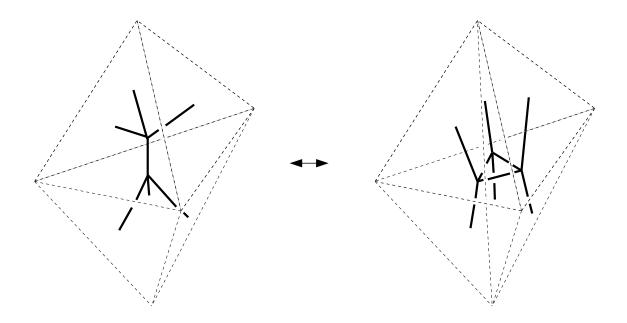
Loop Quantum Gravity

John C. Baez

Talk at

Department of Physics and Astronomy California State University, Long Beach



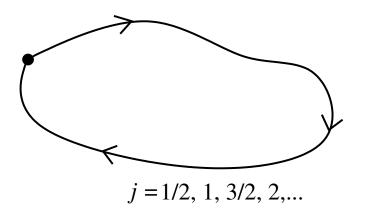
This talk and references can be found at: http://math.ucr.edu/home/baez/loop/

Loop Quantum Gravity

Loop quantum gravity tries to combine general relativity and quantum theory in a *background-free* theory. So, we cannot take gravitons, strings, etc. moving on a spacetime with a pre-established geometry as basic building blocks of the theory. Instead, we must start with *quantum states* of geometry.

To describe these, we ask:

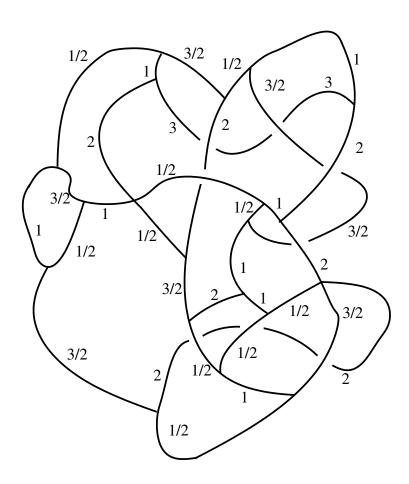
What is the amplitude for a spinning test particle to come back to the state it started in when we parallel transport it around a loop in space?



The answer doesn't depend on the starting point or the direction of the loop, so we can ignore those. It's enough to consider spin-1/2 particles, so a state of quantum geometry assigns to each loop an amplitude — a complex number.

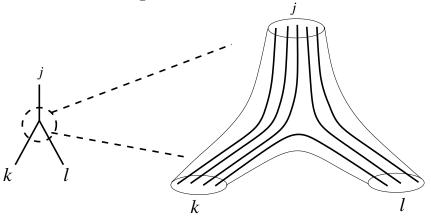
Spin Networks

More generally, a state of quantum geometry assigns an amplitude to any system of spinning test particles tracing out paths in space, merging and splitting. These are described by *spin networks*: graphs with edges labelled by spins...

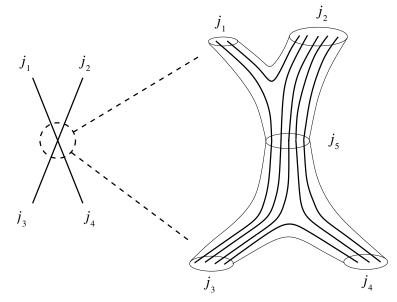


...together with 'intertwining operators' at vertices saying how the spins are routed. These are described using the mathematics of spin: the representation theory of the group SU(2). But we can also *draw* them!

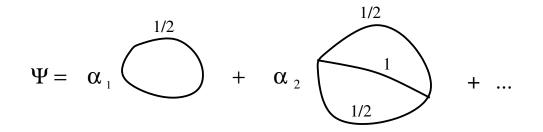
For vertices where 3 edges meet, there's at most one way to do this routing:



For vertices where more than 3 edges meet, we can formally 'split' them to reduce the problem to the previous case:



A quantum state of the geometry of space assigns an amplitude to any spin network. So, we can think of these states as *complex linear combinations of spin networks*, with these amplitudes as coefficients:



We could also use loops, but spin networks are an *or*thonormal basis of states, so they are more convenient.

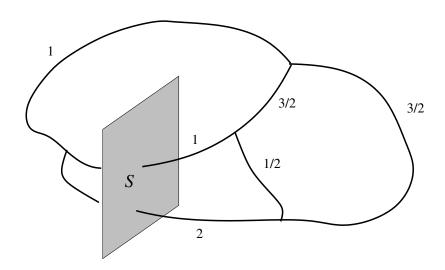
In this theory, the space around us is described by a huge linear combination of enormous spin networks — a complicated 'weave' that approximates the seemingly smooth geometry we see at distances much larger than the Planck length ($\sim 10^{-35}$ meters).

