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Loop Quantum Gravity

Loop quantum gravity tries to combine general relativity

and quantum theory in a background-free theory. So, we

cannot take gravitons, strings, etc. moving on a space-

time with a pre-established geometry as the basic building

blocks of the theory. Instead, we must start with quantum

states of geometry.

To describe these, we ask:

What is the amplitude for a spinning test particle to

come back to the state it started in when we parallel

transport it around a loop in space?

j =1/2, 1, 3/2, 2,...

The answer doesn’t depend on the starting point or the

direction of the loop, so we can ignore those. It’s enough

to consider spin-1/2 particles, so a state of quantum ge-

ometry assigns to each loop an amplitude — a complex

number.



Spin Networks

More generally, a state of quantum geometry assigns an

amplitude to any system of spinning test particles tracing

out paths in space, merging and splitting. These are de-

scribed by spin networks: graphs with edges labelled by

spins...
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...together with ‘intertwining operators’ at vertices saying

how the spins are routed. For vertices where 3 edges meet,

there’s at most one way to do this routing:
j

k l

k l

j

For vertices where more than 3 edges meet, we can formally

‘split’ them to reduce the problem to the previous case:
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A quantum state of the geometry of space assigns an am-

plitude to any spin network. So, we can think of these

states as complex linear combinations of spin networks,

with these amplitudes as coefficients:

Ψ = α 1

1/2

+     α 2

1/2

+ ...
1

1/2

We could also use loops, but spin networks are an or-

thonormal basis of states, so they are more convenient.

What is the meaning of these spin network states? For this

we must describe operators corresponding to interesting

observables: lengths, areas, volumes...

We shall do this assuming that parallel transport is done

using the real Ashtekar connection

A = Γ − γK

where Γ is the Levi-Civita connection on space, K is the

extrinsic curvature and γ ∈ R is the Barbero–Immirzi

parameter.

We shall only consider area operators....



Quantization of Area

If a spin network intersects a surface S transversely:
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then this surface has a definite area in this state, given as

a sum over the spins j of the edges poking through S:

Area(S) = 8πγ
∑

spins j

√

j(j + 1)

in units where the ~ = c = G = 1. In particular, the

operator for area has a discrete spectrum.



Uncertainty Principle for Area

If a surface S intersects a spin network at a vertex, we

must examine the routing to compute the area of S:
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To describe states with definite areas, we must split the

vertex so that the new edge intersects S transversely. This

surface S ′ requires a different splitting:
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Different splittings give different bases of states. To change

from one basis to another we must use a matrix called the

‘6j symbols’:
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=
∑

j5

(

j1 j2 j6

j4 j3 j5

)

j2

j4j3

j1

j5

j3

j1

j6

The area of S only has a definite value in the first basis

of states, while that of S ′ only has a definite value in the

second basis. There is no basis of states in which the

areas of both S and S ′ have definite values.

In other words, the area operators for intersecting surfaces

do not commute, so the uncertainty principle applies.



Black Hole Entropy

A careful analysis of ‘isolated horizons’ lets us do loop

quantum gravity in the presence of a black hole. Spin net-

work edges puncturing the horizon of a black contribute to

its area. The intrinsic curvature of the horizon is concen-

trated at these punctures:

= 1/2j
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The curvature at a puncture is determined by a quantum

number m = −j,−j + 1, . . . , j, where j is the spin of the

edge piercing the horizon at this point. These quantum

numbers specify a quantum state of a U(1) connection.



A quantum state of a U(1) connection on the horizon is

determined by a list of numbers mi = ±1/2,±1, . . . . If

the black hole has area close to A, we must have

A ∼= 8πγ
∑

i

√

ji(ji + 1)

and thus

8πγ
∑

i

√

mi(mi + 1) . A

since mi ranges from −ji to ji.

If we count the total number N of such states, for large A

we find

N ∼ e(γ0/γ)A
4

where γ0 is a constant whose correct value has been de-

termined only recently, by Domagala, Lewandowski and

Meissner:

γ0 = 0.2375329...

which is the real solution of
∑

m=1

2
,1,3

2
,...

