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Conditional probability

Probability triple: (Ω,Σ, p). Random process produces outcome
distributed according to p.

If ω ∈ Ω is the outcome and A ∈ Σ, then the probability that ω ∈ A
is p(A).
If we know that ω ∈ B then we reassess the probability of ω ∈ A:
P(A|B) = p(A ∩ B)/p(B).
If we know whether ω is in B or Bc we can compute P(A|B) and
P(A|Bc). Define f (ω) = P(A|B) if ω ∈ B and f (ω) = P(A|Bc) if
ω ∈ Bc.
If we are given a countable partition {Bi|Bi ∈ Σ} of Ω we can
define a function f : Ω −→ [0, 1] such that f (ω) = P(A|Bi) if ω ∈ Bi.
If we are given Λ ⊂ Σ and for every B ∈ Λ we know whether ω ∈ B
we can define the random variable P[A||Λ] which is Λ-measurable
and

∀B ∈ Λ

∫
B

P[A||Λ]dp = P(A ∩ B).
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Conditional expectation

Sample space: (Ω,Σ, p), random variable f : Ω −→ R.

Expectation value of f :
∫

f dp.

We want to revise our expectation based on new information.
Given a sub-σ-algebra Λ ⊂ Σ we define E[f ||Λ] as a
Λ-measurable function such that

∀B ∈ Λ,

∫
B

E[f ||Λ]dp =

∫
B

f dp.

Why isn’t E[f ||Λ] just f ?
Because it is only Λ measurable; so much “smoother.”

Panangaden (McGill University) Overview and Cones 8 April 2020 5 / 45



Conditional expectation

Sample space: (Ω,Σ, p), random variable f : Ω −→ R.
Expectation value of f :

∫
f dp.

We want to revise our expectation based on new information.
Given a sub-σ-algebra Λ ⊂ Σ we define E[f ||Λ] as a
Λ-measurable function such that

∀B ∈ Λ,

∫
B

E[f ||Λ]dp =

∫
B

f dp.

Why isn’t E[f ||Λ] just f ?
Because it is only Λ measurable; so much “smoother.”

Panangaden (McGill University) Overview and Cones 8 April 2020 5 / 45



Conditional expectation

Sample space: (Ω,Σ, p), random variable f : Ω −→ R.
Expectation value of f :

∫
f dp.

We want to revise our expectation based on new information.

Given a sub-σ-algebra Λ ⊂ Σ we define E[f ||Λ] as a
Λ-measurable function such that

∀B ∈ Λ,

∫
B

E[f ||Λ]dp =

∫
B

f dp.

Why isn’t E[f ||Λ] just f ?
Because it is only Λ measurable; so much “smoother.”

Panangaden (McGill University) Overview and Cones 8 April 2020 5 / 45



Conditional expectation

Sample space: (Ω,Σ, p), random variable f : Ω −→ R.
Expectation value of f :

∫
f dp.

We want to revise our expectation based on new information.
Given a sub-σ-algebra Λ ⊂ Σ we define E[f ||Λ] as a
Λ-measurable function such that

∀B ∈ Λ,

∫
B

E[f ||Λ]dp =

∫
B

f dp.

Why isn’t E[f ||Λ] just f ?
Because it is only Λ measurable; so much “smoother.”

Panangaden (McGill University) Overview and Cones 8 April 2020 5 / 45



Conditional expectation

Sample space: (Ω,Σ, p), random variable f : Ω −→ R.
Expectation value of f :

∫
f dp.

We want to revise our expectation based on new information.
Given a sub-σ-algebra Λ ⊂ Σ we define E[f ||Λ] as a
Λ-measurable function such that

∀B ∈ Λ,

∫
B

E[f ||Λ]dp =

∫
B

f dp.

Why isn’t E[f ||Λ] just f ?

Because it is only Λ measurable; so much “smoother.”

Panangaden (McGill University) Overview and Cones 8 April 2020 5 / 45



Conditional expectation

Sample space: (Ω,Σ, p), random variable f : Ω −→ R.
Expectation value of f :

∫
f dp.

