
Deep Learning for the Working Category Theorist

Jade Master
University of California Riverside

jmast003@ucr.edu

February 12, 2019

February 12, 2019 1 / 28



Overview

1 Deep Learning With Commutative Diagrams

2 Compositional Learning Algorithms

February 12, 2019 2 / 28



A good intro to deep learning from a categorical perspective can be found
in Jake Bian’s Deep Learning on C∞ Manifolds [1]. Deep learning solves
the following problem.

D

X Y

π1π2

f

Where D ⊆ X × Y and π1 and π2 are the canonical projections.

Commuting approximately is enough. We don’t want to overfit.

any old function won’t do! f should extrapolate the data from D.

February 12, 2019 3 / 28



To get more of this extrapolating flavor we equip Y with a metric (maybe
without some axioms)

L : Y × Y → R+

and measure the error of f via

E (f ) =
∑

(x ,y)∈D

L(f (x), y)

We also require f to be within some restricted class of functions between
X and Y (e.g. linear, smooth). This allows us to impose some external
assumptions about the way the relationship between X and Y should
behave.

February 12, 2019 4 / 28



For example we can require f to be smooth, so that f represents some
physical, differentiable relationship. In this case, minimizing E can be
framed as a problem in variational calculus. Physicists and differential
geometers know how to solve this using the Euler-Lagrange equation.

Unfortunately we are interested in the case when D and the dimension of
X are very large. So this would require solving a massive partial
differential equation. This is not practical.

February 12, 2019 5 / 28



Let’s stick with ”smooth” as our class of functions. To make things more
manageable let’s consider a family of functions paramaterized by some
manifold Σ. Our class of functions can be summarized by a map

α : Σ× X → Y

which is smooth in each variable. The key idea of deep learning is
minimize the error E on element of D at a time obtaining a sequence of
functions which converges to the global minimum.

February 12, 2019 6 / 28



That is, find a path on Σ,

γ : [0, 1]→ Σ

such that the induced 1-parameter family of functions

ft = α(γ(t),−) : X → Y

converges to a minimum of the functional E . One way to obtain such a
curve is to

Evaluate the derivatives of E , giving a vector field dE on Σ

Numerically integrate −dE starting from an initial parameter λ0.
Because we’re doing this numerically we’ll use a finite sequence of
functions rather than a smooth family.

Let µ : TΣ→ Σ be the integrator. For a fixed step size this function
advances a parameter in the direction of a given tangent vector.

February 12, 2019 7 / 28



February 12, 2019 8 / 28



Neural Networks

Neural networks are a special case of this. Let X and Y be vector spaces
with dimension m and n respectively. It’s natural to choose linear maps as
our class of functions. This gives ”the line of best fit” which is a relatively
crude tool. Instead we choose an intermediate vector space V with
dimension k and a nonlinear map σ : V → V . The class of maps we will
consider will be of the form

X
a0 // V

σ // V
a1 // Y

where f and g are linear maps. In this case

Σ = GL(m, k)× GL(k , n)

This is called a one layer neural network.

February 12, 2019 9 / 28



This can be generalized to multiple layers. Indeed, choosing a finite
sequence of vector spaces and nonlinear maps {Vi , σi} you can consider
functions of the form

X
a0 // V0

σ0 // V0
a1 // V1 . . .Vn

σn // Vn
an // Y

for your training algorithm. This is a multiple layer neural network.

February 12, 2019 10 / 28



February 12, 2019 11 / 28



Backprop as a Functor introduces a categorical framework for building and
training large neural networks as a sequence of smaller networks. First we
need to abstractify the above discussion.

Definition

Let A and B be sets. A supervised learning algorithm from A to B is
tuple (P, I ,U, r) where P is a set and I , U and r are functions of the
following form.

I : P × A→ B

U : P × A× B → P

r : P × A× B → A

The request function seems mysterious at first. It allows you to compose
learning algorithms. Given training data (x , y) ∈ X × Y and
(y , z) ∈ Y × Z we need to synthesize this into a pair (x , z) ∈ X × Z . The
request function does this by allowing the data to flow backwards. Given a
comparison between the desired input and output and the request function
tells you what the input should have been to get a better result.

February 12, 2019 12 / 28



Composition of Learning Algorithms

Given learners (P, I ,U, r) : A→ B and (Q, J,V , s) : B → C we construct
a new learner from A to C with parameter set P × Q. Let’s use string
diagrams!

We can draw implement functions like

and the update request functions as

February 12, 2019 13 / 28



Composition of implementations is straightforward

but composition of update and request is a little more complicated.

