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The Atiyah-Singer Index Theorem

In the 1960s, Atiyah and Singer proved what was to become
one of the most important and widely applied theorems in 20th
century mathematics, viz. the Atiyah-Singer Index Theorem.

Roughly speaking, the laws of nature are often expressed in
terms of differential equations, which if elliptic, have an index
being the number of solutions minus the number of constraints
imposed. The Atiyah-Singer Index Theorem gives a striking
calculation of this index. Atiyah and Singer were jointly
awarded the prestigious Abel Prize in 2004.
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Dirac operators

Paul Dirac was one of the founders of quantum mechanics,
and was awarded the Nobel Prize in Physics in 1933.

Dirac defined an operator 6∂ on Rn that solved the square root
problem for the Laplacian on Rn, that is, 6∂2 = ∆. The
construction was novel as it used Clifford algebras and
spinors in an essential way.
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Dirac operators

More precisely, if {γj}nj=1 denote Clifford multiplication by an
orthonormal basis of Rn, then the Clifford algebra relations are
γjγk + γkγj = 2δij .

When n = 2, these are Pauli matrices;

γ1 =

(
0 1
1 0

)
, γ2 =

(
0 −i
i 0

)
ε =

(
1 0
0 −1

)

6∂ =
n∑

j=1

γj
∂

∂xj
.

It turns out that this operator plays a fundamental role in
quantum mechanics, and is known as the Dirac operator.
By construction,

6∂2 = ∆.Id.
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The Index Theorem for Dirac operators

Atiyah and Singer extended the definition of the Dirac
operator, 6∂+ on any compact spin manifold Z of even
dimension, and computed the analytic index,

Indexa( 6∂+) = dim(nullspace6∂+)− dim(nullspace6∂−)

=

∫
Z

Â(Z ) ∈ Z

where RHS is the A-hat genus of the manifold Z . In terms of

the Riemannian curvature ΩZ of Z , Â(Z ) =

√
det
(

1
4π ΩZ

sinh( 1
4π ΩZ )

)
.

?Question?: Since
∫

Z
Â(Z ) /∈ Z continues to make sense for

non-spin manifolds Z , what corresponds to the analytic index in
this situation, since the usual Dirac operator does not exist?
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√
det
(

1
4π ΩZ

sinh( 1
4π ΩZ )

)
.

?Question?: Since
∫

Z
Â(Z ) /∈ Z continues to make sense for

non-spin manifolds Z , what corresponds to the analytic index in
this situation, since the usual Dirac operator does not exist?



The Index Theorem for Dirac operators

Atiyah and Singer extended the definition of the Dirac
operator, 6∂+ on any compact spin manifold Z of even
dimension, and computed the analytic index,

Indexa( 6∂+) = dim(nullspace6∂+)− dim(nullspace6∂−)

=

∫
Z
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Outline of talk

We propose 2 solutions to the question, and relate them.

1 In [MMS3], we generalize the notion of "ψdo", to "projective ψdo".
In particular, on an oriented even dimensional Riemannian manifold,
we define the notion of projective spin Dirac operator. We define
its fractional analytic index, and prove an index theorem showing
that it equals the Â-genus (proof sketched in the talk).

2 On the oriented orthonormal frame bundle of such a manifold, we

show in [MMS4] that there also always exists a Spin-equivariant

transversally elliptic Dirac operator. The relation between the

fractional analytic index of the projective Dirac operator and the

equivariant index of the associated Spin-equivariant transversally

elliptic Dirac operator is explained there and sketched in the talk.



Outline of talk

We propose 2 solutions to the question, and relate them.

1 In [MMS3], we generalize the notion of "ψdo", to "projective ψdo".
In particular, on an oriented even dimensional Riemannian manifold,
we define the notion of projective spin Dirac operator. We define
its fractional analytic index, and prove an index theorem showing
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Projective vector bundles

A projective vector bundle on a manifold Z is not a global
bundle on Z , but rather it is a vector bundle E → Y , where

PU(n) −→ Y
φ−→ Z

is a principal PU(n)-bundle,

where E also satisfies

Lg ⊗ Ey ∼= Eg.y , g ∈ PU(n), y ∈ Y (1)

where L = U(n)×U(1) C→ PU(n) is the primitive line bundle,

Lg1 ⊗ Lg2
∼= Lg1.g2 , gi ∈ PU(n).

