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This series of papers is aimed a providing a categorical language suitable
for interpreting:

DNA sequencing

alignment methods,

CRISPR,

homologous recombination,

genetic linkage

and more.
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Every cell in our bodies undergoes a duplication process, known as
mitosis...
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Before a cell can begin this process, it must first create a copy of the DNA
inside its nucleus.
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Our DNA is made of a sequence of nucleobases:

Cytosine
Guanine
Adenine
Thymine

intertwined in a double helix shape.
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In order for the DNA to be duplicated, it is first ‘unzipped’ by a certain
enzyme called helicase.
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Then a ‘primer enzyme’ called primase binds to the unzipped strands
which signals to the ‘polymerases’ where to begin replicating the DNA.
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After the DNA is replicated, the cell undergoes mitosis and splits apart into
two copies, each with its own copy of DNA containing one of the strands
from the original cell.
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RNA transcription and translation

In RNA transcription, an enzyme called ‘RNA polymerase’ binds to a
promoter region of a segment of DNA.
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RNA uses Uracil instead of Thymine.
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RNA Transcription

Before the mRNA strand exits the nucleus, it has certain regions called
‘introns’ that are cut out of it.

Now the mRNA strand is ready to leave the nucleus and begin translation.
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RNA Translation

Now the mRNA strand is outside the nucleus. The mRNA strand is made
up of ‘codons’ which are 3-letter sequences of nucleotides such as AUG,
UGA, UAG, UAA, etc.

A ‘ribosomal unit’ binds to a particular ‘start codon’ (AUG) which tells the
ribosomal unit where to begin translating.
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Once the ribosomal unit reaches a ‘stop codon’ (UGA, UAG, UAA) the unit
detaches from the mRNA strand and the sequence of amino acids (blue)
created goes off to do stuff.
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Definition
For every positive integer n, let [n] = {1, 2, . . . , n} together with the implicit
ordering of the integers. (e.g, 1 < 2 < 3 . . . < n)

Definition
Let (Ω,≤) be a preorderd set. A segment over Ω consists of:

a pair of nonnegative integers (n1, n0),

an order preserving surjection t : [n1]� [n0], and

a function c : [n0]→ Ω.

Here, n1 is the number of ‘nodes’, n0 is the number of ‘patches’, and the
order preserving surjection t : [n1]� [n0] groups the nodes into patches.

The function c : [n0]→ Ω then specifies how each patch is to be
interpreted.
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Rémy Tuyéras (talk by Kenny Courser) Category theory for genetics February 19, 2019 15 / 61



Definition
For every positive integer n, let [n] = {1, 2, . . . , n} together with the implicit
ordering of the integers. (e.g, 1 < 2 < 3 . . . < n)

Definition
Let (Ω,≤) be a preorderd set. A segment over Ω consists of:

a pair of nonnegative integers (n1, n0),

an order preserving surjection t : [n1]� [n0], and

a function c : [n0]→ Ω.

Here, n1 is the number of ‘nodes’, n0 is the number of ‘patches’, and the
order preserving surjection t : [n1]� [n0] groups the nodes into patches.

The function c : [n0]→ Ω then specifies how each patch is to be
interpreted.
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For example, if t : [7]� [3], then a visualization of t could be something
like:

(1)(2)(3)(4)(5)(6)(7)

↓ t

(1)(2345)(67)

We will use little black nodes to denote the elements of the ordered set [n],
in which case the above map will look like:

(• • • • • • •)

↓ t

(•)(• • ••)(••)

And what about the function c : [n0]→ Ω?
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If we take Ω = {0, 1} = {false, true} = {white, black} to be the Boolean
preorder and define c : [n0]→ Ω by

c(1) = 0 = false = white

c(2) = 1 = true = black

c(3) = 0 = false = white

then a visualization of the function c : [3]→ Ω would be:

(1)(2)(3)

↓ c

(◦ • ◦)
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Then the previous segment (t , c) : [7]→ [3] would look like:

(◦)(• • ••)(◦◦)

The map t gives a segment its topology and the map c gives semantics to
each patch via the preorder (Ω,≤).

We will denote a segment over Ω simply as (t , c) : [n1]→ [n0].
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Recall that during mRNA translation, particular codons specify for initiation
and termination.