February 12, 2019 14 / 28



Two learners are equivalent if there is a bijection between their sets of
parameters commuting with the implement, update and request functions

Definition

Let Learn be the category where the objects are sets, the morphisms are
equivalence classes of learners, and composition is defined as above.

Theorem

Learn is a symmetric monoidal category.

On objects the monoidal product is given by cartesian product. The
monoidal product is given on morphisms as follows.

February 12, 2019 15 / 28



For implemement functions

and for update and request

February 12, 2019 16 / 28



So far these learning algorithms are too general and abstract. We can
impose extra structure on them via symmetric monoidal functors.

Definition

Let Para be the category where

objects are Euclidean spaces and,

a morphism from Rn to Rm is a differentiable map f : P × Rn → Rm

up to equivalence.

The following theorem gives a symmetric monoidal functor which imposes
the structure of a gradient descent learning algorithm on every morphism
in Para.

February 12, 2019 17 / 28



Theorem

Fix a real number h > 0 and a differentiable error function

e : R× R→ R

such that ∂e
∂x (z ,−) is invertible for all z in R. Then there is a symmetric

monoidal functor
L : Para→ Learn

which is the identity on objects and sends a parameterized function
I : P × A→ B the learner (P, I ,UI , rI ) defined by

Ul(p, a, b) := p − h∇pEI (p, a, b)

and
rI := fa (∇aEI (p, a, b))

where EI (p, a, b) :=
∑

j e(I (p, a)j , bj) and fa is the component-wise

application of the inverse to ∂e
∂x (ai ,−) for each i . Here i ranges over the

dimension of A and j ranges over the dimension of B.

February 12, 2019 18 / 28



Remark: Let’s compare to what we had before: E (p, a, b) = L(I (a, p), b),
UI is the composite up to the second Σ, and the request function is not
present.

February 12, 2019 19 / 28



We define a category where the morphisms gives the shape of a neural
network.

Definition

Let List be a category where

the objects are natural numbers and,

a morphism m→ n is a list of natural numbers (a0, a1, . . . , ak) with
a0 = m and ak = n

composition is given by concatenation and this category is symmetric
monoidal using the + operation in N.

The idea is that a morphism (a0, a1, . . . , ak) represents a neural network
with k − 1 hidden layers and number of neurons given by the ai .

February 12, 2019 20 / 28



Theorem

Let σ : R→ R be a differentiable function. Then there is a symmetric
monoidal functor

F : List→ Para

which

sends a natural number n to vector space Rn and,

sends a list (a0, a1, . . . , ak) to the parameterized map

Rm × GL(a1, a2)× . . .GL(ak−2, ak−1)→ Rn

which is the alternating composite of the linear maps given by the
parameters and the extension of σ to the corresponding vector spaces.

Note that this is the same description described in Deep Learning on C∞

Manifolds

February 12, 2019 21 / 28



What’s all this good for?

Now we have a machine for building neural networks compositionally.

List
F // Para

L // Learn

This is known...but now we’ve generalized it and described it with category
theory!

February 12, 2019 22 / 28



If you’re one of those folks that loves string diagrams then you’re in luck.
This theorem gives a framework for building neural networks, neuron by
neuron, using string diagrams.
First, fixing a step size and an error function we can use the passage

FVect→ Para→ Learn

to induce a bimonoid structure on Learn. For example using quadratic
error gives the following.

February 12, 2019 23 / 28



February 12, 2019 24 / 28



There’s a scalar multiplication learner λ : R→ R

a bias learner β : 1→ R,

and an activation learner σ : R→ R

I didn’t describe biases in the previous theorem. But they can be added
and adds a parameter of constant weights to your approximation function.

February 12, 2019 25 / 28



Layers of your neural network can be built as the following:

February 12, 2019 26 / 28



Conclusion

Some learning algorithms like regression analysis don’t learn one data
point at a time. Regression takes the whole data-set into account at
each succesive approximation. It would be nice to have a model
which takes this into account.

Can this be made more general?

The data of a neural network is a representation of a linear Quiver.
Can we use representation theorems to classify them?

February 12, 2019 27 / 28



References

Jake Bian (2017)

Deep Learning on C∞ Manifolds. Available as
http://jake.run/pdf/geom-dl.pdf

Brendan Fong, David I. Spivak, and Rémy Tuyéras (2017)

Backprop as a Functor: A compositional perspective on supervised learning.
Available as https://arxiv.org/abs/1711.10455

February 12, 2019 28 / 28

http://jake.run/pdf/geom-dl.pdf
https://arxiv.org/abs/1711.10455

	Deep Learning With Commutative Diagrams
	Compositional Learning Algorithms

