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1 Introduction

In this text the term ‘dynamical system’ means nothing else than a system
of ordinary differential equations. Why is this term used here? The aim is
to emphasize that the ordinary differential equations and their solutions are
considered here in a particular way. A mathematical problem which ordinary
differential equations pose is that of solving them explicitly. This means looking
for formulae for the solutions in terms of combinations of certain ‘elementary
functons’ such as powers, the exponential function, sine etc. It is known that
this is not possible for all equations and one way of going further is to introduce
new functions (for instance elliptic functions) which themselves are nothing
other than solutions of special ordinary differential equations which have already
been studied in detail. It is, however, the case that most ordinary differential
equations cannot be solved explicitly in any useful sense.

What other options are there? Many people think (in particular many non-
mathematicians) that there are only two possibilities. The first is to leave rigor-
ous mathematics behind and to go over to heuristic approximation procedures.
It is supposed, for instance, that in a particular application a certain quantity
is small and the original equation is replaced by one in which this quantity is
set to zero. The second method is to discretize the equations and solve the
resulting discrete equations on a computer. In both cases an approximation has
been introduced. From a mathematical point of view one system of equations
has been replaced by a second and it must be established, what the solutions
of the two systems have to do with each other. These methods can often give
good results. What is to emphsized here is that there is also another option.
(Often the best strategy is to combine all three methods.)

What is the third option? It is to prove mathematically rigorous statements
about the qualitative behaviour of solutions. In this context it is often better to
consider the relations between solutions rather than studying each solution on
its own. It is also to consider the problem geometrically. A system of ordinary
differential equations consists of equations of the form

dxi
dt

= fi(t, xj) (1)
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for real-valued functions xi(t), 1 ≤ i ≤ m and real-valued functions fi of m+ 1
variables. Together the fi define a mapping with values in Rm which is denoted
by f . If f does not depend on t then the system is called autonomous. In
this course we will mainly concentrate on the case of autonomous systems since
the point of view of dynamical systems is particularly helpful in that case. If
desired, the non-autonomous case can be reduced to the autonomous one by
considering the extended system

dxi
dt

= f(y, xj),
dy

dt
= 1 (2)

The existence of a solution x(t) of the original system with x(t0) = x0 is equiv-
alent to the existence of a solution (x(t), y(t)) of the extended system with
x(t0) = x0 and y(t0) = t0. From a geometrical standpoint the xi are considered
as the components of a point in Rm and fi are considered as the components
of a vector field. The solutions of the equations are the integral curves of the
vector field. It is then natural in the autonomous case to write the equations
(1) as the vector-valued equation

dx

dt
= f(x) (3)

The function f is defined on an open subset G of Rm. Initial conditions xi(t0) =
ai of the form for a solution xi(t) mean that the solution is at the point with
coordinates ai at the time t0. This way of looking at things is typical for the
point of view of dynamical systems. The mathematical objects are the same.
It is just that we talk and think about them in a different way in order to
try to mobilize another geometric intuition. Here we only consider first order
systems because it is easy to reduce a system of order k to a first order system
by introducing the derivatives up to order k − 1 as new variables.

To be able to work with solutions which are not explicit it is necessary to be
able to fix which solution is being considered. This means that it is necessary
to know how many solutions there are and how they can be parametrized. The
usual way of doing this is the initial value problem and for this reason the next
section treats this subject.

The concept ‘dynamical system’ is often used in a wider sense where more
general types of evolution equations are allowed. These could, for instance,
be partial differential equations or delay equations. Here an analogy is used
between ordinary differential equations and these other equations where the
Eucldean space is replaced by an infinite dimensional function space. There
are importent differences between these classes of equations and this can make
the analogies dangerous. On the hand there are a lot of similarities which can
make these analogies very useful. The following text is restricted to the case of
ordinary differential equations.
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2 The initial value problem

The initial value problem for ordinary differential equations belongs to the sub-
ject matter of basic analysis courses at university. This theme will nevertheless
be treated here in order to recall the methods and to provide a point of depar-
ture for generalizations. The fundamental result on existence and uniqueness
is
Theorem 1 Let f be a continuous function defined on the set