A preorder (Ω,≤) with these elements could look
something like:

read

initiate terminate

ignore

With this preorder, we can consider segments (t , c) which look something
like:

(• • •)(• • •)(• • •)(• • •)(• • •)(• • •)(• • •)
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Rémy Tuyéras (talk by Kenny Courser) Category theory for genetics February 19, 2019 19 / 61



Recall that during mRNA translation, particular codons specify for initiation
and termination. A preorder (Ω,≤) with these elements could look
something like:

read

initiate terminate

ignore

With this preorder, we can consider segments (t , c) which look something
like:

(• • •)(• • •)(• • •)(• • •)(• • •)(• • •)(• • •)
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Given two segments over Ω:

(t , c) : [n1]→ [n0]

and
(t ′, c′) : [n′1]→ [n′0]

a morphism from the first to the second is a pair (f1, f0) where:

f1 : [n1]� [n′1] is an order preserving injection and
f0 : [n0]→ [n′0] is an order preserving function

such that the following square commutes

[n1] [n0]

[n′1] [n′0]

(t , c)

(t ′, c′)

f1 f0

and such that c′(f0(i)) ≤ c(i) for every i ∈ [n0].
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Rémy Tuyéras (talk by Kenny Courser) Category theory for genetics February 19, 2019 20 / 61



Given two segments over Ω:

(t , c) : [n1]→ [n0]

and
(t ′, c′) : [n′1]→ [n′0]

a morphism from the first to the second is a pair (f1, f0) where:

f1 : [n1]� [n′1] is an order preserving injection and
f0 : [n0]→ [n′0] is an order preserving function

such that the following square commutes

[n1] [n0]

[n′1] [n′0]

(t , c)

(t ′, c′)

f1 f0

and such that c′(f0(i)) ≤ c(i) for every i ∈ [n0].

Rémy Tuyéras (talk by Kenny Courser) Category theory for genetics February 19, 2019 20 / 61



Given two segments over Ω:

(t , c) : [n1]→ [n0]

and
(t ′, c′) : [n′1]→ [n′0]

a morphism from the first to the second is a pair (f1, f0) where:

f1 : [n1]� [n′1] is an order preserving injection and

f0 : [n0]→ [n′0] is an order preserving function

such that the following square commutes

[n1] [n0]

[n′1] [n′0]

(t , c)

(t ′, c′)

f1 f0

and such that c′(f0(i)) ≤ c(i) for every i ∈ [n0].
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Thus we get a category Seg(Ω) of segments over Ω.

Proposition
Let (Ω,≤) be a preordered set. Then there exists a category Seg(Ω) with:

objects as pairs (t : [n1]� [n0], c : [n0]→ Ω), and

morphisms as commutative squares

[n1] [n0]

[n′1] [n′0]

(t , c)

(t ′, c′)

f1 f0

where c′(f0(i)) ≤ c(i) for every i ∈ [n0] and f1 and f0 are order
preserving.
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What can we do with this category and what do its morphisms really look
like?

Let Ω = {false, true} = {0 < 1} = {white, black}.

Then one thing we can model with this category is ‘locality’.

We are able to select particular or ‘local’ patches from a segment by taking
f0 and f1 to be identities.

Then the only condition on the morphisms is that c′(f0(i)) ≤ c(i), or really,
c′(i) ≤ c(i) for every i ∈ [n0] which ‘decreases’ the colors in a segment.

E.g.
(◦)(• • ••)(◦◦)(• • • • • • ••)(••)(◦ ◦ ◦ ◦ ◦)(••) (t , c)

↓ (f1, f0) = (id[n1], id[n0])

(◦)(◦ ◦ ◦◦)(◦◦)(• • • • • • ••)(◦◦)(◦ ◦ ◦ ◦ ◦)(◦◦) (t , c′)
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We can also model ‘relativity’.

By taking only f1 to be an identity, we can merge patches together.

E.g.
(◦)(• • ••)(◦◦)(• • • • • • ••)(••)(◦ ◦ ◦ ◦ ◦)(••) (t , c)

↓ (f1, f0) = (id[n1], f0)

(◦ ◦ ◦ ◦ ◦ ◦ ◦)(• • • • • • • • ••)(◦ ◦ ◦ ◦ ◦ ◦ ◦) (t ′, c′)

This says that the way one parses the patches of a segment influences the
way that one parses the whole segment, e.g. codons to genes.
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We can also model ‘flexability’.

If f1 is not an identity morphism, then the range of a segment can increase.