To see how this works, we need operators corresponding to interesting observables: lengths, areas, volumes...

Here we shall only consider *area operators*....

Quantization of Area

If a spin network intersects a surface S transversely:



then this surface has a definite area in this state, given as a sum over the spins j_e of the edges e poking through S:

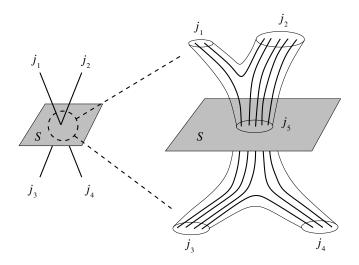
Area(S) =
$$8\pi\gamma \sum_{\text{edges } e} \sqrt{j_e(j_e+1)}$$

in units where the Planck length is 1. In particular, the operator for area has a *discrete spectrum!*

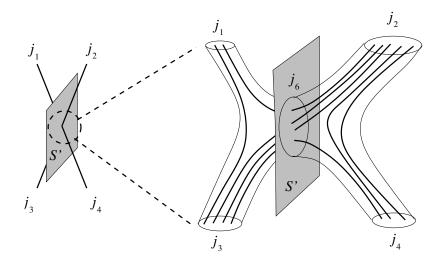
Here γ is a constant called the 'Barbero-Immirzi parameter'. So far we can only determine this by computing the entropy of a black hole in loop quantum gravity and comparing the answer to Hawking's calculation.

Uncertainty Principle for Area

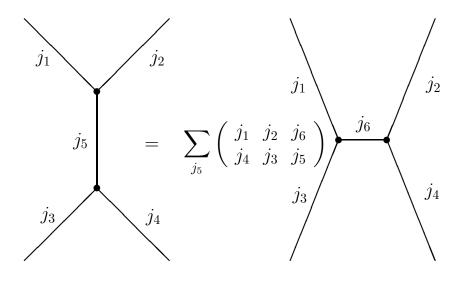
If a surface S intersects a spin network at a vertex, we must examine the routing to compute the area of S:



To describe states with definite areas, we must split the vertex so that the new edge intersects S transversely. This surface S' requires a different splitting:



Different splittings give different bases of states. To change from one basis to another we must use a matrix called the '6j symbols':

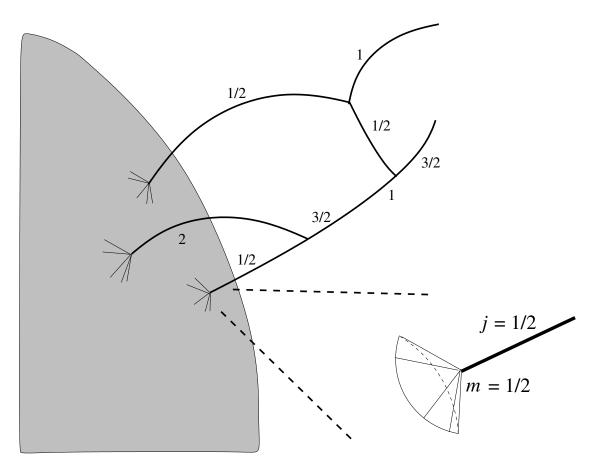


The area of S only has a definite value in the first basis of states, while that of S' only has a definite value in the second basis. There is no basis of states in which the areas of both S and S' have definite values!

In other words, the area operators for intersecting surfaces cannot be simultaneously diagonalized, so the uncertainty principle applies.

Black Hole Entropy

We can study loop quantum gravity in the presence of a uncharged, nonrotating black hole. Spin network edges puncturing the horizon contribute to its area. The intrinsic curvature of the horizon is concentrated at these punctures:



The angle deficit at a puncture is determined by a number

$$m = -j, -j+1, \ldots, j-1, j$$

where j is the spin of the edge piercing the horizon at this point.

A quantum state of the horizon is thus determined by two lists of numbers: j_i and m_i , with $j_i \in \{\frac{1}{2}, 1, \frac{3}{2}, ...\}$ and $m_i \in \{-j_i, -j_i + 1, ..., j_i\}$. If the black hole has area close to A, these lists must satisfy

$$\left| A - 8\pi\gamma \sum_{i} \sqrt{j_i(j_i+1)} \right| < \delta$$

for some number $\delta > 0$ — our error tolerance.

If we count the total number N of such states, for large A we find it grows about exponentially:

$$\ln N \sim (\gamma_0/\gamma) \frac{A}{4}$$

where γ_0 is independent of our error tolerance:

$$\gamma_0 = 0.27406685...$$

The black hole entropy is the logarithm of the number of states:

$$S = \ln N \sim (\gamma_0/\gamma) \frac{A}{4}$$

This matches Hawking's famous semiclassical calculation:

$$S = \frac{A}{4}$$

if and only if the Barbero–Immirzi parameter is given by

$$\gamma = \gamma_0.$$

Thus, agreement with semiclassical results forces a specific value for the 'quantum of area': with $\gamma = \gamma_0$, the smallest allowed area is

$$8\pi\gamma\sqrt{\frac{1}{2}(\frac{1}{2}+1)} = 5.965222...$$

times the Planck length squared: about $1.5 \cdot 10^{-69}$ meters².

