

Terms are constructed recursively by variables, application, and abstraction, and the basic rewrite
is beta reduction, which substitutes the applied term for the bound variable:

M,N := x | (M N) | λx.M

(λx.M N)⇒M [N/x].

Despite the apparent simplicity, there are complications regarding substitution. Consider the term
M = λx.(λy.(xy)): if this is applied to the variable y, then (M y) ⇒ λy.(y y) — but this is not
intended, because the y in M is just a placeholder, it is “bound” by whatever will be plugged in,
while the y being substituted is “free”, meaning it can refer to some other value or function in
the program. Hence whenever a free variable is to be substituted for a bound variable, we need to
rename the bound variable to prevent “variable capture” (e.g. (My)⇒ λz.(y z)).

This problem was noticed early in the history of mathematical foundations, even before the λ-
calculus, and so Moses Schönfinkel invented combinatory logic [30], a basic form of logic without
the red tape of variable binding, hence without functions in the usual sense. The SKI-calculus is the
“variable-free” representation of the λ-calculus; λ-terms are translated via “abstraction elimination”
into strings of combinators and applications. This is a technique for programming languages to
minimize the subtleties of variables. A great introduction to the fascinating world of combinators
is given by Smullyan [32].

The insight of Stay and Meredith [33] is that even though enriched Lawvere theories have no
variables, they can be used to study some programming languages through abstraction elimination.
When representing such a language as a sSet-theory, vertices—i.e., 0-simplices—in the simplicial
set hom(1, t) serve as closed terms. More generally, vertices in hom(tn, t) serve as terms with n free
variables. Rewrite rules going between such terms are edges—i.e., 1-simplices—in hom(tn, t).

To illustrate this, here is the theory of the SKI-calculus:
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Th(SKI)

type t
term constructors S : 1→ t

K : 1→ t
I : 1→ t

(− −) : t2 → t
structural congruence n/a
rewrites σ : (((S −) =) ≡)⇒ ((− ≡) (= ≡))

κ : ((K −) =)⇒ −
ι : (I −)⇒ −

These rewrites are implicitly universally quantified; i.e., they apply to arbitrary subterms −,=,≡
without any variable binding involved, by using the cartesian structure of the category. They are
edges with vertices as follows:

(((S −) =) ≡) : t3 1× t3 t4 t3 t2 t

((− ≡) (= ≡)) : t3 t4 t4 t2 t

((K −) =): t2 1× t2 t3 t2 t

− : t2 t× 1 t

(I −) : t 1× t t2 t

− : t t

σ

l−1×t3 S×t3 (− −)×t2 (− −)×t (− −)

t2×∆ t×s×t (− −)×(− −) (− −)

κ

l−1×t2 K×t2 (− −)×t (− −)

t×! r

ι

l−1 I×t (− −)

t

Here l, r denote the unitors and s the symmetry of the product.
These abstract rules are evaluated on concrete terms by “plugging in” via precomposition. For

example:

((KS)I) : 1 t2 t

S : 1 t2 t

κ◦(S×I)

S×I ((K −) =)

S×I −

A model of this theory is a sSet-functor µ : Th(SKI) → sSet that preserves finite sSet-products.
This gives a simplicial set µ(t). The images of the nullary operations S,K, I under µ are distin-
guished vertices of µ(t), because µ preserves the terminal object, which “points out” vertices. The
image of the binary operation (− −) gives for every pair of vertices (u, v) ∈ µ(t)2 a vertex (u v)
in µ(t) which stands for their application. In this way all possible terms built from S, K, I and
application give vertices in µ(t). Similarly, rewrites going between these terms give edges in µ(t).
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Thus, µ gives a map of simplicial sets

µ1,t : Th(SKI)(1, t)→ sSet(1, µ(t))

that maps the “syntactic” graph of all closed terms and rewrites to the “semantic” graph: each
rewrite between terms in the theory is sent to a rewrite between the images of these terms in the
model.

The fact that µ((− −)) : µ(t)2 → µ(t) is not just a function but a map of simplicial sets means
that pairs of edges (a → b, c → d) in Th(SKI)(1, t) are sent to edges (a b) → (c d) in sSet(1, µ(t)).
This gives the full complexity of the theory: given a large term (program), there are many different
ways it can be computed—and some take fewer steps than others:

((K S) (((S K) I) (I K))) ((K S) ((K (I K)) (I (I K))))

((K S) ((K K) (I (I K))))

((K S) ((K K) (I K)))

((K S) ((K K) K))

S ((K S) K)

((K S) σ)

κ

(((K S) ι) (I (I K)))

((K S) ((K K) (I ι)))

((K S) ((K K) ι))

((K S) κ)

κ

More generally, the image µ(t)n is a simplicial set whose vertices are SKI-terms with n free
variables and whose edges are n-tuples of rewrites between such terms. This is because the enriched
functor µ gives maps of simplicial sets

µtn,t : Th(SKI)(tn, t)→ sSet(µ(t)n, µ(t)).

As the n-ary operations and rewrites thereof are built up from application and the three rewrites,
everything works the same way as in the case n = 0.

