Quantifiers as adjoints

Christian Williams williams@math.ucr.edu

University of California, Riverside

ACT@UCR Apr. 7, 2020

Propositional logic

Propositions relate by implications, forming a preorder. The logical operations "or", "and" are intertwined with this structure.

Propositional logic

Propositions relate by implications, forming a preorder. The logical operations "or", "and" are intertwined with this structure.

Disjunction is left adjoint to duplication.

$$\frac{(a \lor b) \Rightarrow z}{(a \Rightarrow z) \land (b \Rightarrow z)}$$

$$\operatorname{Prop}(a \vee b, z) \simeq \operatorname{Prop}^2((a, b), (z, z))$$

Propositional logic

Propositions relate by implications, forming a preorder. The logical operations "or", "and" are intertwined with this structure.

Disjunction is left adjoint to duplication.

$$\frac{(a \lor b) \Rightarrow z}{(a \Rightarrow z) \land (b \Rightarrow z)}$$

$$\operatorname{Prop}(a \vee b, z) \simeq \operatorname{Prop}^2((a, b), (z, z))$$

Conjunction is *right adjoint* to duplication.

$$\frac{(z \Rightarrow a) \land (z \Rightarrow b)}{z \Rightarrow (a \land b)}$$

$$\operatorname{Prop}^2((z,z),(a,b)) \simeq \operatorname{Prop}(z,a \wedge b)$$

We use indexed "or/and" every day - we say "there exists" and "for all".

We use indexed "or/and" every day – we say "there exists" and "for all". Let $P:A\times B\to 2, Q:A\to 2$ be predicates.

We use indexed "or/and" every day – we say "there exists" and "for all". Let $P:A\times B\to 2, Q:A\to 2$ be predicates.

Existential quantification is left adjoint to weakening.

$$\frac{\exists b. P(a,b) \Rightarrow Q(a)}{P(a,b) \Rightarrow Q^*(a,[b])}$$

$$2^{A}(\exists_{\pi}(P),Q)\simeq 2^{A\times B}(P,\pi^{*}(Q))$$

We use *indexed* "or/and" every day – we say "there exists" and "for all". Let $P: A \times B \to 2, Q: A \to 2$ be predicates.

Existential quantification is left adjoint to weakening.

$$\frac{\exists b. P(a,b) \Rightarrow Q(a)}{P(a,b) \Rightarrow Q^*(a,[b])}$$

$$2^{A}(\exists_{\pi}(P),Q) \simeq 2^{A\times B}(P,\pi^{*}(Q))$$

Universal quantification is right adjoint to weakening.

$$\frac{Q^*(a,[b]) \Rightarrow P(a,b)}{Q(a) \Rightarrow \forall b.P(a,b)}$$

$$2^{A \times B}(\pi^*(Q), P) \simeq 2^A(Q, \forall_{\pi}(P))$$

We can quantify over any function.

We can quantify over any function.

Theorem

Let $f: X \to Y$ in Set, with $U \subset X$ and $V \subset Y$. Define:

$$\exists_f(U) = \{y \mid \exists x. \ f(x) = y \land x \in U\}$$

$$\forall_f(U) = \{y \mid \forall x. \ f(x) = y \Rightarrow x \in U\}$$

We can quantify over any function.

Theorem

Let $f: X \to Y$ in Set, with $U \subset X$ and $V \subset Y$. Define:

$$\exists_f(U) = \{y \mid \exists x. \ f(x) = y \land x \in U\}$$

$$\forall_f(U) = \{y \mid \forall x. \ f(x) = y \Rightarrow x \in U\}$$

Then $\mathcal{P} := \operatorname{Set}(-,2) : \operatorname{Set}^{op} \to \operatorname{Pos}$ gives triple adjoints:

$$X \xrightarrow{f} Y \qquad \mapsto \qquad \mathcal{P}(X) \xrightarrow{\exists_f} \underbrace{\langle f^* - \mathcal{P}(Y) \rangle}_{\forall_f}$$