The identification (1) gives a projective action of PU(n) on E ,
i.e. an action of U(n) on E s.t. the center U(1) acts as scalars.
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The Dixmier-Douady invariant of Y ,

DD(Y ) = δ(Y ) ∈ Torsion(H3(Z ,Z))

is the obstruction to lifting the principal PU(n)-bundle Y to a
principal U(n)-bundle. (The construction also works for any
principal G bundle P over Z , together with a central extension
Ĝ of G.)

The associated algebra bundle

A = Y ×PU(n) Mn(C)

is called the associated Azumaya bundle.
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Projective vector bundle of spinors

Let E → Z be a real oriented Riemannian vector bundle,

SO(n) −→ SO(E)
ψ−→ Z

the principal bundle of oriented orthonormal frames on E .

Let N denote the (co)normal bundle to the fibres. Then it is
easy to see that w2(N) = 0, so that N always has a bundle of
spinors S, which is a projective vector bundle over Z .

Also End(S) ∼= ψ∗Cl(E).
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Schwartz kernel theorem

For a compact manifold, Z , and vector bundles E and F over Z ,
the Schwartz kernel theorem gives a 1-1 correspondence,

continuous linear operators, C∞(Z ,E) −→ C−∞(Z ,F )~www�
~www�

distributional sections, C−∞(Z 2,Hom(E ,F )⊗ ΩR)

where Hom(E ,F )(z,z′) = Fz � E∗z′ is the ‘big’ homomorphism
bundle over Z 2 and ΩR the density bundle from the right factor.
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When restricted to pseudodifferential operators, Ψm(Z ,E ,F ),
get an isomorphism with the space of conormal distributions
with respect to the diagonal, Im(Z 2,∆; Hom(E ,F )). i.e.

Ψm(Z ,E ,F ) ⇐⇒ Im(Z 2,∆; Hom(E ,F ))

When further restricted to differential operators Diffm(Z ,E ,F )

(which by definition have the property of being local operators)
this becomes an isomorphism with the space of conormal
distributions, Im

∆(Z 2,∆; Hom(E ,F )), with respect to the
diagonal, supported within the diagonal, ∆. i.e.

Diffm(Z ,E ,F ) ⇐⇒ Im
∆(Z 2,∆; Hom(E ,F ))
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Projective differential operators/ΨDOs

The previous facts motivates our definition of projective
differential and pseudodifferential operators when E and F are
only projective vector bundles associated to a fixed
finite-dimensional Azumaya bundle A.

Since a projective vector bundle E is not global on Z , one
cannot make sense of sections of E , let alone operators acting
between sections! However, it still makes sense to talk about
Schwartz kernels even in this case, as we explain.
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Notice that Hom(E ,F ) = F � E∗ is a projective bundle on Z 2

associated to the Azumaya bundle, AL �A′R.

The restriction ∆∗Hom(E ,F ) = hom(E ,F ) to the diagonal is an
ordinary vector bundle, it is therefore reasonable to expect that
Hom(E ,F ) also restricts to an ordinary vector bundle in a
tubular nbd Nε of the diagonal.

In [MMS3], it is shown that there is a canonical such choice,
HomA(E ,F ) of such that the composition properties hold.
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This allows us to define the space of projective pseudo-
differential operators Ψ•ε (Z ; E ,F ) with Schwartz kernels
supported in an ε-neighborhood Nε of the diagonal ∆ in Z 2,
with the space of conormal distributions, I•ε (Nε,∆; HomA(E ,F )).

Ψ•ε (Z ; E ,F ) := I•ε (Nε,∆; HomA(E ,F )).

Despite not being a space of operators, this has precisely the
same local structure as in the standard case and has similar
composition properties provided supports are restricted to
appropriate neighbourhoods of the diagonal.
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The space of projective smoothing operators, Ψ−∞ε (Z ; E ,F )

is defined as the smooth sections, C∞c (Nε; HomA(E ,F )⊗ π∗RΩ).

The space of all projective differential operators, Diff•(Z ; E ,F )

is defined as those conormal distributions that are supported
within the diagonal ∆ in Z 2,

Diff•(Z ; E ,F ) := I•∆(Nε,∆; HomA(E ,F )).

In fact, Diff•(Z ; E ,F ) is even a ring when E = F .
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Projective spin Dirac operator

Recall that there is a projective bundle of spinors S = S+ ⊕ S−

on any even dimensional oriented manifold Z .

There are natural spin connections on the Clifford algebra
bundle Cl(Z ) and S± induced from the Levi-Civita connection
on T ∗Z .

