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no category theory

No category theory is discussed.

These are ideas that I’d like to lift into category theory.
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climate change

Controlling climate change requires action along many fronts

• science

• engineering & tech

• political & economical

• · · ·
• social
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the social dimension of climate change

Controlling climate change · · ·

requires collective action

⇓
convincing loads of people to act

⇓
maximizing people exposed to the message

Hence, understanding dynamics of social networks can be

leveraged to control climate change

In this talk we overview a simple model of social contagion.
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what’s social contagion?

(def) Social contagion is the spread of ideas, opinions, beliefs,

behaviors, etc through social networks.

social contagion ≈ biological contagion
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difference between social & biological

(social)

∗ force correlates with exposure

(e.g.) having 100 friends see

Black Panther is a far stronger

influence on you than if only 1

friend did.

∗ spreads many to one

(e.g.) influence is distributed

over friends

(biological)

∗ force “is” independent of

exposure

(e.g.) chance of catching a flu

is marginally more likely after

interacting with 100 infected

friends instead of 1

∗ spread one to one

(e.g.) flue comes from a single

source
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Watts model

Duncan Watts – “ A simple model of global cascades on random

networks” (2002)

Communicated by Murray Gell-Mann and currently has 2169

citations on Google scholar

The basic ingredients is a simple, undirected graph, which we call a

network

Nodes represent a person

Edges represent friendship

Watts model updated to weighted, directed, and temporal

networks.
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Watts motivation

Consider a network subjected to external forces. (e.g. a Facebook

marketing campaign)

Why can a small external force cause global cascades while much

larger forces fail?

(e.g.) stock market volatility, viral video, power grid failures

Two aims for Watts:

• explain triggering of cascades in terms of network connectivity

• address two qualitative observations

• global cascades can be triggered by external events that are

small relative to network size

• global cascades are rare relative to the number of shocks the

system receives
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Watts motivation

A starting point: binary decisions with externalities

binary decision

Should I do the thing or not ?

Formal description: a map

decide : A→ {0, 1}

from a set A of agents
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Watts model motivation

externalities

To make a decision, each agent x ∈ A is incentivized to collect

information about distinct agents x ′ ∈ A.

(ex1) agent x has limited information to make a decision, so relies

on the actions of other x ′ ∈ A. Should I go to that restaurant?

(ex2) agent x has difficulty making sense of lots of information, so

relies on the actions of other x ′ ∈ A. Should I buy that stock?

(ex3) the value of a purchase increases the more purchases are

made. Fax machines

Economist call this class of decision making binary decisions with

externalities.
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a formalism for BDwE

We use random networks (networks = simple undirected graphs).

These do not accurately reflect real-life networks1, but are well

studied and provide a tractable starting place.

(1. Strogatz, S.H. (2001). ”Exploring complex networks”. Nature.

410 (6825): 268–276. )
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random network models

(Gilbert random network)

Fix a probability p ∈ [0, 1] and number of agents N ∈ N.

The random network G (N, p) has N nodes,
(N
2

)
possible edges

each appearing independently with probability p.

12



random network models

(Erdos-Renyi random network)

The random network G (N,E ) places a uniform probability

distribution on all edges with N nodes and E edges.
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random network models

(Watts random network)

Important: control the neighborhoods

Fix a probability distribution p(−) on N. Construct a random

network G (N, p(−)) on N nodes by choosing node x to have k

neighbors with probability pk .
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the Watts model

Fix a Watt’s random network G (N, p(−)).

To account for variation in knowledge, preference, observational

capacity across agents fix a probability distribution

f : [0, 1]→ [0, 1]

Define a threshold function

θ : N → [0, 1]

using f .

The Watts model is the pair (G (N, p(−)), θ)
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Watts model dynamics

Associate to each node, its neighborhood: nhood : N → 2N .

Recursively define a function: α : N × N→ {0, 1}

Set α(−, 0) = 0.

Perturb the initial state:

set α(N ′, 1) = 1 for some N ′ ⊆ N with |N ′|/|N| << 1.

Update rule:

• if α(x , k) = 1, do nothing

• if α(x , k) = 0 and

θ(x) <
|α(−, k)−1(1)

⋂
nhood(n)|

|nhood(n)|
set α(n, k + 1) = 1, else do nothing.
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examples w. deficiencies

This binary decision model is similar to some well-known models in

the literature, but with important differences.

(ex1 – disease)

Disease spread models are similar.

Important difference is Watt’s model introduces local dependency.

For instance, the effect of an activated neighbor on updating

depends on the remaining neighbors.
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examples w. deficiencies

This binary decision model is similar to some well-known models in

the literature, but with important differences.

(ex2 – bootstrap)

Bootstrap percolation on a network with a random initial

configuration of active nodes. Each node has a threshold for

activating, e.g. a node activates at time k + 1 if j ∈ N nodes are

active at times k .

Watt’s threshold is fractional, not raw. Thus, value of activation

decreases.
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examples w. deficiencies

This binary decision model is similar to some well-known models in

the literature, but with important differences.