We want to revise our expectation based on new information.
Given a sub-σ-algebra Λ ⊂ Σ we define E[f ||Λ] as a
Λ-measurable function such that

∀B ∈ Λ,

∫
B

E[f ||Λ]dp =

∫
B

f dp.

Why isn’t E[f ||Λ] just f ?
Because it is only Λ measurable; so much “smoother.”

Panangaden (McGill University) Overview and Cones 8 April 2020 5 / 45



Banach spaces

A norm on a vector space V is a function ‖·‖ : V −→ R≥0 such that:

1 ‖v‖ = 0 iff v = 0
2 ‖r · v‖ =| r | ‖v‖ and
3 ‖x + y‖ ≤ ‖x‖+ ‖y‖.

The norm induces a metric: d(u, v) = ‖u− v‖ and, hence, a
topology. This topology is called the norm topology.
If V is complete in this metric it is called a Banach space.
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Maps between Banach spaces

A linear map T : U −→ V is bounded if there exists a positive real
number α such that ∀u ∈ U, ‖Tu‖ ≤ α ‖u‖.

A lineap map between normed spaces is continuous iff it is
bounded.
Given a bounded linear map between normed spaces T : U −→ V
we define ‖T‖ = sup {‖Tu‖ | u ∈ U, ‖u‖ ≤ 1}.
This is a norm on the space of bounded linear maps and is called
the operator norm.
With this norm the space of bounded linear maps between
Banach spaces forms a Banach space.
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Duality for Banach spaces

The space of bounded (= continuous) linear maps from V, a
Banach space, to R is itself a Banach space, called the dual
space, V∗.

For any two vector spaces U,V we say that they are in algebraic
duality if there is a bilinear form 〈·, ·〉 : U × V −→ R such that
spaces of functionals 〈·, V〉 and 〈U, ·〉 separates points of U and
V.
We say two Banach spaces are in duality if 〈·, V〉 ⊆ U∗ and
〈U, ·〉 ⊆ V∗.
For V a Banach space, the spaces V and V∗ are in duality.
The bilinear form is 〈v, φ〉 = φ(v).
There is a canonical injection ι : V −→ V∗∗; if this is an isometry we
say that the Banach space V is reflexive.
Infinite dimensional Banach spaces are not necessarily reflexive.
Finite dimensional Banach spaces are always reflexive.
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Lp spaces

If (X,Σ, µ) is a measure space we can define integration on X: we
write

∫
X f dx. We say that f is integrable if this is finite.

If two functions agree everywhere except on a set of µ-measure 0
their integrals will be equal.
We define two functions to be equivalent if they are µ-almost
everywhere the same and we actually work with equivalence
classes.
The integral defines a norm on these equivalence classes and
gives the Banach space L1(X,Σ, µ) or just L1(µ).
The space Lp(µ) is the space obtained by defining the norm

‖f‖p = (
∫
| f |p dµ)

1
p , where 0 < p <∞.

The infinity norm of a measurable function f is
‖f‖∞ = inf {M > 0 || f (x) |≤ M for µ− almost all x}.
The collection of all equivalence classes of measurable functions f
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Duality for Lp spaces

If 1 < p, q <∞ and 1
p + 1

q = 1 then Lp and Lq are duals of each
other!

However, L1 and L∞ are not duals.
The dual of L1 is L∞ but not the other way around!
We will switch to a cone view and the situation will be much
improved.
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What are cones?

Want to combine linear structure with order structure.

If we have a vector space with an order ≤ we have a natural
notion of positive and negative vectors: x ≥ 0 is positive.
What properties do the positive vectors have? Say P ⊂ V are the
positive vectors, we include 0.
Then for any positive v ∈ P and positive real r, rv ∈ P. For u, v ∈ P
we have u + v ∈ P and if v ∈ P and −v ∈ P then v = 0.
We define a cone C in a vector space V to be a set with exactly
these conditions.
Any cone defines a order by u ≤ v if v− u ∈ C.
Unfortunately for us, many of the structures that we want to look at
are cones but are not part of any obvious vector space: e.g. the
measures on a space.
We could artificially embed them in a vector space, for example,
by introducing signed measures.
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Abstract cones d’après Selinger

Definition of Cones

A cone is a commutative monoid (V,+, 0) with an action of R≥0. Multi-
plication by reals distributes over addition and the following cancellation
law holds:

∀u, v,w ∈ V, v + u = w + u⇒ v = w.