{(t, x) ∈ R× Rm : t0 ≤ t ≤ t0 + a, |x− x0| ≤ b} (4)

with values in Rm which satisfies a Lipschitz condition with respect to x. Let
M be a bound for |f | and α = min{a, b/M}. The the equation dx

dt = f(t, x) has
a unique solution on the interval [t0, t0 + α] with x(t0) = x0.
Proof A sequence of functions will be defined which in the end converges to the
desired solution. Let x0(t) = x0. If a continuous function xn is defined on the
interval [t0, t0 + α] and satisfies |xn(t)− x0| ≤ b let

xn+1(t) = x0 +

∫ t

t0

f(s, xn(s))ds. (5)

These conditions define a sequence {xn} of continuous functions on [t0, t0 + α].
They satisfy the inequalities

|xn+1(t)− x0| ≤
∫ t

t0

|f(s, xn(s))|ds ≤Mα ≤ b. (6)

It can be shown by induction that

|xn+1(t)− xn(t)| ≤ MKn(t− t0)n+1

(n+ 1)!
(7)

for all n, where K is a Lipschitz constant for f . The start of the induction is
clear. For the inductive step we use the fact that for n ≥ 1

|xn+1(t)− xn(t)| ≤
∫ t

t0

|f(s, xn(s))− f(s, xn−1(s)|ds

≤ K
∫ t

t0

|xn(s)− xn−1(s)|ds ≤ MKn(t− t0)n+1

(n+ 1)!
. (8)

It follows that the series x0 +
∑∞
n=0(xn+1(t) − xn(t)) converges uniformly and

we define x(t) to be this sum. It is then possible to pass to the limit n→∞ in
the integral equation with the result that

x(t) = x0 +

∫ t

t0

f(s, x(s))ds. (9)
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Hence x(t) is a solution of the differential equation with the desired initial value.
To show uniqueness let y(t) be any solution of the equation with the given initial
value. Then it can be shown by induction that

|xn(t)− y(t)| ≤ MKn(t− t0)n+1

(n+ 1)!
. (10)

The right hand side of this inequality converges to zero for n→∞ and it follows
that x(t) = y(t).

It has now been shown that the solution is unique on the interval on which
it was constructed in the theorem. In fact the solution of (3) is unique with
a given initial value is unique on any interval where it is defined, provided f
is locally Lipschitz. Consider two solutions x and y on an interval [t0, t1) with
x(t0) = y(t0). Here t1 is allowed to be infinity. Let Sei t∗ be the supremum
of all numbers t with the property that x = y on the interval [t0, t). Because
of local uniqueness t∗ > 0. The solutions x and y are equal on the interval
[t0, t∗) and therefore, by continuity, assuming t∗ <∞, on the interval [t0, t∗]. If
t∗ <∞ we can consider the initial value problem with initial time t∗ and initial
condition x(t∗) = y(t∗). It can be concluded from local uniqueness that x = y
on an interval of the form [t∗, t∗ + α], a contradiciton to the definition of t∗.
Here the case t ≥ t0 was considered but a similar argument holds for t ≤ t0.

Without the assumption of a local Lipschitz condition there is still a local
existence result but this will not be proved here. This is Peano’s theorem (cf.
[4], Abschnitt II.2). Uniqueness no longer holds as can be seen from simple
examples like dx

dt = xα, 0 < α < 1. Even when a local Lipschitz condition
holds the local solution cannot in general be extended to a global solution, as
can be seen in the simple example ẋ = x2. The solution with x(0) = 1 is 1

1−t
and it only exists up to t = 1. Because of uniqueness it is possible to define
the maximal interval of existence of a solution with a given initial value. This
interval can be characterized by a continuation criterion.

Before this statement is proved some metric properties of subsets of Rm
will be discussed. Let A be a closed subset of Rm. For a point x ∈ Rm let
d(x,A) = infy∈A d(x, y). For a fixed subset A the function d(x,A) is continuous,
as will now be proved. Let x1 and x2 be points of Rm and ε > 0. The exists a
point y ∈ A with d(x2, y) ≤ d(x2, A) + ε

2 . It follows from the triangle inequality
that

d(x1, y) ≤ d(x1, x2) + d(x2, A) +
ε

2
≤ d(x2, A) + ε (11)

provided d(x1, x2) ≤ ε
2 . Thus in this case d(x1, A) − d(x2, A) ≤ ε. The same

argument shows that d(x2, A) − d(x1, A) ≤ ε and the continuity of d(x,A) has
been proved. If x /∈ A the inequality d(x,A) > 0 holds. Because otherwise there
would exist a sequence xn ∈ A with d(xn, x) → 0 as n → ∞ and, since A is
closed, this would imply that x ∈ A, a contradiction. If A1 and A2 are subsets
of Rm let d(A1, A2) = infy1∈A1,y2∈A2

d(y1.y2). This expression is symmetric in
its arguments but can also be written in the form d(A1, A2) = infy∈A2

d(y,A1).
Suppose that A is closed, that K is compact and that A∩K = ∅. Then d(K,A)
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is the infimum of a continuous function on the compact set K and must be the
minimum. It follows that d(K,A) > 0.

