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Loop Quantum Gravity

Loop quantum gravity tries to combine general relativity

and quantum theory in a background-free theory. So, we

cannot take gravitons, strings, etc. moving on a spacetime

with a pre-established geometry as basic building blocks of

the theory. Instead, we must start with quantum states

of geometry.

To describe these, we ask:

What is the amplitude for a spinning test particle to

come back to the state it started in when we parallel

transport it around a loop in space?

j =1/2, 1, 3/2, 2,...

The answer doesn’t depend on the starting point or the

direction of the loop, so we can ignore those. It’s enough

to consider spin-1/2 particles, so a state of quantum ge-

ometry assigns to each loop an amplitude — a complex

number.



Spin Networks

More generally, a state of quantum geometry assigns an

amplitude to any system of spinning test particles tracing

out paths in space, merging and splitting. These are de-

scribed by spin networks: graphs with edges labelled by

spins...
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...together with ‘intertwining operators’ at vertices say-

ing how the spins are routed. These are described using

the mathematics of spin: the representation theory of the

group SU(2). But we can also draw them!

For vertices where 3 edges meet, there’s at most one way

to do this routing:
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For vertices where more than 3 edges meet, we can formally

‘split’ them to reduce the problem to the previous case:
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A quantum state of the geometry of space assigns an am-

plitude to any spin network. So, we can think of these

states as complex linear combinations of spin networks,

with these amplitudes as coefficients:

Ψ = α 1

1/2

+     α 2

1/2

+ ...
1

1/2

We could also use loops, but spin networks are an or-

thonormal basis of states, so they are more convenient.

In this theory, the space around us is described by a huge

linear combination of enormous spin networks — a com-

plicated ‘weave’ that approximates the seemingly smooth

geometry we see at distances much larger than the Planck

length (∼ 10−35 meters).

To see how this works, we need operators corresponding to

interesting observables: lengths, areas, volumes...

Here we shall only consider area operators....



Quantization of Area

If a spin network intersects a surface S transversely:
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then this surface has a definite area in this state, given as

a sum over the spins je of the edges e poking through S:

Area(S) = 8πγ
∑

edges e

√

je(je + 1)

in units where the Planck length is 1. In particular, the

operator for area has a discrete spectrum!

Here γ is a constant called the ‘Barbero-Immirzi param-

eter’. So far we can only determine this by computing

the entropy of a black hole in loop quantum gravity and

comparing the answer to Hawking’s calculation.



Uncertainty Principle for Area

If a surface S intersects a spin network at a vertex, we

must examine the routing to compute the area of S:
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To describe states with definite areas, we must split the

vertex so that the new edge intersects S transversely. This

surface S ′ requires a different splitting:
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Different splittings give different bases of states. To change

from one basis to another we must use a matrix called the

‘6j symbols’:
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The area of S only has a definite value in the first basis

of states, while that of S ′ only has a definite value in the

second basis. There is no basis of states in which the

areas of both S and S ′ have definite values!

In other words, the area operators for intersecting surfaces

cannot be simultaneously diagonalized, so the uncertainty

principle applies.



Black Hole Entropy

We can study loop quantum gravity in the presence of

a uncharged, nonrotating black hole. Spin network edges

puncturing the horizon contribute to its area. The intrinsic

curvature of the horizon is concentrated at these punctures:

= 1/2j
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The angle deficit at a puncture is determined by a number

m = −j,−j + 1, . . . , j − 1, j

where j is the spin of the edge piercing the horizon at this

point.



A quantum state of the horizon is thus determined by two

lists of numbers: ji and mi, with ji ∈ {1
2
, 1, 3

2
, . . . } and

mi ∈ {−ji,−ji + 1, . . . , ji}. If the black hole has area

close to A, these lists must satisfy
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A − 8πγ
∑
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√

ji(ji + 1)
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< δ

for some number δ > 0 — our error tolerance.

If we count the total number N of such states, for large A

we find it grows about exponentially:

ln N ∼ (γ0/γ)
A

4

where γ0 is independent of our error tolerance:

γ0 = 0.27406685...

The black hole entropy is the logarithm of the number of

states:

S = ln N ∼ (γ0/γ)
A

4
This matches Hawking’s famous semiclassical calculation:

S =
A

4

if and only if the Barbero–Immirzi parameter is given by

γ = γ0.



Thus, agreement with semiclassical results forces a

specific value for the ‘quantum of area’ : with γ = γ0,

the smallest allowed area is

8πγ
√

1
2(

1
2 + 1) = 5.965222...

times the Planck length squared: about 1.5·10−69 meters2.

The same sort of calculation works for charged and/or

rotating black holes, as well as black holes distorted by an

external gravitational field — always with the same value

of γ!

However, all this work is very tentative. Changing certain

assumptions, we obtain different results. And we are not

yet able to determine γ using just loop quantum gravity:

we still need help from Hawking.



Dynamics

So far everything has been about space at a given time.

What about dynamics? I’ll describe a theory called the

Barrett–Crane model, and some computer simulations of

this model. For simplicity I’ll discuss the Riemannian

Barrett–Crane model, instead of the more realistic Lorentzian

one.

In the Barrett–Crane model we assume space at any given

time is built from tetrahedra, and the spin network lies in

the ‘dual 1-skeleton’:
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The spins j1, . . . , j4 describe the areas of the triangles.

Given these spins, the theory picks out a specific inter-

twining operator at the vertex.



Time evolution proceeds randomly by two moves: the 2-3

move:

and the 1-4 move:

Both these moves result from replacing the ‘back’ of a 4-

simplex by the ‘front’. Pachner’s theorem says we can go

between any two triangulations of a compact 3-manifold

via these moves.



The spins on triangles unaffected by these moves don’t

change; the new spins are chosen randomly with an ampli-

tude depending on all the spins involved. There are 10 of

these spins, giving a spin network with one edge for each

triangle in a 4-simplex:
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The amplitude is called the 10j symbol, and given by a

certain integral, similar to a Feynman diagram:

∫

(S3)5

∏

k<l

Kjkl
(φkl) dx1 · · · dx5.

Here the unit sphere S3 ⊂ R
4 is equipped with its rotation-

invariant measure dx with total volume 1, φkl is the angle

between the unit vectors xk and xl, and

Kj(φ) =
sin(2j + 1)φ

sin φ



Some Sample Calculations

Consider a tiny spacetime: a 4-sphere triangulated with

six 4-simplices (the boundary of a 5-simplex). What are

the probabilities with which the triangles are labelled by

various spins in the Barrett–Crane model?

Baez, Christensen, Halford and Tsang did a Monte Carlo

calculation with spin cutoff J = 50 and half a billion itera-

tions. Each iteration required computing six 10j symbols.

We obtained the following results:

spin frequency

0 69.548%

1/2 18.733%

1 6.2878%

3/2 2.5510%

2 1.1958%

5/2 .61995%

3 .34893%

7/2 .21243%

4 .13535%

9/2 .08989%

5 .06252%



Another question: what is the expected area of a triangle

in this spacetime?

cutoff J expected triangle area

0 0.000000

1/2 0.121987

1 0.210441

3/2 0.265911

2 0.302153

5/2 0.326524

15/2 0.381160

25/2 0.396701

50 0.399991

∞ 0.400005

The results above are exact when the cutoff J is ≤ 5
2
: we

averaged over all labellings of the triangles in this space-

time by spins ≤ J . This required summing 3.5 trillion

products of six 10j symbols when J = 5
2
. The Beowulf

cluster at UWO came in handy here. Results for higher

cutoffs are approximate, obtained by a Monte Carlo calcu-

lation.