$$\exists_f(U) \subset V$$

$$\exists_f(U) \subset V$$

 $\forall y. \exists_f(U)(y) \Rightarrow V(y)$

$$\exists_{f}(U) \subset V$$

$$\forall y. \exists_{f}(U)(y) \Rightarrow V(y)$$

$$\forall y. \{y \mid \exists x. f(x) = y \land x \in U\}(y) \Rightarrow V(y)$$

$$\exists_{f}(U) \subset V$$

$$\forall y. \exists_{f}(U)(y) \Rightarrow V(y)$$

$$\forall y. \{y \mid \exists x. f(x) = y \land x \in U\}(y) \Rightarrow V(y)$$

$$\forall y. \forall x. \operatorname{Prop}(Y[f(x) = y], 2[U(x) \Rightarrow V(y)])$$

$$\exists_{f}(U) \subset V$$

$$\forall y. \exists_{f}(U)(y) \Rightarrow V(y)$$

$$\forall y. \{y \mid \exists x. f(x) = y \land x \in U\}(y) \Rightarrow V(y)$$

$$\forall y. \forall x. \operatorname{Prop}(Y[f(x) = y], 2[U(x) \Rightarrow V(y)])$$

$$\forall x. \forall y. \operatorname{Prop}(Y[f(x) = y], 2[U(x) \Rightarrow V(y)])$$

$$\exists_{f}(U) \subset V$$

$$\forall y. \exists_{f}(U)(y) \Rightarrow V(y)$$

$$\forall y. \{y \mid \exists x. \ f(x) = y \land x \in U\}(y) \Rightarrow V(y)$$

$$\forall y. \forall x. \operatorname{Prop}(Y[f(x) = y], 2[U(x) \Rightarrow V(y)])$$

$$\forall x. \forall y. \operatorname{Prop}(Y[f(x) = y], 2[U(x) \Rightarrow V(y)])$$

$$\forall x. \ U(x) \Rightarrow V(f(x))$$

$$\exists_{f}(U) \subset V$$

$$\forall y. \exists_{f}(U)(y) \Rightarrow V(y)$$

$$\forall y. \{y \mid \exists x. f(x) = y \land x \in U\}(y) \Rightarrow V(y)$$

$$\forall y. \forall x. \operatorname{Prop}(Y[f(x) = y], 2[U(x) \Rightarrow V(y)])$$

$$\forall x. \forall y. \operatorname{Prop}(Y[f(x) = y], 2[U(x) \Rightarrow V(y)])$$

$$\forall x. U(x) \Rightarrow V(f(x))$$

$$U \subset f^{*}(V)$$

$$V \subset \forall_f(U)$$

$$\begin{array}{cc} V & \subset \forall_f(U) \\ \forall y. \ V(y) & \Rightarrow \forall_f(U)(y) \end{array}$$

$$V \subset \forall_f(U)$$

$$\forall y. \ V(y) \Rightarrow \forall_f(U)(y)$$

$$\forall y. \ V(y) \Rightarrow \{y \mid \forall x \ f(x) = y \Rightarrow x \in U\}(y)$$

$$\begin{array}{ccc} V & \subset \forall_f(U) \\ \forall y. \ V(y) & \Rightarrow \forall_f(U)(y) \\ \forall y. \ V(y) & \Rightarrow \{y \mid \forall x \ f(x) = y \Rightarrow x \in U\}(y) \\ \forall y. \ \forall x. \ \operatorname{Prop}(Y[f(x) = y], 2[V(y) & \Rightarrow U(x)]) \end{array}$$

$$\begin{array}{ccc} V & \subset \forall_f(U) \\ \forall y. \ V(y) & \Rightarrow \forall_f(U)(y) \\ \forall y. \ V(y) & \Rightarrow \{y \mid \forall x \ f(x) = y \Rightarrow x \in U\}(y) \\ \forall y. \ \forall x. \ \operatorname{Prop}(Y[f(x) = y], 2[V(y) & \Rightarrow U(x)]) \\ \forall x. \ \forall y. \ \operatorname{Prop}(Y[f(x) = y], 2[V(y) & \Rightarrow U(x)]) \end{array}$$