2e−2πγ0

√
m(m+1) = 1

The probability that a puncture is labelled by ±m is

2e−2πγ0

√
m(m+1)



The black hole entropy is therefore

S = ln N ∼ (γ0/γ)
A

4

which matches Hawking’s semiclassical calculation

S =
A

4

if and only if the Barbero–Immirzi parameter is given by

γ = γ0.

Thus, agreement with semiclassical results forces a spe-

cific value for the ‘quantum of area’ : with this γ, the

smallest allowed area is

8πγ0

√

1
2(

1
2 + 1) = 5.17004...

The same calculation works for:

• charged, rotating and/or distorted black holes;

• black holes coupled to a dilaton field.

It also reproduces the usual semiclassical results for non-

minimally coupled matter, where S is not just A/4 — still

with the same value of γ!



Loop Quantum Cosmology

To understand dynamics in loop quantum gravity, we need

states satisfying the Hamiltonian constraint:

HΨ = 0

and we must extract physics from them — the hard part.

Thiemann has proposed a candidate for the operator H ,

and found solutions to HΨ = 0, but to extract physics

from them we need semiclassical states: states that closely

approximate solutions of the classical Einstein equations.

Much work is being done on this. So far the most rapid

progress has come by focusing on highly symmetrical states:

homogeneous isotropic cosmologies. Bojowald has shown

that by adapting Thiemann’s work to this context:

• The state of the universe is a wavefunction Ψ depending

on the ‘size of the universe’ µ ∈ R and the values of

various matter fields.

• The equation HΨ = 0 is a difference equation in µ.

• This equation has well–behaved solutions which reduce

to those of ordinary Wheeler-DeWitt quantum cosmol-

ogy at scales µ � `p.

• We can extend these solutions to µ < 0 — ‘before the

big bang’.



• Curvatures remain bounded, so there is no ‘singularity’.

• There is typically an inflationary epoch near the Planck

time, with a graceful transition to a Friedmann-like

cosmology:
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Here we see the radius a(t) as a function of t for the

effective Friedmann equation with a scalar field having

V (φ) = 0 (solid curve) or a quartic potential (dashed

curve).

• In Bianchi IV models, chaotic behavior is suppressed

by quantum effects near the Planck time.

Can we use cosmology to test loop quantum gravity?



Lorentz Violation?

Leaving the world of highly symmetric solutions, can we

find semiclassical states that closely approximate Minkowski

spacetime, while allowing quantum fluctuations of a gen-

eral kind? A full answer will require a better understand-

ing of dynamics, but various researchers have suggested

that these semiclassical states might lack perfect Lorentz-

invariance, leading to deviations in the energy-momentum

relations:

E2 = m2 + |p|2 + κ1`p|p|3 + κ2`p|p|4 + · · ·

Jacobson/Liberati/Mattingly, Konopka/Major and others

have examined possible experimental tests, including:

• The (missing?) GZK cutoff on high-energy cosmic

rays.

• The (missing?) cutoff on high-energy photons.

• Dispersion or vacuum birefringence of high-frequency

radiation from distant sources.

• The vacuum Čerenkov effect, photon decay, and other

Lorentz-forbidden processes.

These already highly constrain κ1 for some species of par-

ticles, and κ2 is within sight...

Can we use these ideas to test loop quantum gravity?



Taming Lorentz Violation?

Doubly special relativity, the κ-Poincaré group and other

formalisms allow one to deform rather than merely dis-

card Lorentz symmetry. The deformation parameter is a

fundamental energy scale, say the Planck energy Ep, which

is preserved by the analogue of Lorentz transformations.

Can we derive any of these as an effective limit of loop

quantum gravity?



Quantum Spacetime via Spin Foams?

The idea: spacetime and everything in it is a quantum

superposition of ‘spin foams’. A spin foam is a generalized

Feynman diagram where instead of a graph we use a 2-

dimensional complex whose slices are spin networks:

A spin foam model specifies how to calculate an amplitude

for any such spin foam — typically as a product of vertex

amplitudes, edge amplitudes, face amplitudes, etc. There

is a lot of beautiful mathematics here, but:

Can we use these to get a spacetime picture of loop

quantum gravity?

Can we find a spin foam model whose behavior at

length scales large compared to the Planck scale re-

duces to general relativity?


