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Propositional logic

Propositions relate by implications, forming a preorder. The logical
operations “or”, “and” are intertwined with this structure.
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Propositional logic

Propositions relate by implications, forming a preorder. The logical
operations “or”, “and” are intertwined with this structure.

Disjunction is left adjoint to duplication.

(avb)=z
(a=2z)AN(b=2)

Prop(aV b, z) ~ Prop?((a, b), (z, 2))

Conjunction is right adjoint to duplication.

(z=a)A(z=Db)
z=(aNDb)

Prop?((z, 2), (a, b)) =~ Prop(z, a A b)
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Predicate logic

We use indexed “or/and” every day — we say “there exists” and “for all”.
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Predicate logic

We use indexed “or/and” every day — we say “there exists” and “for all”.
Let P: Ax B—2,Q:A— 2 be predicates.

Existential quantification is left adjoint to weakening.

3b.P(a, b) = Q(a)
P(a,b) = Q*(a, [b])

24(3x(P), Q) =~ 2B (P, 7(Q))
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Predicate logic

We use indexed “or/and” every day — we say “there exists” and “for all”.
Let P: Ax B—2,Q:A— 2 be predicates.

Existential quantification is left adjoint to weakening.

3b.P(a, b) = Q(a)
P(a,b) = Q*(a, [b])

24(3x(P), Q) =~ 2B (P, 7(Q))

Universal quantification is right adjoint to weakening.

Q*(a, [b]) = P(a, b)
Q(a) = Vb.P(a, b)

2A%B(7%(Q), P) ~ 2A(Q, V. (P))
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Generalized quantification

We can quantify over any function.
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Generalized quantification

We can quantify over any function.

Theorem
Let f : X = Y in Set, with U C X and V C Y. Define:
Fr(U)={y | 3x. f(x) =y Ax € U}

Ve(U)={y | ¥x. f(x) =y = x € U}
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Generalized quantification

We can quantify over any function.

Theorem

Let f : X = Y in Set, with U C X and V C Y. Define:
Fr(U)={y | 3x. f(x) =y Ax € U}

Ve(U)={y | ¥x. f(x) =y = x € U}
Then P := Set(—, 2) : Set®® — Pos gives triple adjoints:

f .

X —Y — P(X) « = P(Y)
v
f
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Generalized quantification

Proof.
Elf(U) cVv
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Generalized quantification

Proof.
Elf(U) cVv
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Generalized quantification

Proof.
3¢ (V)
vy. 3¢ (U)(y)
Vy {y [ 3x. f(x) =y Ax € U(y)
Vy. Vx. Prop(Y[f(x) = y], 2[U(x)
Vx. Vy. Prop(Y[f(x) = y],2[U(x)
Vx. U(x)
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Generalized quantification

Proof.

V C Vf(U)
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Generalized quantification

Proof.

V C Vf(U)

Vy. V(y) = V¢(U)(y)
Vy. V(y) ={y|V¥xf(x)=y=x¢e Uly)

Vy. Vx. Prop(Y[f(x) = y],2[V(y) = U(x)])
Vx. Vy. Prop(Y[f(x) = y],2[V(y) = U(x)])

Vx. V(f(x)) = U(x)
f*(v) cu
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Generalized elements

A subset V — Y is a particular kind of generalized element.
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A subset V — Y is a particular kind of generalized element. Any function
induces a preimage equivalence relation, which partitions the domain.
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We can understand v : A — Y as a Y-indexed family of “fibers”

{Ay =" (y)lyeY}
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Generalized elements

A subset V — Y is a particular kind of generalized element. Any function
induces a preimage equivalence relation, which partitions the domain.

We can understand v : A — Y as a Y-indexed family of “fibers”
{Ay = (y)ye Y}
Because A is a set, we have that A~} A,. Yet we also have [[ Ay,

which projects onto Y. This can be understood as a set of sections:
choose a y coordinate, and get something in its fiber.
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Generalized elements

A subset V — Y is a particular kind of generalized element. Any function
induces a preimage equivalence relation, which partitions the domain.