For example,
(••)(◦◦)(• • •)(◦ ◦ ◦)(◦) (t , c)

↓ (f1, f0)

(• • •)(◦ ◦ ◦)(• • ••)(◦ ◦ ◦◦)(◦◦) (t ′, c′)

(here in this example we are supposing that c = c′f1 and f0 = id[n0],
meaning that the colors of the segments remain the same as do the
number of patches)

This allows us to insert spaces into the parsing of a segment.
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Definition
Let (t , c) and (t ′, c′) be two objects in Seg(Ω). Then the two segments
(t , c) and (t ′, c′) are said to be homologous if their topologies t and t ′ are
equal.

E.g.
(◦)(• • ••)(◦◦)(• • • • • • ••)(••)(◦ ◦ ◦ ◦ ◦)(••) (t , c)

and

(◦)(◦ ◦ ◦◦)(◦◦)(• • • • • • ••)(◦◦)(◦ ◦ ◦ ◦ ◦)(◦◦) (t , c′)

are homologous.
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Fix an order preserving surjection t : [n1]� [n0].

Then we obtain a
subcategory Seg(Ω : t) whose objects are homologous segments over Ω
and whose morphisms are given by pairs of identities (id[n1], id[n0]).

Proposition
Let (Ω,≤) be a preorderd set and t : [n1]� [n0] an order preserving
surjection. Then Seg(Ω : t) is a preorder category.
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Definition
If two segments (t , c) and (t ′, c′) over Ω have the same domain [n1] then
we say that the two segments (t , c) and (t ′, c′) are quasihomologous.

For example,

(◦)(• • ••)(◦◦)(• • • • • • ••)(••)(◦ ◦ ◦ ◦ ◦)(••) (t , c)

and
(◦ ◦ ◦ ◦ ◦ ◦ ◦)(• • • • • • • • ••)(◦ ◦ ◦ ◦ ◦ ◦ ◦) (t ′, c′)

are quasihomologous.

Proposition
Let (Ω,≤) be a preordered set and let n1 be a positive integer. Then there
exists a preorder category Seg(Ω : n1) whose objects are
quasihomologous segments in (Ω,≤) with domain [n1] and whose
morphisms are pairs (id[n1], f0).
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Definition
Truncation.

Given a segment (t , c) : [n1]→ [n0] over Ω and an element
b ∈ Ω, Trb(t , c) is the set

Trb(t , c) B {i ∈ [n1] : b ≤ c(t(i))}.

This is the set of all elements in [n1] whose image in Ω via c ◦ t is greater
than or equal to b in Ω.

E.g., if (Ω,≤) = {white < black} = {0 < 1}, and

(t , c) = (◦◦)(•)(◦ ◦ ◦)(• • ••)(◦)(••)

Then
Tr1(t , c) = {3, 7, 8, 9, 10, 12, 13}

and
Tr0(t , c) = {1, 2, . . . , 13}.
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Truncation on morphisms of segments

Suppose we have a morphism of segments (f1, f0) : (t , c)→ (t ′, c′) given
by the following:

(• • •)(◦◦)(• • ••)(• • • • •)(◦ ◦ ◦)(◦) (t , c)

↓ (f1, f0)

(◦ ◦ ◦ ◦ ◦)(• • • • • • • • •)(◦ ◦ ◦◦) (t ′, c′)

Then we have

Tr1(t , c) = {1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14}

and
Tr1(t ′, c′) = {6, 7, 8, 9, 10, 11, 12, 13, 14}

and so Tr1(t ′, c′) ⊂ Tr1(t , c).
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Proposition
Let (f1, f0) : (t , c)→ (t ′, c′) be a morphism in Seg(Ω). If f1(i) ∈ Trb(t ′, c′),
then i ∈ Trb(t , c).

This says that if the image of some node is truncated, then its preimage is
truncated (remember, colors cannot ‘increase’).

Proposition
For every b ∈ Ω and nonnegative integer n1, the truncation by b map
(t , c)→ Trb(t , c) extends to a functor Trb : Seg(Ω : n1)→ Setop.
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Recall there is an adjunction

Set
F
−⇀↽−

U
Set∗

where Set∗ is the category of pointed sets and morphisms of such.