Recall also that hom(S,S) ∼= Cl(Z ), has an extension to C̃l(Z )

in a tubular neighbourhood of the diagonal ∆, with an induced
connection ∇.
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The projective spin Dirac operator is defined as the
distributional section

6∂ = cl · ∇L(κId ), κId = δ(z − z ′)IdS

Here ∇L is the connection ∇ restricted to the left variables with
cl the contraction given by the Clifford action of T ∗Z on the left.
As in the usual case, the projective spin Dirac operator 6∂ is
elliptic and odd wrt Z2 grading of S.



The principal symbol map is well defined for conormal
distributions, leading to the globally defined symbol map,

σ : Ψm
ε (Z ; E ,F ) −→ C∞(T ∗Z , π∗ hom(E ,F )),

homogeneous of degree m; here hom(E ,F ), is a globally
defined, ordinary vector bundle with fibre,
hom(E ,F )z = Fz ⊗ E∗z . Thus ellipticity is well defined, as the
invertibility of this symbol.

Equivalently, A ∈ Ψm
ε/2(Z ; E ,F ) is elliptic if there exists a

parametrix B ∈ Ψ−m
ε/2 (Z ; F ,E) and smoothing operators

QR ∈ Ψ−∞ε (Z ; E ,E), QL ∈ Ψ−∞ε (Z ; F ,F ) such that

BA = IE −QR, AB = IF −QL
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The trace functional is defined on projective smoothing
operators Tr : Ψ−∞ε (Z ; E)→ C as

Tr(Q) =

∫
Z

tr Q(z, z).

It vanishes on commutators, i.e. Tr(QR − RQ) = 0, if
Q ∈ Ψ−∞ε/2 (Z ; F ,E),R ∈ Ψ−∞ε/2 (Z ; E ,F ) which follows from
Fubini’s theorem.

The fractional analytic index of the projective elliptic operator
A ∈ Ψ•ε (Z ; E ,F ) is defined in the essentially analytic way as,

Indexa(A) = Tr([A,B]) ∈ R

where B is a parametrix for A, and the RHS is the notation for
TrF (AB − IF )− TrE (BA− IE ).
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Techniques to prove basic properties of the fractional analytic index

For A ∈ Ψm
ε/4(Z ; E ,F ), the Guillemin-Wodzicki residue trace is,

TrR(A) = lim
z→0

z Tr(AD(z))

where D(z) ∈ Ψz
ε/4(Z ; E) is an entire family of ΨDOs of

complex order z which is elliptic and such that D(0) = I. The
residue trace is independent of the choice of such a family.

1 The residue trace TrR vanishes on all ΨDOs of sufficiently
negative order.

2 The residue trace TrR is also a trace functional, that is,

TrR([A,B]) = 0,

for A ∈ Ψm
ε/4(Z ; E ,F ), B ∈ Ψm′

ε/4(Z ; F ,E).
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The regularized trace, is defined to be the residue,

TrD(A) = lim
z→0

1
z

(z Tr(AD(z))− TrR(A)) .

For general A, TrD does depend on the regularizing family D(z).
But for smoothing operators it coincides with the standard
operator trace,

TrD(S) = Tr(S), ∀S ∈ Ψ−∞ε (Z ,E)

Therefore the fractional analytic index is also given by,

Indexa(A) = TrD([A,B])

for a projective elliptic operator A, and B a parametrix for A.
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The regularized trace TrD is not a trace function, but however it
satisfies the ‘trace defect formula’,

TrD([A,B]) = TrR(BδDA)

where δD is a derivation acting on the full symbol algebra.

It
also satisfies the condition of being closed,

TrR(δDa) = 0 ∀ a.
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Using the derivation δD and the trace defect formula, we prove:

1 the homotopy invariance of the index,

d
dt

Indexa(At ) = 0,

where t 7→ At is a smooth 1-parameter family of projective
elliptic ΨDOs;

2 the multiplicativity property of of the index,

Indexa(A2A1) = Indexa(A1) + Indexa(A2),

where Ai for i = 1,2 are projective elliptic ΨDOs.
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An analogue of the McKean-Singer formula holds,

Indexa( 6∂+
E ) = lim

t↓0
Trs(Hχ(t))

where Hχ(t) = χ(Ht ) is a globally defined, truncated heat
kernel, both in space (in a nbd of the diagonal) and in time.