(ex3 – Ising)

Ising model from statistical mechanics consists of a lattice on

which each node has an associated (particle ) spin. Using a lattice

forces each node to have the same number of neighbors. Watt’s

model allows for variable neighborhood sizes.

Local dependency, fractional thresholds, and heterogeneity are

central features to the Watt’s model.
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Two important quantities

Watts’ model focuses on:

• probability a global cascade is triggered by a small seed of

active nodes

• expected size of a global cascade once triggered
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global cascade?

First, a word on percolation theory.

(finite percolation)

Consider a finite random network initialized with a seed A of active

nodes and an update rule for activating nodes in the future.

Fix B ⊂ N. Percolation occurs when all nodes in B are activated

in finite time.

(e.g.) Water, poured on a square of porous material, trying to

reach the bottom of the material. A is top of the square and B is

the bottom
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global cascade?

(infinite percolation)

The mathematics of the model significantly simplifies when the

random network is infinite.

Percolation occurs when infinitely many nodes are activated in

finite time.

In Watts’ model, we will use an infinite network and say a global

cascade occurs when infinitely many nodes are active.
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Solving infinite Watts

Start with a Watt’s model (G (N, p(−), θ)) with infinite N.

We use infinite N for easier analysis. Computer simulations with

large N are qualitatively similar.
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How growth?

Define the active seed: α(N, 0)

An node x is vulnerable if it neighbors an active node and has

threshold smaller than 1/deg(x).

To grow activation, there must exist a vulnerable node.

Thus, growth depends on vulnerability.

(conjecture) A sufficient condition for global cascades is that a

sub-network of vulnerable nodes must percolate through the

network.

Assuming this conjecture, studying global cascades isn’t a network

dynamics problem, but a percolation problem. (nice!)
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starting Watts analysis

Recall ingredients:

• degree probability distribution on N: p(−)

• threshold probability distribution on [0, 1]: f

• threshold function θ : N → [0, 1] defined using f

Facts:

• For a random node x : P(deg(x) = k) = pk

• Probability x is vulnerable:

ρdeg(x) := P(θ(x) ≤ 1/deg(x)) =

∫ 1/deg(x)

0
f

• Probability x has degree k and is vulnerable: ρkpk
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starting Watts analysis

From this last fact, the generating function for the degree of a

vulnerable node is

G0(z) :=
∑
j

ρjpjz
j

• G0(1−) := fraction of nodes that are vulnerable

• G ′0(1−) := average degree of vulnerable nodes
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more generating functions

We are interested in a cascade propagating from an active node x

to a random neighboring node y .

The larger deg(y), the more likely y neighbors x .

Define the normalized moment generating function

G1(z) :=

∑
j jρjpjz

j−1∑
j jpj

corresponding to a neighbor of an initial active node

Note G1(z) = G ′0(z)/’avg. node degree’.
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vulnerable clusters

(Handwavily) define clusters to be a group of highly connected

nodes.

We are interested in the behavior of clusters of vulnerable nodes.

To calculate properties of such clusters, we define generating

functions

H0(z) :=
∑
j

qjz
j and H1(z) :=

∑
j

rjz
j

• qj is the probability a randomly chosen node belongs to a

vulnerable cluster of size j

• rj is the probability that a neighbor of an initially active node

belongs to a vulnerable cluster of size j
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some equations

The following two equations are shown to hold

• H1(z) = (1− G1(1)) + zG1(H1(z))

• H0(z) = (1− G0(1)) + zG0(H1(z))

For each,

• first term: probability a node is not vulnerable

• second term: accounts for size distribution of vulnerable

clusters attached to another vulnerable node
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some arithmetic

Using the equations

• G0(z) :=
∑

j ρjpjz
j

• G1(z) := G ′0(z)/
∑

j jpj

• H1(z) = (1− G1(1)) + zG1(H1(z))

• H0(z) = (1− G0(1)) + zG0(H1(z))

we get an equation for the average vulnerable cluster size

H ′0(1) = G0(1) +
G ′0(1))2(∑

j jpj

)
− G ′′0 (1)

This is extremely important because it diverges at percolation.

i.e. when G ′′0 (1) =
∑

j j(j − 1)ρjpj =
∑

j jpj .
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interpretation

Interpret

H ′0(1) = G0(1) +
G ′0(1))2∑

j jpj − G ′′0 (1)

as follows

•
∑

j jpj < G ′′0 (1) means the average size of a vulnerable cluster

is infinite, so a global cascade has positive chance of being

triggered

•
∑

j jpj > G ′′0 (1) means the average size of a vulnerable cluster

is small, so vulnerable clusters are likely far apart and exert

little influence on each other. Thus, global cascade is

impossible.
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discussion

The Watts model and analysis is based on having infinite nodes.

This is not something computers deal with well

But, simulations using a large number of nodes (> 10, 000)

correlate closely with the Watts model.

Hence, the Watts model provides testable predictions about global

cascades on real-world networks.
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the end
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