Consider the equation (3) where the function f is defined on an open subset
G of Rm. Let (t−, t+) be the maximal interval of existence of a solution with
initial condition x(t0) = x0 ∈ G. If t+ is finite then the solution leaves each
compact subset K of G as t → t+. To prove this statement, suppose that it
was false. Then there would exist a sequence {tn} with tn → t+ and x(tn) ∈ K
for all n. Let ε = d(K,Rm \ G). Then ε > 0. Let G1 be the set of all points
satisfying d(x,K) < ε

2 . G1 is an open subset of G and its closure Ḡ1 is compact
and contained in G. The distance between K and the complement of G1 is no
smaller than ε

2 . Hence the closed ball of radius ε
2 about x(tn) is contained in G1

for all n. At the same time f is bounded on G1 by a positive number M ≥ 1. By
the local existence theorem there exists a solution on the interval [tn, tn+ε/2M ]
which has the same initial value as the original solution. It suffices to choose
n large enough that ε/2M > tn − t∗ to obtain a contradiction to the defintion
of t∗. This proof has been carried out for the case of an autonomous system.
A corresponding result holds for a system which is not necessarily autonomous
and the proof is similar.

3 An example: the fundamental system of virus
dynamics

In this course the general theory is accompanied by examples coming from
scientific applications. In this section one such example is introduced. The
dynamical system considered, the fundamental system of virus dynamics, is used
to model the spread of virus infections in the body. The results obtained with
this model have contributed to important adavnces in medicine. The biological
background will now be sketched briefly. More background information can be
found in [8]. The disease AIDS was discovered in the 1980s and after a couple
of years the virus causing the disease, HIV, had been isolated. The original
optimism that it would soon be possible to cure the disease turned out to be
unjustified. After an infection with HIV and a short initial phase with flu-like
symptoms the disease normally causes no symptoms for a long time (about 10
years). Only then does AIDS become manifest. It was believed for a long time
that in this symptom-free period the virus had become dormant for some reason
but in the meantime it has become clear that this idea was false. Around 1995
it was realized that in these ten years a dynamical process takes place suring
which huge numbers of virions are produced. Mathematical models played an
important role in coming to this insight. It was in this context that the modern
combination therapies for AIDS (HAART) were developed. Today the disease
cannot be cured but its dangerous effects can be suppressed for a unlimited time
with suitable drugs.

The model which will now be introduced, although it was used in AIDS
research, has no special relation to HIV and can be used to model many diseases
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which are caused by viruses. There are three variables. The population of cells
which are not infected with the virus is denoted by x, the population of infected
cells by y and the number of virions by v. The equations are

ẋ = λ− dx− βxv, (12)

ẏ = βxv − ay, (13)

v̇ = ky − uv. (14)

Here the dot stands for the derivative with respect to t and the quanities λ, d,
β, k and u are positive constants. Because of their interpretation the quantities
x, y und v should be positive although the system of equations is well-defined
and smooth on the whole of R3. The phenomena which correspond to the
different parameters are the following. New cells are produced by cell devision
(λ), uninfected cells die (d), virions infect cells (β), infected cells die (a), virions
are produced by infected cells (k), virions are eliminated (u). An intervention
of the immune system is not taken into account. In the case of HIV the cells
involved are themselves immune cells (white blood cells) but this fact plays no
role in the model.

To be precise, the quantity vis the number of virions outside the cells. The
model neglects the fact that when a cell is infected the number of virions outside
the cells is reduced by one. For this reason the equation for v̇ should contain an
extra term −βxv. It is argued, however, that this term is small in comparison
to other terms in the same equation, so that it is justified to omit it. From a
mathematical point of view including this effect leads to a new system which we
call the ‘modified fundamental model of virus dynamics’. The additional Term
can be written as −δβxv, where the Parameter δ takes the value zero or one.