$$\begin{array}{ccc} V &\subset \forall_f(U) \\ \forall y. \ V(y) &\Rightarrow \forall_f(U)(y) \\ \forall y. \ V(y) &\Rightarrow \{y \mid \forall x \ f(x) = y \Rightarrow x \in U\}(y) \\ \forall y. \ \forall x. \ \operatorname{Prop}(Y[f(x) = y], 2[V(y) &\Rightarrow U(x)]) \\ \forall x. \ \forall y. \ \operatorname{Prop}(Y[f(x) = y], 2[V(y) &\Rightarrow U(x)]) \\ \forall x. \ V(f(x)) &\Rightarrow U(x) \end{array}$$

$$\begin{array}{ccc} V & \subset \forall_f(U) \\ \forall y. \ V(y) & \Rightarrow \forall_f(U)(y) \\ \forall y. \ V(y) & \Rightarrow \{y \mid \forall x \ f(x) = y \Rightarrow x \in U\}(y) \\ \forall y. \ \forall x. \ \operatorname{Prop}(Y[f(x) = y], 2[V(y) & \Rightarrow U(x)]) \\ \forall x. \ \forall y. \ \operatorname{Prop}(Y[f(x) = y], 2[V(y) & \Rightarrow U(x)]) \\ \forall x. \ V(f(x)) & \Rightarrow U(x) \\ f^*(V) & \subset U \end{array}$$

A subset $V \rightarrow Y$ is a particular kind of generalized element.

A subset $V \rightarrow Y$ is a particular kind of *generalized element*. Any function induces a preimage equivalence relation, which partitions the domain.

A subset $V \rightarrow Y$ is a particular kind of *generalized element*. Any function induces a preimage equivalence relation, which partitions the domain.

We can understand $u: A \rightarrow Y$ as a Y-indexed family of "fibers"

$$\{A_y:=f^*(y)\mid y\in Y\}.$$

A subset $V \rightarrowtail Y$ is a particular kind of *generalized element*. Any function induces a preimage equivalence relation, which partitions the domain.

We can understand $u: A \rightarrow Y$ as a Y-indexed family of "fibers"

$$\{A_y:=f^*(y)\mid y\in Y\}.$$

Because A is a set, we have that $A \simeq \sum_y A_y$. Yet we also have $\prod_y A_y$, which projects onto Y. This can be understood as a set of sections: choose a y coordinate, and get something in its fiber.

A subset $V \rightarrow Y$ is a particular kind of *generalized element*. Any function induces a preimage equivalence relation, which partitions the domain.

We can understand $u: A \rightarrow Y$ as a Y-indexed family of "fibers"

$$\{A_y:=f^*(y)\mid y\in Y\}.$$

Because A is a set, we have that $A \simeq \sum_y A_y$. Yet we also have $\prod_y A_y$, which projects onto Y. This can be understood as a set of sections: choose a y coordinate, and get something in its fiber.

An important lesson from arithmetic is that

A subset $V \rightarrow Y$ is a particular kind of *generalized element*. Any function induces a preimage equivalence relation, which partitions the domain.

We can understand $u: A \rightarrow Y$ as a Y-indexed family of "fibers"

$${A_y := f^*(y) \mid y \in Y}.$$

Because A is a set, we have that $A \simeq \sum_y A_y$. Yet we also have $\prod_y A_y$, which projects onto Y. This can be understood as a set of sections: choose a y coordinate, and get something in its fiber.

An important lesson from arithmetic is that

products \sim indexed sums

A subset $V \rightarrow Y$ is a particular kind of *generalized element*. Any function induces a preimage equivalence relation, which partitions the domain.

We can understand $u: A \rightarrow Y$ as a Y-indexed family of "fibers"

$${A_y := f^*(y) \mid y \in Y}.$$

Because A is a set, we have that $A \simeq \sum_y A_y$. Yet we also have $\prod_y A_y$, which projects onto Y. This can be understood as a set of sections: choose a y coordinate, and get something in its fiber.

An important lesson from arithmetic is that

 $\begin{array}{lll} {\rm products} & \sim & {\rm indexed\ sums} \\ {\rm exponents} & \sim & {\rm indexed\ products}. \end{array}$

Generalized elements form more than a preorder - the **slice category** Set/Y consists of morphisms into Y and commuting triangles:

Generalized elements form more than a preorder - the **slice category** Set/Y consists of morphisms into Y and commuting triangles:

We can understand Set/Y as "the world relative to Y".

