Quantifiers as adjoints

Christian Williams
williams@math.ucr.edu
University of California, Riverside

ACT@UCR
Apr. 7, 2020

Propositional logic

Propositions relate by implications, forming a preorder. The logical operations "or", "and" are intertwined with this structure.

Propositional logic

Propositions relate by implications, forming a preorder. The logical operations "or", "and" are intertwined with this structure.

Disjunction is left adjoint to duplication.

$$
\begin{gathered}
\frac{(a \vee b) \Rightarrow z}{(a \Rightarrow z) \wedge(b \Rightarrow z)} \\
\operatorname{Prop}(a \vee b, z) \simeq \operatorname{Prop}^{2}((a, b),(z, z))
\end{gathered}
$$

Propositional logic

Propositions relate by implications, forming a preorder. The logical operations "or", "and" are intertwined with this structure.

Disjunction is left adjoint to duplication.

$$
\begin{gathered}
\frac{(a \vee b) \Rightarrow z}{(a \Rightarrow z) \wedge(b \Rightarrow z)} \\
\operatorname{Prop}(a \vee b, z) \simeq \operatorname{Prop}^{2}((a, b),(z, z))
\end{gathered}
$$

Conjunction is right adjoint to duplication.

$$
\begin{gathered}
\frac{(z \Rightarrow a) \wedge(z \Rightarrow b)}{z \Rightarrow(a \wedge b)} \\
\operatorname{Prop}^{2}((z, z),(a, b)) \simeq \operatorname{Prop}(z, a \wedge b)
\end{gathered}
$$

Predicate logic

We use indexed "or/and" every day - we say "there exists" and "for all".

Predicate logic

We use indexed "or/and" every day - we say "there exists" and "for all". Let $P: A \times B \rightarrow 2, Q: A \rightarrow 2$ be predicates.

Predicate logic

We use indexed "or/and" every day - we say "there exists" and "for all". Let $P: A \times B \rightarrow 2, Q: A \rightarrow 2$ be predicates.

Existential quantification is left adjoint to weakening.

$$
\begin{gathered}
\frac{\exists b \cdot P(a, b) \Rightarrow Q(a)}{P(a, b) \Rightarrow Q^{*}(a,[b])} \\
2^{A}\left(\exists_{\pi}(P), Q\right) \simeq 2^{A \times B}\left(P, \pi^{*}(Q)\right)
\end{gathered}
$$

Predicate logic

We use indexed "or/and" every day - we say "there exists" and "for all". Let $P: A \times B \rightarrow 2, Q: A \rightarrow 2$ be predicates.

Existential quantification is left adjoint to weakening.

$$
\begin{gathered}
\exists b \cdot P(a, b) \Rightarrow Q(a) \\
P(a, b) \Rightarrow Q^{*}(a,[b]) \\
2^{A}\left(\exists_{\pi}(P), Q\right) \simeq 2^{A \times B}\left(P, \pi^{*}(Q)\right)
\end{gathered}
$$

Universal quantification is right adjoint to weakening.

$$
\begin{gathered}
\frac{Q^{*}(a,[b]) \Rightarrow P(a, b)}{Q(a) \Rightarrow \forall b \cdot P(a, b)} \\
2^{A \times B}\left(\pi^{*}(Q), P\right) \simeq 2^{A}\left(Q, \forall_{\pi}(P)\right)
\end{gathered}
$$

Generalized quantification

We can quantify over any function.

Generalized quantification

We can quantify over any function.

Theorem
Let $f: X \rightarrow Y$ in Set, with $U \subset X$ and $V \subset Y$. Define:

$$
\begin{aligned}
& \exists_{f}(U)=\{y \mid \exists x . f(x)=y \wedge x \in U\} \\
& \forall_{f}(U)=\{y \mid \forall x \cdot f(x)=y \Rightarrow x \in U\}
\end{aligned}
$$

Generalized quantification

We can quantify over any function.

Theorem
Let $f: X \rightarrow Y$ in Set, with $U \subset X$ and $V \subset Y$. Define:

$$
\begin{aligned}
& \exists_{f}(U)=\{y \mid \exists x \cdot f(x)=y \wedge x \in U\} \\
& \forall_{f}(U)=\{y \mid \forall x \cdot f(x)=y \Rightarrow x \in U\}
\end{aligned}
$$

Then $\mathcal{P}:=\operatorname{Set}(-, 2): \operatorname{Set}^{\mathrm{op}} \rightarrow$ Pos gives triple adjoints:

$$
X \xrightarrow{f} Y \quad \mapsto \quad \mathcal{P}(X) \underset{\forall_{f}}{\stackrel{\exists_{f}}{\leftarrow f^{*}-}} \mathcal{P}(Y)
$$