The following strictness property also holds:

v + w = 0⇒ v = w = 0.

Note that every cone comes with a natural order.

An order on a cone
If u, v ∈ V, a cone, one says u ≤ v if and only if there is an element
w ∈ V such that u + w = v.
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Normed cones

Definition of a normed cone
A normed cone C is a cone with a function
|| · || : C −→ R≥0 satisfying the usual conditions:
||v|| = 0 if and only if v = 0
∀r ∈ R≥0, v ∈ C, ||r · v|| = r||v||
||u + v|| ≤ ||u||+ ||v||
u ≤ v⇒ ||u|| ≤ ||v||.

Normally one uses norms to talk about convergence of Cauchy
sequences. But without negation how can we talk about Cauchy
sequences?

We can write ui − uj when we really mean the (unique) w such that
uj + w = ui; needs uj ≤ ui. So, in the case that we have an increasing
sequence we can define Cauchy sequence in, more or less, the usual
way.

Panangaden (McGill University) Overview and Cones 8 April 2020 13 / 45



Normed cones

Definition of a normed cone
A normed cone C is a cone with a function
|| · || : C −→ R≥0 satisfying the usual conditions:
||v|| = 0 if and only if v = 0
∀r ∈ R≥0, v ∈ C, ||r · v|| = r||v||
||u + v|| ≤ ||u||+ ||v||
u ≤ v⇒ ||u|| ≤ ||v||.

Normally one uses norms to talk about convergence of Cauchy
sequences. But without negation how can we talk about Cauchy
sequences?

We can write ui − uj when we really mean the (unique) w such that
uj + w = ui; needs uj ≤ ui. So, in the case that we have an increasing
sequence we can define Cauchy sequence in, more or less, the usual
way.

Panangaden (McGill University) Overview and Cones 8 April 2020 13 / 45



Completeness

However, order-theoretic concepts can be used instead.

Complete normed cones
An ω-complete normed cone is a normed cone such that if {ai | i ∈ I}
is an increasing sequence with {||ai||} bounded then the lub

∨
i∈I ai

exists and
∨

i∈I ||ai|| = ||
∨

i∈I ai||.

Convergence in the sense of norm and in the order theory sense
match.

Selinger’s lemma
Suppose that ui is an ω-chain with a l.u.b. in an ω-complete normed
cone and u is an upper bound of the ui. Suppose furthermore that
limi−→∞ ‖u− ui‖ = 0. Then u =

∨
i ui.

Here we are writing u− ui informally
We really mean wi where ui + wi = u.
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Maps between cones

Continuous maps
An ω-continuous linear map between two cones is one that preserves
least upper bounds of countable chains.

Bounded maps
A bounded linear map of normed cones f : C −→ D is one such that for
all u in C, ||f (u)|| ≤ K||u|| for some real number K. Any linear
continuous map of complete normed cones is bounded.

Norm of a bounded map
The norm of a bounded linear map f : C −→ D is defined as
||f || = sup{||f (u)|| : u ∈ C, ||u|| ≤ 1}.
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A category of normed cones

The ambient category
The ω-complete normed cones, along with ω-continuous linear maps,
form a category which we shall denote ωCC.

The subcategory of interest
we define the subcategory ωCC1: the norms of the maps are all
bounded by 1. Isomorphisms in this category are always isometries.
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Dual cones

Dual cone
Given an ω-complete normed cone C, its dual C∗ is the set of all
ω-continuous linear maps from C to R+. We define the norm on C∗ to
be the operator norm.

Basic facts
C∗ is an ω-complete normed cone as well, and the cone order
corresponds to the point wise order.
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The duality functor

In ωCC, the dual operation becomes a contravariant functor.
If f : C −→ D is a map of cones, we define f ∗ : D∗ −→ C∗ as follows:
given a map L in D∗, we define a map f ∗L in C∗ as f ∗L(u) = L(f (u)).
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How does this compare with Banach spaces?