Generalized elements form more than a preorder - the **slice category** Set/Y consists of morphisms into Y and commuting triangles:

We can understand Set/Y as "the world relative to Y". Consider Y as the set of types in a universe of discourse.

$$[a:y]:=[u(a)=y]$$

Generalized elements form more than a preorder - the **slice category** Set/Y consists of morphisms into Y and commuting triangles:

We can understand Set/Y as "the world relative to Y". Consider Y as the set of types in a universe of discourse.

$$[a:y]:=[u(a)=y]$$

Generalized elements of Y are Y-typed contexts, and morphisms are changes in context.

As preimage f^* serves to define $\mathcal{P}: \operatorname{Set}^{\operatorname{op}} \to \operatorname{Pos}$, more generally *pullback* defines $\operatorname{Set}/-: \operatorname{Set}^{\operatorname{op}} \to \operatorname{Cat}$ by an action known as "change of base":

As preimage f^* serves to define $\mathcal{P}: \operatorname{Set}^{\operatorname{op}} \to \operatorname{Pos}$, more generally *pullback* defines $\operatorname{Set}/-: \operatorname{Set}^{\operatorname{op}} \to \operatorname{Cat}$ by an action known as "change of base":

let $f: Z \to Y$.

As preimage f^* serves to define $\mathcal{P}: \operatorname{Set}^{\operatorname{op}} \to \operatorname{Pos}$, more generally *pullback* defines $\operatorname{Set}/-: \operatorname{Set}^{\operatorname{op}} \to \operatorname{Cat}$ by an action known as "change of base":

let $f: Z \to Y$.

As preimage f^* serves to define $\mathcal{P}: \operatorname{Set}^{\operatorname{op}} \to \operatorname{Pos}$, more generally *pullback* defines $\operatorname{Set}/-: \operatorname{Set}^{\operatorname{op}} \to \operatorname{Cat}$ by an action known as "change of base":

let
$$f: Z \to Y$$
.

We define adjoints to pullback in the same way as we did for preimage:

We define adjoints to pullback in the same way as we did for preimage:

$$\Sigma_f(B)_y = \sum_{f(z)=y} B_z$$

We define adjoints to pullback in the same way as we did for preimage:

$$\Sigma_f(B)_y = \sum_{f(z)=y} B_z$$

$$\Pi_f(B)_y = \prod_{f(z)=y} B_z.$$

We define adjoints to pullback in the same way as we did for preimage:

$$\Sigma_f(B)_y = \sum_{f(z)=y} B_z$$

$$\Pi_f(B)_y = \prod_{f(z)=y} B_z.$$

These satisfy a universal property which is the indexed form of co/product.

All of this reasoning extends well beyond $\mathop{\rm Set}\nolimits.$

All of this reasoning extends well beyond Set.

Definition

A **locally cartesian closed category** \mathcal{C} is a category in which every slice category \mathcal{C}/c is cartesian closed.

All of this reasoning extends well beyond Set.

Definition

A **locally cartesian closed category** \mathcal{C} is a category in which every slice category \mathcal{C}/c is cartesian closed.

Theorem

Let ${\mathfrak C}$ be a category with pullbacks. For all $f:a\to b$,

$$f^*: \mathbb{C}/b \to \mathbb{C}/a$$

has a left adjoint Σ_f , given by postcomposition.

All of this reasoning extends well beyond Set.

Definition

A **locally cartesian closed category** $\mathcal C$ is a category in which every slice category $\mathcal C/c$ is cartesian closed.

Theorem

Let ${\mathfrak C}$ be a category with pullbacks. For all $f:a\to b$,

$$f^*: \mathbb{C}/b \to \mathbb{C}/a$$

has a left adjoint Σ_f , given by postcomposition.

 $\mathfrak C$ is locally cartesian closed iff f^* has a right adjoint Π_f .

References

Saunders Mac Lane and leke Moerdijk, *Sheaves in Geometry and Logic*, Springer-Verlag, New York 1992.