F(X) = X ∪ {?}

F(f : X → Y) = f+!: X + {?} → Y + {?}

The functor U is the forgetful functor which forgets the distinguished object.
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Proposition
For every element b ∈ Ω, the map (t , c)→ F(Trb(t , c)) extends to a
functor Tr∗b : Seg(Ω)→ Setop

∗ defined as:

Tr∗b(f1, f0) : F(Trb(t ′, c′))→ F(Trb(t , c))

j 7→ i if ∃i ∈ Trb(t , c) : f1(i) = j

j 7→ ? otherwise
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For example, if we have a morphism of segments as indicated by the
subscripts:

(•1•2•3)(◦4◦5)(•6•7•8•9)(•10•11•12•13•14)(◦15◦16◦17)(◦18) (t , c)

↓ (f1, f0)

(•1•2•3•∗)(•∗)(◦4◦5◦∗◦∗)(•6•7•8•9)(•10•11•12•13•14)(◦15◦16◦17)(◦18) (t ′, c′)

Then we get the following map of pointed sets Tr∗1(f1, f0):

{1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, ?} F(Tr1(t , c))

Tr∗1(f1, f0) ↑

{1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, ?} F(Tr1(t ′, c′))

where 4 and 5 map to the distinguished element ?.
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Now let (E, ε) be a pointed set and consider the following composition of
functors:

Seg(Ω)
Tr∗b
−−→ Setop

∗

Set∗( ,(E,ε))
−−−−−−−−−−→ Set

Let Eε
b denote this composition.

What does Eε
b do to objects?
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Rémy Tuyéras (talk by Kenny Courser) Category theory for genetics February 19, 2019 34 / 61



Now let (E, ε) be a pointed set and consider the following composition of
functors:

Seg(Ω)
Tr∗b
−−→ Setop

∗

Set∗( ,(E,ε))
−−−−−−−−−−→ Set

Let Eε
b denote this composition.

What does Eε
b do to objects?
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Let (Ω,≤) = {white=0 ≤ black=1}, b = 1 and (E, ε) = {A,C,G,T, ε}.

Then if we consider the segment (t , c) ∈ Seg(Ω):

(• • •)(◦◦)(• • ••)(• • • • •)(◦ ◦ ◦)(◦)

then Eε
b(t , c) = Eε

1(t , c) will be the set of sequences (of nucleotides) of the
following form:

(AGε)(TCAA)(TAGGε)

(GTε)(εεεC)(AGTAC)

(TAA)(GATC)(AGTTT)

as well as many others.
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What does Eε
b do to morphisms of segments?

Suppose we have the following morphism of segments:

(•1 •2 •3)(◦4◦5)(•6 •7 •8•9)(•10•11) (t , c)

↓ (f1, f0)

(•1 •2 •3 •∗ •∗)(◦4 ◦5 ◦∗)(•6 •7 •8•9)(•∗)(◦10◦11) (t ′, c′)

Then Eε
1(f1, f0) will contain maps of the following form:

(AGε)(TCAA)(GC) 7→ (AGεεε)(TCAA)(ε)

(GTε)(εεεC)(TA) 7→ (GTεεε)(εεεC)(ε)

(TAA)(GATC)(AA) 7→ (TAAεε)(GATC)(ε)

etc.
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Definition
A cone in a category C consists of an object c ∈ C, a functor F : A→ C
and a natural transformation ∆A (c)⇒ F where ∆A (c) is the constant
functor mapping every object of A to c ∈ C.

a1

a2
a3A C

F(a1)

F(a2)
F(a3)

c

F
−→

∆A (c)
−−−−−→

⇓

A cone over a discrete diagram A.
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Exactly distributive cones

Let b be an element of a preorder Ω, A be a small category,
τ ∈ Seg(Ω : n) and ρ : ∆A(τ)⇒ θ a cone in Seg(Ω : n).

•

• • • •. . .

ρ

τ

If we apply the functor Trb : Seg(Ω : n)→ Setop to the cone ρ, we a get
cocone in Set:

• Trb(τ)

• • • •. . .

Trb(ρ)
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From the cocone
Trb(ρ) : Trb(θ)⇒ ∆A ◦ Trb(τ)

in Set, we can consider the following composite of maps through the union
∪a∈ATrbθ(a) as follows:

colimATrb(θ) ∪a∈ATrbθ(a) Trb(τ)
e m

where m is monic and e is epic.

Definition
A cone in Seg(Ω : n) is b-distributive if the monomorphism m above is
also an epimorphism and exactly b-distributive if it is b-distributive and e
is also a monomorphism.

Rémy Tuyéras (talk by Kenny Courser) Category theory for genetics February 19, 2019 39 / 61



From the cocone
Trb(ρ) : Trb(θ)⇒ ∆A ◦ Trb(τ)

in Set, we can consider the following composite of maps through the union
∪a∈ATrbθ(a) as follows:

colimATrb(θ) ∪a∈ATrbθ(a) Trb(τ)
e m

where m is monic and e is epic.