This dual is stronger than the dual in usual Banach spaces, where we
only require the maps to be bounded. For instance, it turns out that the
dual to L+

∞(X) (to be defined later) is isomorphic to L+
1 (X), which is not

the case with the Banach space L∞(X).
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Cones that we use I

If µ is a measure on X, then one has the well-known Banach
spaces L1 and L∞.

These can be restricted to cones by considering the µ-almost
everywhere positive functions.
We will denote these cones by L+

1 (X,Σ, µ) and L+
∞(X,Σ).

These are complete normed cones.
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Cones that we use II

Let (X,Σ, p) be a measure space with finite measure p. We denote
byM�p(X), the cone of all measures on (X,Σ, p) that are
absolutely continuous with respect to p

If q is such a measure, we define its norm to be q(X).
M�p(X) is also an ω-complete normed cone.
The conesM�p(X) and L+

1 (X,Σ, p) are isometrically isomorphic
in ωCC.
We writeMp

UB(X) for the cone of all measures on (X,Σ) that are
uniformly less than a multiple of the measure p: q ∈Mp

UB means
that for some real constant K > 0 we have q ≤ Kp.
The conesMp

UB(X) and L+
∞(X,Σ, p) are isomorphic.
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Duality for cones

A Riesz-like theorem
The dual of the cone L+

∞(X,Σ, p) is isometrically isomorphic to
M�p(X).

Corollary
SinceM�p(X) is isometrically isomorphic to L+

1 (X), an immediate
corollary is that L+,∗

∞ (X) is isometrically isomorphic to L+
1 (X), which is

of course false in general in the context of Banach spaces.
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The pairing

Pairing function

There is a map from the product of the cones L+
∞(X, p) and L+

1 (X, p) to
R+ defined as follows:

∀f ∈ L+
∞(X, p), g ∈ L+

1 (X, p) 〈f , g〉 =

∫
fgdp.

This map is bilinear and is continuous and ω-continuous in both
arguments; we refer to it as the pairing.
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Duality expressed via pairing

This pairing allows one to express the dualities in a very convenient
way. For example, the isomorphism between L+

∞(X, p) and (L+
1 (X, p))∗

sends f ∈ L+
∞(X, p) to λg.〈f , g〉 = λg.

∫
fgdp.
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Summary of cones

We fix a probability triple (X,Σ, p) and focus on six spaces of cones
that are based on them. They break into two natural groups of three
isomorphic spaces. The first three spaces are:
A1 M�p(X) - the cone of all measures on (X,Σ, p) that are absolutely

continuous with respect to p,

A2 L+
1 (X, p) - the cone of integrable almost-everywhere positive

functions,
A3 L+,∗

∞ (X, p) - the dual cone of the the cone of almost-everywhere
positive bounded measurable functions.
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Summary of cones II

The next group of three isomorphic spaces are:
B1 Mp

UB(X) - the cone of all measures that are uniformly less than a
multiple of the measure p,

B2 L+
∞(X, p) - the cone of almost-everywhere positive functions in the

normed vector space L∞(X, p),
B3 L+,∗

1 (X, p) - the dual of the cone of almost-everywhere positive
functions in the normed vector space L1(X, p).
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Summary of dualities and isos

The spaces defined in A1, A2 and A3 are dual to the spaces defined in
B1, B2 and B3 respectively. The situation may be depicted in the
diagram

M�p(X)

��

∼ // L+
1 (X, p)oo

��

∼ // L+,∗
∞ (X, p)oo

��
Mp

UB

OO

∼ // L+
∞(X, p)oo ∼ //

OO

L+,∗
1 (X, p)

OO

oo

(1)

where the vertical arrows represent dualities and the horizontal arrows
represent isomorphisms.
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Some measure theory

1 Given (X,Σ, p) and (Y,Λ) and a measurable function f : X −→ Y we
obtain a measure q on Y by q(B) = p(f−1(B)). This is written Mf (p)
and is called the image measure of p under f .

2 We say that a measure ν is absolutely continuous with respect
to another measure µ if for any measurable set A, µ(A) = 0 implies
that ν(A) = 0. We write ν � µ.

3 For finite measures ν, ν � µ is equivalent to:

∀ε > 0,∃δ > 0, s.t. ∀A with µ(A) ≤ δ, ν(A) ≤ ε.
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The Radon-Nikodym Theorem

The Radon-Nikodym theorem is a central result in measure theory
allowing one to define a “derivative” of a measure with respect to
another measure.