The functions on the right hand side of (12)-(14) are evidently locally Lips-
chitz and therefore the theorem on local existence and uniqueness can be applied
to this system. Because of the intepretation of the unknowns initial values are
considered which are positive (i.e. x, y und v are positive) and it is expected
that the solutions stay positive. The proof of this fact is not obvious und will
now be presented.
Lemma 1 Let (x(t), y(t), v(t)) be a solution of the system (12)-(14) on an
interval [t0, t1) with x(t0) = x0, y(t0) = y0 und v(t0) = v0. If x0, y0 and v0 are
positive then x(t), y(t) and v(t) are positive for all t ∈ [t0, t1).
Proof Call the variables xi. If there is an index i and a time t for which xi(t) = 0
let t∗ be the infimum of all such t for any i. Then the restriction of the solution
to the interval [t0, t∗) is positive and xi(t∗) = 0 for a certain value of i. The
equation for xi can be written in the form ẋi = −xif(x) + g(x), where g(x) is
non-negative. As a consequence ẋi ≥ −xif(x) and d

dt (log xi) ≥ −f(x) ≥ −C for
a positive constant C. To show this the fact is used that the solution remains
in a compact set. It follows that xi(t∗) ≥ xi(t0)e−(t∗−t0) > 0, a contradiction.

It will now be shown, with the help of the continuation criterion, that all
solutions of (12)-(14) with postive initial data exist globally in time in the
future. To prove this it is enough to show that all variables a bounded above
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on an arbitrary finite interval [t0, t). Taking the sum of the first two equations
shows that d

dt (x+ y) ≤ λ and hence that x(t) + y(t) ≤ x(t0) + y(t0) + λ(t− t0).
Thus x and y are bounded on any finite interval. The third equation then
shows that v(t) cannot grow faster than linearly and is also bounded on any
finite interval. It is possible to show that

x(t) + y(t) ≤ C1 = max

{
x(t0) + y(t0),

λ

min{a, d}

}
, (15)

v(t) ≤ C2 = max

{
v(t0),

kC1

u

}
. (16)

This means in particular that the solution is globally bounded. These claims
will now be proved. Let us suppose that there exists a time t with x(t) + y(t) =
α > C1. Let t∗ be the infimum of those times where this inequality holds for a
fixed choice of α. Then ẋ(t∗) + ẏ(t∗) ≥ 0. On the other hand the equations (12)
and (13) imply that this quantity is negative, a contradiction. This proves (15).
The inequality (16) can be proved by the same method, using the bound for x+y
already obtained. With the same method it can be shown that the solutions of
the modified system with (δ = 1) are bounded and that the unknowns satisfy
the same bounds as in the case δ = 0. If the initial data satisfy the inequalities
x0 + y0 ≤ λ

min{a,d} and v0 ≤ kλ
umin{a,d} then the whole solution must satisfy this

inequality. This means that we have identified an invariant subset.

4 Dependence on initial data and parameters

We consider a solution x(t) = φ(t0, t, x0) of the equation ẋ = f(t, x) with initial
condition x(t0) = x0. The mapping φ is called the flow of the dynamical system.
This solution is defined on a maximal interval of existence (t−, t+), where t−
and t+ may depend on t0 and x0. In this section we consider the question of
the continuity and differentiability of the function φ. In other words we are
concerned with the question whether the solution of the initial value problem
depends continuously or smoothly on initial data. We also consider the more
general case of an equation ẋ = f(t, x, z), where the coordinates of the point
z ∈ Rk are considered as parameters.

Questions of dependence on initial data and parameters can often be related
to each other by means of transformations of variables. Consider first the initial
value problem without parameters. By introducing t̃ = t− t0 and x̃ = x−x0 we
get the new problem dx̃

dt = f(t̃ + t0, x̃ + x0) with x(0) = 0. Here t0 and x0 are
treated as parameters and the initial condition is fixed. Conversely the problem
with parameters can be replaced by the problem

ẋ = f(t, x, z), ż = 0; x(t0) = x0, z(t0) = z (17)

without parameters in the equations. For this reason statements about problems
containing parameters can often be reduced to statements without parameters.
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Theorem 2 Let f be a continuous function on the set