This process is intuitive, but how do we actually define the model, as a functor, to pick out a
specific graph? There are many models of Th(SKI), but in particular we care about the canonical
free model, which means that µ(t) is simply the graph of all closed terms and rewrites in the
SKI-calculus. This utilizes the enriched adjunction of Thm. 5:

sSet

a

Mod(Th(SKI), sSet)

fsSet

usSet

Then the canonical model of closed terms and rewrites is simply the free model on the empty
graph, fsSet(∅), i.e. the V-functor T(1,−) : T → V. Hence for us, the syntax and semantics of the
SKI combinator calculus are unified in the model

µsSet
SKI := Th(SKI)(1,−) : Th(SKI)→ sSet.
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Here we reap the benefits of the abstract construction: the graph µsSet
SKI(t) represents the small-step

operational semantics of the SKI-calculus:

(µ(a)→ µ(b) ∈ µsSet
SKI(t)) ⇐⇒ (a⇒ b ∈ Th(SKI)(1, t)).

We can now consider the base changes in Sec. 6.2, to translate between several important kinds
of computation for the SKI-calculus. Given the above description of Th(SKI) as enriched in sSet,
we can apply the “free category” realization functor to the hom-objects, turning these reflexive
graphs into categories.

Here we enjoy the fact that this functor indeed preserves products, which is essential for con-
sidering tuples of programs running in parallel: for example if we designate Gn := Th(SKI)(tn, t),
then the fact that FC(Gm × Gn) ∼= FC(Gm) × FC(Gn) ensures that the execution of an m-term
program and an n-term program simultaneously (but independently) is the same as executing one,
then the other.

Thus FC translates the theory of SKI from “small-step” to “big-step” operational semantics:
FC∗(Th(SKI)) is the theory of the SKI calculus, but now with hom-categories whose morphisms
represent finite sequences of rewrite edges in the original theory.

We can continue these base-changes to “full-step” and denotational semantics, by applying the
“free poset” and “free set” (connected components) functors to the hom-objects of this theory. This
process demonstrates the idea of having a “spectrum” of detail with which to analyze the semantics
of a programming language, or general algebraic theory.

For example, consider the following computation:

(((S K) (I K)) S)

(((S K) K) S) ((K S) ((I K) S))

((K S) (K S)) S

σι

σι
ισ

κσ

κσι

κισσ ι
κ

κ

The solid arrows are the one-step rewrites of the initial sSet-theory; applying FC∗ gives the dotted
composites, and FP∗ asserts that all composites between any two objects are equal. Finally, FS∗
collapses the whole diagram to S. This is a simple demonstration of the basic stages of computation:
small-step, big-step, full-step, and denotational semantics.

8.2. Change of theory. We can equip term calculi with reduction contexts, which determine when
rewrites are valid, thus giving the language a certain evaluation strategy. For example, the “weak
head normal form” is given by only allowing rewrites on the left-hand side of the term.

We can do this for Th(SKI) by adding a reduction context marker as a unary operation, and a
structural congruence rule which pushes the marker to the left-hand side of an application; lastly
we modify the rewrite rules to be valid only when the marker is present:

Th(SKI + R)
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sort t
term constructors S,K, I : 1→ t

R : t→ t
(− −) : t2 → t

structural congruence R(− =) = (R− =)
RR = R

rewrites σr : (((RS −) =) ≡)⇒ ((R− ≡) (= ≡))
κr : ((RK −) =)⇒ R−
ιr : (RI −)⇒ R−

The SKI-calculus is thereby equipped with “lazy evaluation”, an essential paradigm in modern
programming. This represents a broad potential application of equipping theories with computa-
tional methods, such as evaluation strategies.

Moreover, these equipments can be added or removed as needed: using change-of-theory, we can
utilize a “free reduction” sSet-functor fR : Th(SKI)→ Th(SKI + R):

objects tn 7→ tn

hom-vertices S,K, I 7→ S,K, I
(− −) 7→ R(− −)

hom-edges σ, κ, ι 7→ σr, κr, ιr

This essentially interprets ordinary SKI as having every subterm be a reduction context. This is
a sSet-functor because its hom component consists of graph-homomorphisms

fn,m : Th(SKI)(tn, tm)→ Th(SKI + R)(tn, tm)

which simply send each application to its postcomposition with R, and each rewrite to its “marked”
correspondent.

So, by precomposition this induces the change of theory on categories of models:

f∗R : Mod(Th(SKI + R),C)→ Mod(Th(SKI),C)

for all semantic categories C, which forgets the reduction contexts.
Similarly, there is a sSet-functor uR : Th(SKI+R)→ Th(SKI) which forgets reduction contexts,

by sending σr, κr, ιr 7→ σ, κ, ι and R 7→ idt; this latter is the only way that the marked reductions
can be mapped coherently to the unmarked. However, this means that u∗R does not give the desired
change-of-theory of “freely adjoining contexts”, because collapsing R to the identity eliminates the
significance of the marker.