Radon-Nikodym
If ν � µ, where ν, µ are finite measures on a measurable space (X,Σ)
there is a positive measurable function h on X such that for every
measurable set B

ν(B) =

∫
B

h dµ.

The function h is defined uniquely up to a set of µ-measure 0. The
function h is called the Radon-Nikodym derivative of ν with respect to
µ; we denote it by dν

dµ . Since ν is finite, dν
dµ ∈ L+

1 (X, µ).
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Notation for Radon-Nikodym

1 Given an (almost-everywhere) positive function f ∈ L1(X, p), we let
f · p be the measure which has density f with respect to p.

2 Two identities that we get from the Radon-Nikodym theorem are:

given q� p, we have dq
dp · p = q.

given f ∈ L+
1 (X, p), df ·p

dp = f

3 These two identities just say that the operations (−) · p and d(−)
dp

are inverses of each other as maps between L+
1 (X, p) and

M�p(X) the space of finite measures on X that are absolutely
continuous with respect to p.
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Expectation and conditional expectation

1 The expectation Ep(f ) of a measurable function f is the average
computed by

∫
f dp and therefore it is just a number.

2 The conditional expectation is not a mere number but a random
variable.

3 It is meant to measure the expected value in the presence of
additional information.

4 The additional information takes the form of a sub-σ algebra, say
Λ, of Σ. The experimenter knows, for every B ∈ Λ, whether the
outcome is in B or not.

5 Now she can recompute the expectation values given this
information.
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Formalizing conditional expectation

It is an immediate consequence of the Radon-Nikodym theorem
that such conditional expectations exist.

Kolmogorov
Let (X,Σ, p) be a measure space with p a finite measure, f be in
L1(X,Σ, p) and Λ be a sub-σ-algebra of Σ, then there exists a
g ∈ L1(X,Λ, p) such that for all B ∈ Λ∫

B
f dp =

∫
B

gdp.

This function g is usually denoted by E(f |Λ).
We clearly have f · p� p so the required g is simply df ·p

dp|Λ , where
p |Λ is the restriction of p to the sub-σ-algebra Λ.
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Properties of conditional expectation

1 The point of requiring Λ-measurability is that it “smooths out”
variations that are too rapid to show up in Λ.

2 The conditional expectation is linear, increasing with respect to
the pointwise order.

3 It is defined uniquely p-almost everywhere.
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Where the action happens

We define two categories Rad∞ and Rad1 that will be needed for
the functorial definition of conditional expectation.

This will allow for L∞ and L1 versions of the theory.
Going between these versions by duality will be very useful.
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The “infinity” category

Rad∞
The category Rad∞ has as objects probability spaces, and as arrows
α : (X, p) −→ (Y, q), measurable maps such that Mα(p) ≤ Kq for some
real number K.

The reason for choosing the name Rad∞ is that α ∈ Rad∞ maps to
d/dqMα(p) ∈ L+

∞(Y, q).
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The “one” category

Rad1

The category Rad1 has as objects probability spaces and as arrows
α : (X, p) −→ (Y, q), measurable maps such that Mα(p)� q.

1 The reason for choosing the name Rad1 is that α ∈ Rad1 maps to
d/dqMα(p) ∈ L+

1 (Y, q).
2 The fact that the category Rad∞ embeds in Rad1 reflects the fact

that L+
∞ embeds in L+

1 .

Panangaden (McGill University) Overview and Cones 8 April 2020 37 / 45



The “one” category

Rad1

The category Rad1 has as objects probability spaces and as arrows
α : (X, p) −→ (Y, q), measurable maps such that Mα(p)� q.

1 The reason for choosing the name Rad1 is that α ∈ Rad1 maps to
d/dqMα(p) ∈ L+

1 (Y, q).

2 The fact that the category Rad∞ embeds in Rad1 reflects the fact
that L+

∞ embeds in L+
1 .

Panangaden (McGill University) Overview and Cones 8 April 2020 37 / 45



The “one” category

Rad1

The category Rad1 has as objects probability spaces and as arrows
α : (X, p) −→ (Y, q), measurable maps such that Mα(p)� q.