Generalized quantification

Proof.

$$
\exists_{f}(U) \subset V
$$

Generalized quantification

Proof.

$$
\begin{aligned}
\exists_{f}(U) & \subset V \\
\forall y \cdot \exists_{f}(U)(y) & \Rightarrow V(y)
\end{aligned}
$$

Generalized quantification

Proof.

$$
\begin{aligned}
\exists_{f}(U) & \subset V \\
\forall y . \exists_{f}(U)(y) & \Rightarrow V(y) \\
\forall y .\{y \mid \exists x . f(x)=y \wedge x \in U\}(y) & \Rightarrow V(y)
\end{aligned}
$$

Generalized quantification

Proof.

$$
\begin{aligned}
\exists_{f}(U) & \subset V \\
\forall y . \exists_{f}(U)(y) & \Rightarrow V(y) \\
\forall y .\{y \mid \exists x \cdot f(x)=y \wedge x \in U\}(y) & \Rightarrow V(y) \\
\forall y . \forall x . \operatorname{Prop}(Y[f(x)=y], 2[U(x) & \Rightarrow V(y)])
\end{aligned}
$$

Generalized quantification

Proof.

$$
\begin{aligned}
\exists_{f}(U) & \subset V \\
\forall y \cdot \exists_{f}(U)(y) & \Rightarrow V(y) \\
\forall y .\{y \mid \exists x \cdot f(x)=y \wedge x \in U\}(y) & \Rightarrow V(y) \\
\forall y . \forall x . \operatorname{Prop}(Y[f(x)=y], 2[U(x) & \Rightarrow V(y)]) \\
\forall x . \forall y \cdot \operatorname{Prop}(Y[f(x)=y], 2[U(x) & \Rightarrow V(y)])
\end{aligned}
$$

Generalized quantification

Proof.

$$
\begin{aligned}
\exists f(U) & \subset V \\
\forall y \cdot \exists_{f}(U)(y) & \Rightarrow V(y) \\
\forall y .\{y \mid \exists x . f(x)=y \wedge x \in U\}(y) & \Rightarrow V(y) \\
\forall y . \forall x . \operatorname{Prop}(Y[f(x)=y], 2[U(x) & \Rightarrow V(y)]) \\
\forall x . \forall y . \operatorname{Prop}(Y[f(x)=y], 2[U(x) & \Rightarrow V(y)]) \\
\forall x \cdot U(x) & \Rightarrow V(f(x))
\end{aligned}
$$

Generalized quantification

Proof.

$$
\begin{aligned}
\exists f(U) & \subset V \\
\forall y \cdot \exists_{f}(U)(y) & \Rightarrow V(y) \\
\forall y .\{y \mid \exists x . f(x)=y \wedge x \in U\}(y) & \Rightarrow V(y) \\
\forall y . \forall x . \operatorname{Prop}(Y[f(x)=y], 2[U(x) & \Rightarrow V(y)]) \\
\forall x . \forall y \cdot \operatorname{Prop}(Y[f(x)=y], 2[U(x) & \Rightarrow V(y)]) \\
\forall x \cdot U(x) & \Rightarrow V(f(x)) \\
U & \subset f^{*}(V)
\end{aligned}
$$

Generalized quantification

Proof.

$$
V \subset \forall_{f}(U)
$$

Generalized quantification

Proof.

$$
\begin{aligned}
V & \subset \forall_{f}(U) \\
\forall y . V(y) & \Rightarrow \forall_{f}(U)(y)
\end{aligned}
$$

Generalized quantification

Proof.

$$
\begin{aligned}
V & \subset \forall_{f}(U) \\
\forall y \cdot V(y) & \Rightarrow \forall f(U)(y) \\
\forall y . V(y) & \Rightarrow\{y \mid \forall x f(x)=y \Rightarrow x \in U\}(y)
\end{aligned}
$$

Generalized quantification

Proof.

$$
\begin{aligned}
V & \subset \forall_{f}(U) \\
\forall y \cdot V(y) & \Rightarrow \forall f(U)(y) \\
\forall y . V(y) & \Rightarrow\{y \mid \forall x f(x)=y \Rightarrow x \in U\}(y) \\
\forall y \cdot \forall x \cdot \operatorname{Prop}(Y[f(x)=y], 2[V(y) & \Rightarrow U(x)])
\end{aligned}
$$

Generalized quantification

Proof.

$$
\begin{aligned}
V & \subset \forall_{f}(U) \\
\forall y \cdot V(y) & \Rightarrow \forall f(U)(y) \\
\forall y . V(y) & \Rightarrow\{y \mid \forall x f(x)=y \Rightarrow x \in U\}(y) \\
\forall y \cdot \forall x \cdot \operatorname{Prop}(Y[f(x)=y], 2[V(y) & \Rightarrow U(x)]) \\
\forall x \cdot \forall y \cdot \operatorname{Prop}(Y[f(x)=y], 2[V(y) & \Rightarrow U(x)])
\end{aligned}
$$