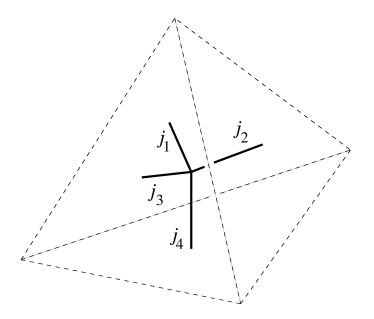
The same sort of calculation works for charged and/or rotating black holes, as well as black holes distorted by an external gravitational field — always with the same value of γ !

However, all this work is very tentative. Changing certain assumptions, we obtain different results. And we are not yet able to determine γ using *just* loop quantum gravity: we still need help from Hawking.

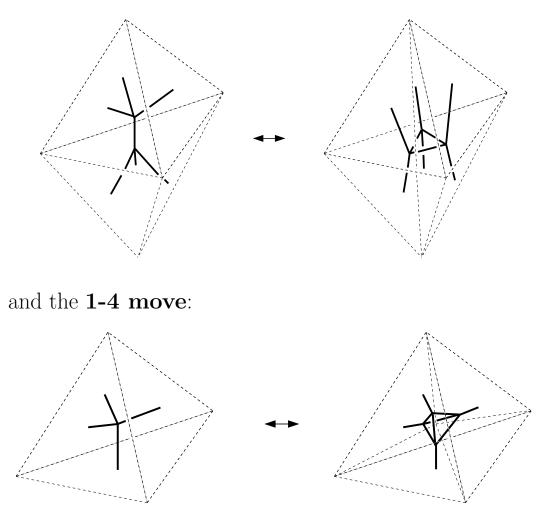
Dynamics

So far everything has been about space at a given time. What about *dynamics?* I'll describe a theory called the Barrett–Crane model, and some computer simulations of this model. For simplicity I'll discuss the *Riemannian* Barrett–Crane model, instead of the more realistic *Lorentzian* one.

In the Barrett–Crane model we assume space at any given time is built from tetrahedra, and the spin network lies in the 'dual 1-skeleton':

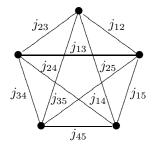


The spins j_1, \ldots, j_4 describe the areas of the triangles. Given these spins, the theory picks out a specific intertwining operator at the vertex. Time evolution proceeds randomly by two moves: the **2-3 move**:



Both these moves result from replacing the 'back' of a 4simplex by the 'front'. Pachner's theorem says we can go between any two triangulations of a compact 3-manifold via these moves.

The spins on triangles unaffected by these moves don't change; the new spins are chosen randomly with an amplitude depending on all the spins involved. There are 10 of these spins, giving a spin network with one edge for each triangle in a 4-simplex:



The amplitude is called the 10j symbol, and given by a certain integral, similar to a Feynman diagram:

$$\int_{(S^3)^5} \prod_{k < l} K_{j_{kl}}(\phi_{kl}) \ dx_1 \cdots dx_5.$$

Here the unit sphere $S^3 \subset \mathbb{R}^4$ is equipped with its rotationinvariant measure dx with total volume 1, ϕ_{kl} is the angle between the unit vectors x_k and x_l , and

$$K_j(\phi) = \frac{\sin(2j+1)\phi}{\sin\phi}$$

Some Sample Calculations

Consider a tiny spacetime: a 4-sphere triangulated with six 4-simplices (the boundary of a 5-simplex). What are the probabilities with which the triangles are labelled by various spins in the Barrett–Crane model?

Baez, Christensen, Halford and Tsang did a Monte Carlo calculation with spin cutoff J = 50 and half a billion iterations. Each iteration required computing six 10j symbols. We obtained the following results:

spin	frequency
0	69.548%
1/2	18.733%
1	6.2878%
3/2	2.5510%
2	1.1958%
5/2	.61995%
3	.34893%
7/2	.21243%
4	.13535%
9/2	.08989%
5	.06252%

cutoff J	expected triangle area
0	0.000000
1/2	0.121987
1	0.210441
3/2	0.265911
2	0.302153
5/2	0.326524
15/2	0.381160
25/2	0.396701
50	0.399991
∞	0.400005

Another question: what is the expected area of a triangle in this spacetime?

The results above are *exact* when the cutoff J is $\leq \frac{5}{2}$: we averaged over all labellings of the triangles in this spacetime by spins $\leq J$. This required summing 3.5 trillion products of six 10j symbols when $J = \frac{5}{2}$. The Beowulf cluster at UWO came in handy here. Results for higher cutoffs are approximate, obtained by a Monte Carlo calculation.