Definition
A cone in Seg(Ω : n) is b-distributive if the monomorphism m above is
also an epimorphism and exactly b-distributive if it is b-distributive and e
is also a monomorphism.
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Example: Let Ω be our usual preorder {0, 1}.

Then an example of a
distributive 1-cone over the discrete diagram A = {• • •} in the preorder
category Seg(Ω : 18) is given by:

(•••)(◦◦)(••••)(•••••)(◦◦◦)(◦) ≤ (◦◦◦)(◦◦)(••••)(◦◦◦◦◦)(◦◦◦)(◦)

(•••)(◦◦)(••••)(•••••)(◦◦◦)(◦) ≤ (◦◦◦)(◦◦)(••••)(•••••)(◦◦◦)(◦)

(•••)(◦◦)(••••)(•••••)(◦◦◦)(◦) ≤ (•••)(◦◦)(◦◦◦◦)(•••••)(◦◦◦)(◦)

Here, we have

Tr1(τ) = {1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14}

and colimA Tr1(θ) =

{1, 2, 3, 6, 7, 8, 9, 6′, 7′, 8′, 9′, 10, 11, 12, 13, 14, 10′, 11′, 12′, 13′, 14′}

and so colimA Tr1(θ)→ Tr1(τ) is epic but not monic.
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An example of an exactly distributive 1-cone in Seg(Ω : 18) over the
discrete diagram A = {• • •} is given by:

(•••)(◦◦)(••••)(•••••)(◦◦◦)(◦) ≤ (◦◦◦)(◦◦)(••••)(◦◦◦◦◦)(◦◦◦)(◦)

(•••)(◦◦)(••••)(•••••)(◦◦◦)(◦) ≤ (◦◦◦)(◦◦)(◦◦◦◦)(•••••)(◦◦◦)(◦)

(•••)(◦◦)(••••)(•••••)(◦◦◦)(◦) ≤ (•••)(◦◦)(◦◦◦◦)(◦◦◦◦◦)(◦◦◦)(◦)

(• • •)(◦◦)(• • ••)(• • • • •)(◦ ◦ ◦)(◦)τ

(◦ ◦ ◦)(◦◦)(• • ••)(◦ ◦ ◦ ◦ ◦)(◦ ◦ ◦)(◦) (◦ ◦ ◦)(◦◦)(◦ ◦ ◦◦)(• • • • •)(◦ ◦ ◦)(◦)

(• • •)(◦◦)(◦ ◦ ◦◦)(◦ ◦ ◦ ◦ ◦)(◦ ◦ ◦)(◦)
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Exactly distributive 1-cones cannot have any common black patches that
are not related via the underlying diagram A.

Here’s an example of an exactly distributive 1-cone in which common
black patches are identified via the diagram A:

(• • •)(••)(• • •)(• • ••)τ

(◦ ◦ ◦)(••)(• • •)(◦ ◦ ◦◦) (◦ ◦ ◦)(••)(◦ ◦ ◦)(• • ••)

(• • •)(••)(◦ ◦ ◦)(◦ ◦ ◦◦)

(◦ ◦ ◦)(••)(◦ ◦ ◦)(◦ ◦ ◦◦)
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What are some things that we can model using these cones within this
framework?

Duplication

CRISPR

Transcription

Mutations

Inversions
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Duplication

Let (Ω,≤) be the Boolean preorder {0 ≤ 1} and (E, ε) be the pointed set
{A,C,G,T, ε}.

Consider the following pair of morphisms in Seg(Ω):

f1 : (•1 •2 •3)→ (•1 •2 •3)(◦ ◦ ◦)

f2 : (•1 •2 •3)→ (◦ ◦ ◦)(•1 •2 •3)

The functor Eε
1 applied to either f1 or f2 is an identity which sends any word

of length 3 in (E, ε) to itself, e.g.