The local index theorem can then be applied, thanks to the
McKean-Singer formula, to obtain the index theorem for
projective spin Dirac operators.



An analogue of the McKean-Singer formula holds,

Indexa( 6∂+
E ) = lim

t↓0
Trs(Hχ(t))

where Hχ(t) = χ(Ht ) is a globally defined, truncated heat
kernel, both in space (in a nbd of the diagonal) and in time.

The local index theorem can then be applied, thanks to the
McKean-Singer formula, to obtain the index theorem for
projective spin Dirac operators.



Index of projective spin Dirac operators

Theorem ([MMS3])

The projective spin Dirac operator on an
even-dimensional compact oriented manifold Z , has
fractional analytic index,

Indexa(6∂+) =

∫
Z

Â(Z ) ∈ Q.

Recall that Z = CP2n is an oriented but non-spin manifold

such that
∫

Z
Â(Z ) 6∈ Z, justifying the title of the talk. e.g.

Z = CP2 =⇒ Indexa(6∂+) = −1/8.

Z = CP4 =⇒ Indexa(6∂+) = 3/128.
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Â(Z ) ∈ Q.

Recall that Z = CP2n is an oriented but non-spin manifold

such that
∫

Z
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Equivariant transversally elliptic Dirac operator

Recall that projective half spinor bundles S± on Z can be
realized as Spin(n)-equivariant honest vector bundles,
(S̃+, S̃−), over the total space of the oriented frame bundle P
and in which the center, Z2, acts as ±1, as follows:

the conormal bundle N to the fibres of P has vanishing
w2-obstruction, and S̃± are just the 1/2 spin bundles of N.

One can define the Spin(n)-equivariant transversally elliptic
Dirac operator ˜6∂± using the Levi-Civita connection on Z
together with the Clifford contraction, where transverse
ellipticity means that the principal symbol is invertible when
restricted to directions that are conormal to the fibres.
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The nullspaces of ˜6∂± are infinite dimensional unitary
representations of Spin(n). The transverse ellipticity implies
that the characters of these representations are distributions
on the group Spin(n). In particular, the multiplicity of each
irreducible unitary representation in these nullspaces is finite,
and grows at most polynomially.

The Spin(n)-equivariant index of ˜6∂+
is defined to be the

following distribution on Spin(n),

IndexSpin(n)(˜6∂+
) = Char(Nullspace((˜6∂+

))− Char(Nullspace(˜6∂−))
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An alternate, analytic description of the Spin(n)-equivariant
index of ˜6∂+

is: for a function of compact support χ ∈ C∞c (G),

the action of the group induces a graded operator

Tχ : C∞(P; S̃) −→ C∞(P; S̃), Tχu(x) =

∫
G
χ(g)g∗udg,

which is smoothing along the fibres.

˜6∂+
has a microlocal

parametrix Q, in the directions that are conormal to the fibres
(ie along N). Then for any χ ∈ C∞c (G),

Tχ◦(˜6∂+◦Q−I−) ∈ Ψ−∞(P; S̃−); Tχ◦(Q◦˜6∂+−I+) ∈ Ψ−∞(P; S̃+)

are smoothing operators. The Spin(n)-equivariant index of
˜6∂+

, evaluated at χ ∈ C∞c (G), is also given by:

IndexSpin(n)(˜6∂+
)(χ) = Tr(Tχ◦(˜6∂+◦Q−I−))−Tr(Tχ◦(Q◦ ˜6∂+−I+))
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Relation between the two types of Dirac operators

Theorem ([MMS4])

Let π : P2 → Z 2 denote the projection. The pushforward map,
π∗, maps the Schwartz kernel of the Spin(n)-transversally
elliptic Dirac operator to the projective Dirac operator: That is,

π∗(˜6∂±) = 6∂±.



Relation between the two solutions
We will now relate these two pictures.
An easy argument shows that the support of the equivariant
index distribution is contained within the center Z2 of Spin(n).

Theorem
Let φ ∈ C∞(Spin(n)) be such that :

1 φ ≡ 1 in a neighborhood of e;

2 −1 6∈ supp(φ). Then

IndexSpin(n)(˜6∂+
)(φ) = Indexa(6∂+)

Informally, the fractional analytic index, of the projective Dirac
operator 6∂+, is the coefficient of the delta function (distribution)
at the identity in Spin(n) of the Spin(n)-equivariant index for the
associated transversally elliptic Dirac operator ˜6∂+

on P.
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