Generalized quantification

Proof.

$$
\begin{aligned}
V & \subset \forall_{f}(U) \\
\forall y \cdot V(y) & \Rightarrow \forall f(U)(y) \\
\forall y . V(y) & \Rightarrow\{y \mid \forall x f(x)=y \Rightarrow x \in U\}(y) \\
\forall y \cdot \forall x \cdot \operatorname{Prop}(Y[f(x)=y], 2[V(y) & \Rightarrow U(x)]) \\
\forall x \cdot \forall y \cdot \operatorname{Prop}(Y[f(x)=y], 2[V(y) & \Rightarrow U(x)]) \\
\forall x \cdot V(f(x)) & \Rightarrow U(x)
\end{aligned}
$$

Generalized quantification

Proof.

$$
\begin{aligned}
V & \subset \forall f(U) \\
\forall y \cdot V(y) & \Rightarrow \forall f(U)(y) \\
\forall y \cdot V(y) & \Rightarrow\{y \mid \forall x f(x)=y \Rightarrow x \in U\}(y) \\
\forall y \cdot \forall x \cdot \operatorname{Prop}(Y[f(x)=y], 2[V(y) & \Rightarrow U(x)]) \\
\forall x \cdot \forall y \cdot \operatorname{Prop}(Y[f(x)=y], 2[V(y) & \Rightarrow U(x)]) \\
\forall x \cdot V(f(x)) & \Rightarrow U(x) \\
f^{*}(V) & \subset U
\end{aligned}
$$

Generalized elements

A subset $V \curvearrowleft Y$ is a particular kind of generalized element.

Generalized elements

A subset $V \mapsto Y$ is a particular kind of generalized element. Any function induces a preimage equivalence relation, which partitions the domain.

Generalized elements

A subset $V \multimap Y$ is a particular kind of generalized element. Any function induces a preimage equivalence relation, which partitions the domain.

We can understand $u: A \rightarrow Y$ as a Y-indexed family of "fibers"

$$
\left\{A_{y}:=f^{*}(y) \mid y \in Y\right\}
$$

Generalized elements

A subset $V \multimap Y$ is a particular kind of generalized element. Any function induces a preimage equivalence relation, which partitions the domain.

We can understand $u: A \rightarrow Y$ as a Y-indexed family of "fibers"

$$
\left\{A_{y}:=f^{*}(y) \mid y \in Y\right\}
$$

Because A is a set, we have that $A \simeq \sum_{y} A_{y}$. Yet we also have $\prod_{y} A_{y}$, which projects onto Y. This can be understood as a set of sections: choose a y coordinate, and get something in its fiber.

Generalized elements

A subset $V \multimap Y$ is a particular kind of generalized element. Any function induces a preimage equivalence relation, which partitions the domain.

We can understand $u: A \rightarrow Y$ as a Y-indexed family of "fibers"

$$
\left\{A_{y}:=f^{*}(y) \mid y \in Y\right\}
$$

Because A is a set, we have that $A \simeq \sum_{y} A_{y}$. Yet we also have $\prod_{y} A_{y}$, which projects onto Y. This can be understood as a set of sections: choose a y coordinate, and get something in its fiber.

An important lesson from arithmetic is that

Generalized elements

A subset $V \mapsto Y$ is a particular kind of generalized element. Any function induces a preimage equivalence relation, which partitions the domain.

We can understand $u: A \rightarrow Y$ as a Y-indexed family of "fibers"

$$
\left\{A_{y}:=f^{*}(y) \mid y \in Y\right\}
$$

Because A is a set, we have that $A \simeq \sum_{y} A_{y}$. Yet we also have $\prod_{y} A_{y}$, which projects onto Y. This can be understood as a set of sections: choose a y coordinate, and get something in its fiber.

An important lesson from arithmetic is that

$$
\text { products } \sim \text { indexed sums }
$$

Generalized elements

A subset $V \mapsto Y$ is a particular kind of generalized element. Any function induces a preimage equivalence relation, which partitions the domain.

We can understand $u: A \rightarrow Y$ as a Y-indexed family of "fibers"

$$
\left\{A_{y}:=f^{*}(y) \mid y \in Y\right\}
$$

Because A is a set, we have that $A \simeq \sum_{y} A_{y}$. Yet we also have $\prod_{y} A_{y}$, which projects onto Y. This can be understood as a set of sections: choose a y coordinate, and get something in its fiber.