(A T G)
Eε

1(f1)
−−−−−→ (A T G)
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Consider the following exactly 1-distributive cone:

(•1 •2 •3)(•4 •5 •6)

(•1 •2 •3)(◦4 ◦5 ◦6) (◦1 ◦2 ◦3)(•4 •5 •6)

Because this cone is exactly 1-distributive, the map

µ : Eε
1((•1•2•3)(•4•5•6))→ Eε

1((•1•2•3)(◦4◦5◦6))×Eε
1((◦1◦2◦3)(•4•5•6))

in Set is invertible. The inverse is given by:

µ−1 : Eε
1((•1•2•3)(◦4◦5◦6))×Eε

1((◦1◦2◦3)(•4•5•6))→ Eε
1((•1•2•3)(•4•5•6))

This function maps any pair of words of length 3 to their concatenation,
e.g.:

(A T G,G A T)→ A T G G A T
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If we precompose the map µ−1:

µ−1 : Eε
1((•1•2•3)(◦4◦5◦6))×Eε

1((◦1◦2◦3)(•4•5•6))→ Eε
1((•1•2•3)(•4•5•6))

with the map given by (Eε
1(f1),Eε

1(f2)):

(Eε
1(f1),Eε

1(f2)) : Eε
1((•1 •2 •3))→ Eε

1((•1 •2 •3)(◦◦◦))×Eε
1((◦◦◦)(•1 •2 •3))

the composite map µ−1(Eε
1(f1),Eε

1(f2)) then resembles a duplication
process:

Eε
1((•1 •2 •3))

µ−1(Eε
1(f1),Eε

1(f2))
−−−−−−−−−−−−−−→ Eε

1((•1 •2 •3)(•1 •2 •3))

A T G 7→ A T G A T G
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Rémy Tuyéras (talk by Kenny Courser) Category theory for genetics February 19, 2019 46 / 61



If we precompose the map µ−1:

µ−1 : Eε
1((•1•2•3)(◦4◦5◦6))×Eε

1((◦1◦2◦3)(•4•5•6))→ Eε
1((•1•2•3)(•4•5•6))

with the map given by (Eε
1(f1),Eε

1(f2)):

(Eε
1(f1),Eε

1(f2)) : Eε
1((•1 •2 •3))→ Eε

1((•1 •2 •3)(◦◦◦))×Eε
1((◦◦◦)(•1 •2 •3))

the composite map µ−1(Eε
1(f1),Eε

1(f2)) then resembles a duplication
process:

Eε
1((•1 •2 •3))

µ−1(Eε
1(f1),Eε

1(f2))
−−−−−−−−−−−−−−→ Eε

1((•1 •2 •3)(•1 •2 •3))

A T G 7→ A T G A T G

Rémy Tuyéras (talk by Kenny Courser) Category theory for genetics February 19, 2019 46 / 61



If we precompose the map µ−1:

µ−1 : Eε
1((•1•2•3)(◦4◦5◦6))×Eε

1((◦1◦2◦3)(•4•5•6))→ Eε
1((•1•2•3)(•4•5•6))

with the map given by (Eε
1(f1),Eε

1(f2)):

(Eε
1(f1),Eε

1(f2)) : Eε
1((•1 •2 •3))→ Eε

1((•1 •2 •3)(◦◦◦))×Eε
1((◦◦◦)(•1 •2 •3))

the composite map µ−1(Eε
1(f1),Eε

1(f2)) then resembles a duplication
process:

Eε
1((•1 •2 •3))

µ−1(Eε
1(f1),Eε

1(f2))
−−−−−−−−−−−−−−→ Eε

1((•1 •2 •3)(•1 •2 •3))

A T G 7→ A T G A T G
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CRISPR

- Clustered Regularly Interspaced Short Palindromic Repeats

An enzyme by the name of ”Cas9” uses CRISPR sequences as a guide to
recognize and cleave specific strands of DNA.

Rémy Tuyéras (talk by Kenny Courser) Category theory for genetics February 19, 2019 47 / 61



CRISPR - Clustered Regularly Interspaced Short Palindromic Repeats

An enzyme by the name of ”Cas9” uses CRISPR sequences as a guide to
recognize and cleave specific strands of DNA.
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Cas9 enzymes together with CRISPR sequences form the basis of a
technology known as CRISPR/Cas9 that can be used to edit genes within
organisms.
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Rémy Tuyéras (talk by Kenny Courser) Category theory for genetics February 19, 2019 48 / 61



This type of gene editing process has a wide variety of applications
including use as a basic biology research tool, development of
biotechnology products, and potentially to treat diseases.
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Suppose that we have a segment of DNA given by

A T C G T C

and we wish to rewrite the portion C G T as T T C.

A T C G T C 7→ A T T T C C

In order to do this, we need to first select the subsegment C G T inside of
the segment A T C G T C and then replace it with T T C.
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The word A T C G T C is an element of the set

Eε
1((••)(• • •)(•))

and the word T T C is an element of the set

Eε
1((◦◦)(• • •)(◦)).