We can understand v : A — Y as a Y-indexed family of “fibers”

{Ay =" (y)lyeY}

Because A is a set, we have that A~} A,. Yet we also have [[ Ay,
which projects onto Y. This can be understood as a set of sections:
choose a y coordinate, and get something in its fiber.

An important lesson from arithmetic is that
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Generalized elements

A subset V — Y is a particular kind of generalized element. Any function
induces a preimage equivalence relation, which partitions the domain.

We can understand v : A — Y as a Y-indexed family of “fibers”

{Ay =" (y)lyeY}

Because A is a set, we have that A~} A,. Yet we also have [[ Ay,
which projects onto Y. This can be understood as a set of sections:
choose a y coordinate, and get something in its fiber.

An important lesson from arithmetic is that

products ~ indexed sums
exponents ~ indexed products.
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Generalized elements

Generalized elements form more than a preorder - the slice category
Set/Y consists of morphisms into Y and commuting triangles:

Christian Williams williz ath.ucr.edu Quantifiers as adjoints ACT@UCR Apr. 7, 2020 8/12



Generalized elements

Generalized elements form more than a preorder - the slice category
Set/Y consists of morphisms into Y and commuting triangles:

We can understand Set/Y as “the world relative to Y.

Christian Williams willia

th.ucr.edu Quantifiers as adjoints

ACT@UCR Apr. 7, 2020 8/12



Generalized elements

Generalized elements form more than a preorder - the slice category
Set/Y consists of morphisms into Y and commuting triangles:

We can understand Set/Y as “the world relative to Y.
Consider Y as the set of types in a universe of discourse.

(] = [u(a) = ¥]
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Generalized elements

Generalized elements form more than a preorder - the slice category
Set/Y consists of morphisms into Y and commuting triangles:

We can understand Set/Y as “the world relative to Y.
Consider Y as the set of types in a universe of discourse.

(] = [u(a) = ¥]

Generalized elements of Y are Y-typed contexts, and morphisms are
changes in context.
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Reindexing

As preimage * serves to define P : Set®® — Pos, more generally pullback
defines Set/— : Set®® — Cat by an action known as “change of base”:
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Reindexing

As preimage * serves to define P : Set®® — Pos, more generally pullback
defines Set/— : Set®® — Cat by an action known as “change of base”:

let f:Z—=Y.
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Reindexing

As preimage * serves to define P : Set®® — Pos, more generally pullback
defines Set/— : Set°® — Cat by an action known as “change of base":

letf:Z =Y.
AxiZ y A
w‘ k
- Bxi{ZzZ i B
% /
Z f Y%
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Reindexing

As preimage * serves to define P : Set®® — Pos, more generally pullback

defines Set/— : Set°® — Cat by an action known as “change of base":

et f: Z—=Y.
AxyZ » A
w k
o B x¢Z ) B
V4 f y Y
{Ay=Ff"(y)lyeY} — {Ars)l z€ Z}
kA B s FH(K)(a, 2) = (k(a), 2)
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Indexed co/product

We define adjoints to pullback in the same way as we did for preimage:
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/(B)y= Y B

f(z)=y
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We define adjoints to pullback in the same way as we did for preimage:

/(B)y= Y B
f(z)=y

neB), = [[ B
f(z)=y
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Indexed co/product

We define adjoints to pullback in the same way as we did for preimage:

/(B)y= Y B
f(z)=y

neB), = [[ B
f(z)=y

These satisfy a universal property which is the indexed form of co/product.
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Beyond Set

All of this reasoning extends well beyond Set.
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A locally cartesian closed category C is a category in which every slice
category C/c is cartesian closed.
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Beyond Set

All of this reasoning extends well beyond Set.
Definition

A locally cartesian closed category C is a category in which every slice
category C/c is cartesian closed.

Theorem
Let C be a category with pullbacks. For all f : a — b,

f*:¢/b—C/a

has a left adjoint L, given by postcomposition.
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Beyond Set

All of this reasoning extends well beyond Set.
Definition

A locally cartesian closed category C is a category in which every slice
category C/c is cartesian closed.

Theorem
Let C be a category with pullbacks. For all f : a — b,

f*:¢/b—C/a

has a left adjoint L, given by postcomposition.

C is locally cartesian closed iff f* has a right adjoint l¢.
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