1 The reason for choosing the name Rad1 is that α ∈ Rad1 maps to
d/dqMα(p) ∈ L+

1 (Y, q).
2 The fact that the category Rad∞ embeds in Rad1 reflects the fact

that L+
∞ embeds in L+

1 .

Panangaden (McGill University) Overview and Cones 8 April 2020 37 / 45



Pairing function revisited

Recall the isomorphism between L+
∞(X, p) and L+,∗

1 (X, p) mediated by
the pairing function:

f ∈ L+
∞(X, p) 7→ λg : L+

1 (X, p).〈f , g〉 =

∫
fgdp.
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Precomposition

1 Now, precomposition with α in Rad∞ gives a map P1(α) from
L+

1 (Y, q) to L+
1 (X, p).

2 Dually, given α ∈ Rad1 : (X, p) −→ (Y, q) and g ∈ L+
∞(Y, q) we have

that P∞(α)(g) ∈ L+
∞(X, p).

3 Thus the subscripts on the two precomposition functors describe
the target categories.

4 Using the ∗-functor we get a map (P1(α))∗ from L+,∗
1 (X, p) to

L+,∗
1 (Y, q) in the first case and

5 dually we get (P∞(α))∗ from L+,∗
∞ (X, p) to L+,∗

∞ (Y, q).
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Expectation value functor

The functor E∞(·) is a functor from Rad∞ to ωCC which, on
objects, maps (X, p) to L+

∞(X, p) and on maps is given as follows:

Given α : (X, p) −→ (Y, q) in Rad∞ the action of the functor is to
produce the map E∞(α) : L+

∞(X, p) −→ L+
∞(Y, q) obtained by

composing (P1(α))∗ with the isomorphisms between L+,∗
1 and L+

∞

L+,∗
1 (X, p)

(P1(α))∗

��

L+
∞(X, p)oo

E∞(α)

��
L+,∗

1 (Y, q) // L+
∞(Y, q)
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Consequences

1 It is an immediate consequence of the definitions that
for any f ∈ L+

∞(X, p) and g ∈ L1(Y, q)

〈E∞(α)(f ), g〉Y = 〈f ,P1(α)(g)〉X.

λh : L+
1 (X, p).〈f , h〉

_

��

f�oo
_

��
λg : L+

1 (Y, q).〈f , g ◦ α〉X
� // 〈E∞(α)(f ), g〉Y

2 One can informally view this functor as a “left adjoint” in view of
this proposition.

3 Note that since we started with α in Rad∞ we get the expectation
value as a map between the L+

∞ cones.
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The other expectation value functor

The functor E1(·) is a functor from Rad1 to ωCC which maps the
object (X, p) to L+

1 (X, p) and on maps is given as follows:
Given α : (X, p) −→ (Y, q) in Rad1 the action of the functor is to produce
the map E1(α) : L+

1 (X, p) −→ L+
1 (Y, q) obtained by composing (P∞(α))∗

with the isomorphisms between L+,∗
∞ and L+

1 as shown in the diagram
below

L+,∗
∞ (X, p)

(P∞(α))∗

��

L+
1 (X, p)oo

E1(α)

��
L+,∗
∞ (Y, q) // L+

1 (Y, q)
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Another “adjoint”

Once again we have an “adjointness” statement; this time it is a right
adjoint.

Right adjoint

Given f ∈ L+
∞(Y, q) and g ∈ L+

1 (X, p) we have

〈f ,E1(α)(g)〉Y = 〈P∞(α)(f ), g〉X.
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Relating the two expectation value functors

Given α ∈ Rad∞[(X, p), (Y, q)] we have

(a) E1(α)(f ◦ α) = E∞(α)(1X)f , for f ∈ L+
1 (Y, q) and

(b) E∞(α)(f ◦ α) = E1(α)(1X)f , for f ∈ L+
∞(Y, q).
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Why?

This is a piece pulled out of a larger work on approximating
Markov processes.

Instead of compressing the state space we compressed the
σ-algebra and used the conditional expectation to define
approximate transition kernels.
But that is the subject of a different talk.
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