If we let f denote the map

(•1•2)(•3 •4 •5)(•6)
f
−→ (•1•2)(◦3 ◦4 ◦5)(•6)

then the image of f together with an identity map under the functor Eε
1

gives the map

Eε
1((••)(•••)(•))×Eε

1((◦◦)(•••)(◦))
(Eε1(f),Eε1(id))

−−−−−−−−−−−→Eε
1((••)(◦◦◦)(•))×Eε

1((◦◦)(•••)(◦))
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The following cone is exactly 1-distributive:

(••)(• • •)(•)

(••)(◦ ◦ ◦)(•) (◦◦)(• • •)(◦)

and so the following map is invertible:

µ : Eε
1((••)(• • •)(•))→ Eε

1((••)(◦ ◦ ◦)(•)) × Eε
1((◦◦)(• • •)(◦))

The inverse is given by:

µ−1 : Eε
1((••)(◦ ◦ ◦)(•)) × Eε

1((◦◦)(• • •)(◦))→ Eε
1((••)(• • •)(•))
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If we precompose µ−1

µ−1 : Eε
1((••)(◦ ◦ ◦)(•)) × Eε

1((◦◦)(• • •)(◦))→ Eε
1((••)(• • •)(•))

with the map (Eε
1(f),Eε

1(id)):

Eε
1((••)(•••)(•))×Eε

1((◦◦)(•••)(◦))
(Eε1(f),Eε1(id))

−−−−−−−−−−−→Eε
1((••)(◦◦◦)(•))×Eε

1((◦◦)(•••)(◦))

we get the map µ−1(Eε
1(f),Eε

1(id)):

Eε
1((••)(• • •)(•)) × Eε

1((◦◦)(• • •)(◦))
µ−1(Eε

1(f),Eε
1(id))

−−−−−−−−−−−−−→ Eε
1((••)(• • •)(•)).

The image of the pair (A T C G T C,T T C) is A T T T C C.
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1((••)(• • •)(•))

with the map (Eε
1(f),Eε

1(id)):

Eε
1((••)(•••)(•))×Eε

1((◦◦)(•••)(◦))
(Eε1(f),Eε1(id))
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1((◦◦)(•••)(◦))

we get the map µ−1(Eε
1(f),Eε

1(id)):

Eε
1((••)(• • •)(•)) × Eε

1((◦◦)(• • •)(◦))
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1((••)(• • •)(•)).
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Rémy Tuyéras (talk by Kenny Courser) Category theory for genetics February 19, 2019 53 / 61



If we precompose µ−1

µ−1 : Eε
1((••)(◦ ◦ ◦)(•)) × Eε

1((◦◦)(• • •)(◦))→ Eε
1((••)(• • •)(•))

with the map (Eε
1(f),Eε

1(id)):

Eε
1((••)(•••)(•))×Eε

1((◦◦)(•••)(◦))
(Eε1(f),Eε1(id))

−−−−−−−−−−−→Eε
1((••)(◦◦◦)(•))×Eε

1((◦◦)(•••)(◦))

we get the map µ−1(Eε
1(f),Eε

1(id)):

Eε
1((••)(• • •)(•)) × Eε

1((◦◦)(• • •)(◦))
µ−1(Eε

1(f),Eε
1(id))

−−−−−−−−−−−−−→ Eε
1((••)(• • •)(•)).

The image of the pair (A T C G T C,T T C) is A T T T C C.
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Transcription

Given a map of pointed sets f : (A , α)→ (B , β), we have a natural
transformation

Set∗(Tr∗b( ), f) : Set∗(Tr∗b( ), (A , α))⇒ Set∗(Tr∗b( ), (B , β))

given by evaluation via f on the second variable.

Let (Ω,≤) be the Boolean preorder, b = 1 = true, (A , ε) = {A,C,G,T,ε} and
(B , ε) = {A,C,G,U,ε} and define a bijection of pointed sets
f : (A , ε)→ (B , ε) by

A 7→ U

T 7→ A

G 7→ C

C 7→ G
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Then the previous natural transformation induces a map f∗b : A∗b ⇒ B∗b
which models RNA transcription by sending words of the form on the left to
words of form on the right.

A ε
b((• • •)(• • •)(• • •))→ Bε

b((• • •)(• • •)(• • •))

(AAG)(TGC)(GTG) 7→ (UUC)(ACG)(CAC)
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Mutations

Given our usual pointed set (E, ε) = {A,C,G,T, ε}, we can take the product
of (E, ε) with itself to obtain the pointed set (E × E, (ε, ε)).