An important lesson from arithmetic is that

$$
\begin{aligned}
& \text { products } \sim \text { indexed sums } \\
& \text { exponents } \sim \text { indexed products. }
\end{aligned}
$$

Generalized elements

Generalized elements form more than a preorder - the slice category Set/ Y consists of morphisms into Y and commuting triangles:

Generalized elements

Generalized elements form more than a preorder - the slice category Set/ Y consists of morphisms into Y and commuting triangles:

We can understand Set/ Y as "the world relative to Y ".

Generalized elements

Generalized elements form more than a preorder - the slice category Set $/ Y$ consists of morphisms into Y and commuting triangles:

We can understand Set/ Y as "the world relative to Y ". Consider Y as the set of types in a universe of discourse.

$$
[a: y]:=[u(a)=y]
$$

Generalized elements

Generalized elements form more than a preorder - the slice category Set $/ Y$ consists of morphisms into Y and commuting triangles:

We can understand Set/ Y as "the world relative to Y ". Consider Y as the set of types in a universe of discourse.

$$
[a: y]:=[u(a)=y]
$$

Generalized elements of Y are Y-typed contexts, and morphisms are changes in context.

Reindexing

As preimage f^{*} serves to define $\mathcal{P}:$ Set ${ }^{\text {op }} \rightarrow$ Pos, more generally pullback defines Set/- : Set ${ }^{\text {op }} \rightarrow$ Cat by an action known as "change of base":

Reindexing

As preimage f^{*} serves to define $\mathcal{P}:$ Set ${ }^{\text {op }} \rightarrow$ Pos, more generally pullback defines Set/- : Set ${ }^{\text {op }} \rightarrow$ Cat by an action known as "change of base":

$$
\text { let } f: Z \rightarrow Y
$$

Reindexing

As preimage f^{*} serves to define $\mathcal{P}:$ Set ${ }^{\text {op }} \rightarrow$ Pos, more generally pullback defines Set/- : Set ${ }^{\mathrm{op}} \rightarrow$ Cat by an action known as "change of base":

$$
\text { let } f: Z \rightarrow Y
$$

Reindexing

As preimage f^{*} serves to define $\mathcal{P}:$ Set ${ }^{\text {op }} \rightarrow$ Pos, more generally pullback defines Set/-: Set ${ }^{\mathrm{op}} \rightarrow$ Cat by an action known as "change of base":

$$
\text { let } f: Z \rightarrow Y
$$

Indexed co/product

We define adjoints to pullback in the same way as we did for preimage:

Indexed co/product

We define adjoints to pullback in the same way as we did for preimage:

$$
\Sigma_{f}(B)_{y}=\sum_{f(z)=y} B_{z}
$$

Indexed co/product

We define adjoints to pullback in the same way as we did for preimage:

$$
\begin{aligned}
& \Sigma_{f}(B)_{y}=\sum_{f(z)=y} B_{z} \\
& \Pi_{f}(B)_{y}=\prod_{f(z)=y} B_{z}
\end{aligned}
$$

Indexed co/product

We define adjoints to pullback in the same way as we did for preimage:

$$
\begin{aligned}
\Sigma_{f}(B)_{y} & =\sum_{f(z)=y} B_{z} \\
\Pi_{f}(B)_{y} & =\prod_{f(z)=y} B_{z}
\end{aligned}
$$

These satisfy a universal property which is the indexed form of co/product.

Beyond Set

All of this reasoning extends well beyond Set.

Beyond Set

All of this reasoning extends well beyond Set.

Definition

A locally cartesian closed category \mathcal{C} is a category in which every slice category \mathcal{C} / c is cartesian closed.

Beyond Set

All of this reasoning extends well beyond Set.

Definition

A locally cartesian closed category \mathcal{C} is a category in which every slice category \mathcal{C} / c is cartesian closed.

Theorem
Let \mathcal{C} be a category with pullbacks. For all $f: a \rightarrow b$,

$$
f^{*}: \mathcal{C} / b \rightarrow \mathcal{C} / a
$$

has a left adjoint Σ_{f}, given by postcomposition.

Beyond Set

All of this reasoning extends well beyond Set.

Definition

A locally cartesian closed category \mathcal{C} is a category in which every slice category \mathcal{C} / c is cartesian closed.

Theorem
Let \mathcal{C} be a category with pullbacks. For all $f: a \rightarrow b$,

$$
f^{*}: \mathcal{C} / b \rightarrow \mathcal{C} / a
$$

has a left adjoint Σ_{f}, given by postcomposition.
\mathcal{C} is locally cartesian closed iff f^{*} has a right adjoint Π_{f}.

References

Raunders Mac Lane and leke Moerdijk, Sheaves in Geometry and Logic, Springer-Verlag, New York 1992.