This illustrates a key aspect of categorical universal algebra: because change-of-theory is given
by precomposition and is thus contravariant, properties (equations) and structure (operations) can
only be removed. This is a necessary limitation, at least in the present setup, but there are ways
to make do. These abstract theories are not floating in isolation but are implemented in code: one
can simply use a “maximal theory” with all pertinent structure, then selectively forget as needed.

8.3. Bisimulation. This paper uses simple functors to illustrate the basic idea of changing methods
of computation. Of course, there are many interesting and useful change-of-base functors. As
demonstrated, any functor F : V → W which preserves finite products and finite coproducts of
the terminal object can be considered as a change of base. For example, if we enrich in labelled
transition systems, we can utilize the important concept of bisimulation.
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A labelled transition system consists of a set G, a label alphabet A, and a rewrite relation
→⊂ G×A×G, equivalently a graph labelled by elements of A. The elements of G represent terms
or processes, and the elements of A represent rewrite rules, in order to actually keep track of which

kinds of rewrites are being used in a computation. An element (p, a, q) is denoted p
a−→ q.

The category of labelled transition systems is like Gph, except we also keep track of labels. Mor-
phisms in LTS, operations in LTS-theories, and LTS-functors all preserve labels. When we compose
or multiply rewrite rules, we retain this information by labelling the result with a denotation for
that composite or product. Modulo these details, V = LTS is like the cases considered earlier.

Labelled transition systems are especially useful in concurrent languages, in which terms rep-
resent processes which may execute in parallel and interact. In this context, the labels represent
potential interactions which would occur if the node process were executed in parallel with a process
of the kind represented by the label. One can imagine it like a chemical reaction:

CH4
O2+heat−−−−−−→ CO2 + 2H2O

In such a language, there can be processes which are syntactically distinct, but interact with
other processes in essentially the same way. In many cases, we want to consider these processes to
be equivalent, and consider terms up to this equivalence.

We can use the labelled transition system to derive a natural definition of process equivalence.
A bisimilarity relation ≡⊂ G×G consists of pairs of processes (p, q), written p ≡ q, defined:

∀a ∈ A, p′, q′ ∈ G
(p

a−→ p′) implies (∃q′ ∈ G (q
a−→ q′) ∧ p′ ≡ q′)

(q
a−→ q′) implies (∃p′ ∈ G (p

a−→ p′) ∧ p′ ≡ q′)
Intuitively, the processes p and q can always “match each other’s moves” as they evolve. Then for all
intents and purposes, these processes behave the same way, and should be considered operationally
equivalent. The bisimulation on G is the largest bisimilarity relation which is also a congruence,
meaning that processes are bisimilar iff they are so in every context, i.e. when substituted into any
one-hole term.

This concept was popularized and demonstrated by Milner in the calculus of communicating
processes [26], one of the original examples of a concurrent language. This calculus can be expressed
as an LTS-theory. Here we give a simplified version of the calculus for the sake of exposition.
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Th(CCS)

types P processes
N actions
N coactions

operations 0: 1→ P nullity
τ : 1→ P internal action
| : P 2 → P parallel

+: P 2 → P choice
. : N × P → P input
. : N × P → P output

congruence (P, |, 0) commutative monoid
(P,+, 0) commutative monoid

rewrites τ.P
tau−−→ P

P ′ + a.P |a.Q inter−−−→ P |Q

The theory is summarized in the two rewrite rules: tau is an “unobservable” action, a process
evolving in a way that is private to the ambient context; inter is interaction or communication -
the action (input channel) a is triggered by the coaction (output channel) a, they are used up (in
data transference) and the subsequent processes continue in parallel.

This calculus is the precursor to the π calculus [25], and is a very simple and general framework
for understanding systems of interacting automata. Of course, the real study of bisimulation in
concurrency theory is more complex; it is meant only as a proof of concept.

There is an endofunctor B : LTS→ LTS which quotients by the bisimulation relation. It preserves
products, B(G×H) ∼= B(G)×B(H), because (p1, p2) ≡ (q1, q2) iff (p1 ≡ q1 and p2 ≡ q2). Thus we
can utilize base change to perform a very useful tranformation on our computation: from Th(CCS),
we get a new theory B∗(Th(CCS)), the hom-LTS’s of which consist of bisimulation equivalence
classes of terms and rewrites in the calculus of communicating systems.

9. Conclusion

We have shown how enriched Lawvere theories provide a framework for unifying the structure
and behavior of formal languages. Enriching theories in category-like structures reifies operational
semantics by incorporating rewrites between terms, and appropriate functors between enriching
categories induce change-of-base functors between categories of enriched theories and models—this
simplified condition is obtained by using only natural number arities. This idea is motivated by
an example sequence of such functors, which provide a spectrum of detail in which to study the
rewriting properties of a theory.

Change of base, along with change of theory and change of context, can be used to create a single
category Mod, which consists of all models of all enriched Lawvere theories in all contexts. We have
demonstrated these concepts with the theory of combinatory logic, Th(SKI), describing a change of
base from small-step operational semantics to big-step to full-step to denotational semantics.
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Finally, we suggest that there are many interesting change-of-base functors, by considering an
endofunctor on the category of labelled transition systems, which quotients by the bisimulation
relation and is indeed a change of base.
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