This pointed set (E × E, (ε, ε)) comes with projection maps to each
component:

(E, ε)
p
←− (E × E, (ε, ε))

q
−→ (E, ε)

These projection maps p and q induce natural transformations

p∗b : (E × E, (ε, ε))⇒ (E, ε)

and
q∗b : (E × E, (ε, ε))⇒ (E, ε)
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Rémy Tuyéras (talk by Kenny Courser) Category theory for genetics February 19, 2019 56 / 61



Mutations

Given our usual pointed set (E, ε) = {A,C,G,T, ε}, we can take the product
of (E, ε) with itself to obtain the pointed set (E × E, (ε, ε)).

This pointed set (E × E, (ε, ε)) comes with projection maps to each
component:

(E, ε)
p
←− (E × E, (ε, ε))

q
−→ (E, ε)

These projection maps p and q induce natural transformations

p∗b : (E × E, (ε, ε))⇒ (E, ε)

and
q∗b : (E × E, (ε, ε))⇒ (E, ε)
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This gives us a span

(E, ε)
p∗b
⇐= (E × E, (ε, ε))

q∗b
=⇒ (E, ε)

which then induces a binary relation which represents all the ways that a
DNA strand can be mutated.

Eε
b((•••)(•••)(•••))←− (E×E)

(ε,ε)
b ((•••)(•••)(•••)) −→ Eε

b((•••)(•••)(•••))

TGCAGεAGε ←−
(
T
T

)(
G
G

)(
C
C

)(
A
A

)(
G
G

)(
ε

T

)(
A
A

)(
G
C

)(
ε

ε

)
−→ TGCAGTACε

TGCAGεAGε ←−
(
T
A

)(
G
ε

)(
C
C

)(
A
ε

)(
G
G

)(
ε

A

)(
A
A

)(
G
G

)(
ε

C

)
−→ AεCεGAAGC
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Inversions

Definition
Given a positive integer n, let rvn : [n]→ [n] be the function that sends
i ∈ [n] to (n + 1 − i) ∈ [n].

E.g. for rv5 : [5]→ [5], we have

1 7→ 5

2 7→ 4

3 7→ 3

4 7→ 2

5 7→ 1
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Given a segment (t , c) : [n1]→ [n0] in Seg(Ω),

the composite

rvn0(t , c)rvn1 : [n1]→ [n0]

reverses the order of the segment (t , c).

For example, if (t , c) : [9]→ [6] is given by:

(t , c) = (••)(◦)(• • •)(•)(◦)(◦)

then rv6(t , c)rv9 : [9]→ [6] is given by:

rv6(t , c)rv9 = (◦)(◦)(•)(• • •)(◦)(••)

Denote the inversion of the segment (t , c) by (t , c)†.

The map (t , c) 7→ (t , c)† induces an endofunctor Inv : Seg(Ω)→ Seg(Ω).
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Rémy Tuyéras (talk by Kenny Courser) Category theory for genetics February 19, 2019 59 / 61



Given a segment (t , c) : [n1]→ [n0] in Seg(Ω), the composite

rvn0(t , c)rvn1 : [n1]→ [n0]

reverses the order of the segment (t , c).

For example, if (t , c) : [9]→ [6] is given by:

(t , c) = (••)(◦)(• • •)(•)(◦)(◦)

then rv6(t , c)rv9 : [9]→ [6] is given by:

rv6(t , c)rv9 = (◦)(◦)(•)(• • •)(◦)(••)

Denote the inversion of the segment (t , c) by (t , c)†.

The map (t , c) 7→ (t , c)† induces an endofunctor Inv : Seg(Ω)→ Seg(Ω).
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The map (t , c) 7→ (t , c)† induces an endofunctor Inv : Seg(Ω)→ Seg(Ω).
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If we take E = {A,C,G,T, ε} as our pointed set and b ∈ Ω = {0 ≤ 1}, then
the functor

Eε
b : Seg(Ω)→ Set

induces a natural transformation

Eε
b ⇒ Eε

b ◦ Inv

Eε
b(t , c)→ Eε

b ◦ Inv(t , c) = Eε
b(t , c)†

which maps any word to its inversion.

For example:

Eε
1((••)(•)(• • •))→ Eε

1((• • •)(•)(••))

AGTAGC 7→ CGATGA

CTTACA 7→ ACATTC
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Inversion is useful for interpreting the ‘lagging strand’ (red) having to be
read backwards.
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