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A joint probability distribution gives 
rise to marginal probability 
distributions.

Marginalizing loses information.



Consider a joint probability distribution on the 
Cartesian product of finite sets.

This gives rise to a marginal distribution.



orange fruit
green fruit
purple vegetable



Here is a joint distribution.



Marginal probabilities are sums of rows and columns.



Marginal probability doesn't have memory.

• The marginal probability of fruit is 2/3, but that 
doesn't tell us that half the fruits are orange and half 
are green.

• The marginal probability of vegetable is 1/3, but that 
doesn't tell us that all of the vegetables are purple.



There's another way.









The squares of the entries of the eigenvectors of  
define conditional probability distributions on .



What's really going on?

Let  be any probability distribution on . Define a 
matrix  by

These two operators are special:



This is part of a larger story.



Every probability distribution on  defines a 
particular linear operator on , namely 
orthogonal projection onto this unit vector:

 

It is a density operator. As diagrams:



The linear map associated to the vector  is .

The operators  and  are reduced densities 
associated to the projection onto .



Think of reduced densities as 
the linear algebraic versions of 
marginal probability 
distributions.



Diagonals recover marginal probability distributions.

Off-diagonals know about subsystem interactions.



The extra information stored in 
the off-diagonals of  and 

 is akin to conditional 
probability.



Proposition

Let  be any unit vector and let  
be the linear map associated to 

• The operators  and  have the same 
spectrum.

• There is a bijection between their eigenvectors.



Proof





The two operators have the
 same spectrum,



and there is a bijection between their 
eigenvectors.



The "extra information" is akin to 
conditional probability.





Why bother?

This suggests a new algorithm for 
reconstructing a joint probability 
distribution given some samples.



How?

First, use samples to form the orthogonal projection 
operator (a rank 1 density).

Then find reduced densities on small subsystems, and 
piece their eigenvectors together.

Here's the main idea....



















In the context of machine learning...

This procedure learns a famously difficult joint 
probability distribution very efficiently!2

2 T.-D. B., E. M. Stoudenmire, and J. Terilla. Modeling Sequences with Quantum States: A 
Look Under the Hood. Machine Learning: Science and Technology, 2020.



What if we replace probabilities 
with possibilities?



So far:

We started with a matrix 

 

and considered the one-dimensional invariant 
subspaces of the linear maps  and 



Instead, let's try this:

Start with a matrix 

and consider the invariant subsets of the poset maps 
 and 



These maps form an adjunction.

For all  and , 

 if and only if 

There are some "ops" involved in the details (omitted)...



Behind the scenes: 
free (co)completions.

Exchanging Set for truth values 
leads to formal concepts.



A formal concept is a pair  and  such that

Formal concepts coincide with invariant subsets of the 
compositions  and . 



Formal concepts also coincide with maximal complete 
bipartite subgraphs of a bipartite graph.



Example

This relation has two formal concepts, which coincide 
with the two eigenvectors of  and  in the 
opening example.



By way of analogy:

Exchanging truth values for 
(square roots of) probabilities 
leads to something new.

But wait! There's more.



Natural language exhibits 
mathematical structure that is 
both algebraic and statistical.

We can explore this with the 
ideas here.