{(t, x, z) ∈ R× Rm × Rk : t0 ≤ t ≤ t0 + a, |x− x0| ≤ b, |z − z0| ≤ b′} (18)

with values in Rm which satisfies a Lipschitz condition with respect to x. Let M
be a bound for |f | and α = min{a, b/M}. Then the equation (3) has a unique
solution φ(t0, t, x0, z) on the interval [t0, t0 + α] with φ(t0, t0, x0, z)) = x0. The
mapping φ is continuous.
Proof The existence is already known. The new claim is the continuous de-
pendence of the mapping φ on t0, x0 and z. As has already been explained it
suffices to prove the case with t0 = 0 und x0 = 0. The proof is very similar to
that in the case without parameters. We define a sequence on the product of
the interval [0, α] with the ball of radius b′ about z0 by x0(t, z) = 0 and

xn+1(t, z) =

∫ t

0

f(s, xn(s), z)ds. (19)

The functions xn are continuous. They satisfy the same estimates as in the
case without parameters and the sequence converges uniformly to the desired
solution. This function is a uniform limit of continuous functions and therefore
continuous.

If we want to consider the corresponding global problem we just need to pay
attention to the dependence of the maximal interval of existence on x0 and z. It
can happen that t− = −∞ or t+ = +∞. For this reason it is convenient when
describing these quantities to use the extended real numbers R̄ = R∪{−∞,∞}.
The union of the maximal intervals of existence for different values of t0, x0

and z is an open set. It follows in particular that the upper endpoint of the
maximal interval of existence, considered as a function with values in R̄, is a
lower semicontinuous function of x0 und z. We recall the definition.
Definition A function F with values in R̄ on a topological space X is called
lower semicontinuous if the condition F (x1) > a for a point x1 ∈ X and a
constant a implies that there exists a neighbourhood U of x1 with the property
that F (x) ≥ a for all x ∈ U . A function F is called upper semicontinuous if −F
is lower semicontinuous.

The lower endpoint of the maximal interval of existence is upper semicontinuous.
Intuitively this means that when initial conditions and parameters are varied the
time of existence cannot suddenly shrink. The time of existence can, however,
suddenly grow (t+ need not be upper semicontinuous.) An example is ẋ =
x2 − zx3 with x(0) = 1. For z = 0 we have t+ = 1 but for z > 0 we have
t+ = ∞. In this case ẋ > 0 when x = 0. Thus a solution which is initially
positive cannot become negative. On the other hand ẋ < 0 when x > z so
that the solution is bounded from above. It follows that global existence in the
future holds for z > 0 as a consequence of the continuation criterion.

We have now proved continuous dependence for continuous parameters z.
Corresponding results hold for discrete parameters, with a very similar proof.
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Let fn(t, x) be a sequence of continuous functions which are defined for t0 ≤
t ≤ t0 + a und |x − x0| ≤ b and satisfy a Lipschitz condition with respect to
x, the Lipschitz constant K being independent of n, which converges uniformly
to f(t, x). The function f is continuous and satisfies a Lipschitz condition with
respect to x with the same Lipschitz constant K. Let Z be the subset of R
which consists of the points 0 and 1

n for natural numbers n. Z is compact. We

denote a point of Z by z. Let f̃(t, x, 0) = f(t, x) and f̃(t, x, 1/n) = fn(t, x).
This defines a function f̃(t, x, z) on [t0, t0 +a]×B̄b(x0)×Z. It is continuous and
satisfies a Lipschitz condition with respect to x with constant K. We consider
an iteration as in the proof of Theorem 2.

x̃l+1(t, z) =

∫ t

0

f̃(s, x̃l(s), z)ds. (20)

We obtain a sequence x̃l(t, z) on [t0, t0 + a]×Z which converges uniformly to a
continuous limit x̃(t, z). Since its domain of definition is compact the function
x̃ is uniformly continuous. If we define xn(t) = x̃(t, 1/n) and x(t) = x̃(t, 0) then
these functions satisfy the equations ẋn = fn(t, x) and ẋ = f(t, x) with xn(t0) =
x(t0) = x0. xn converges uniformly to x because of the uniform continuity of x̃.
This result implies a corresponding one for sequences of initial data by means
of a suitable transformation of variables. Let xn(t) be the solutions of ẋ = f(x)
with x(t0) = x0,n and x0,n → x0 for n → ∞. Then xn(t) converges to the
solution of ẋ = f(x) with x(t0) = x0.

With the statements about continuous dependence we can introduce some
general concepts which are useful for the study of the global properties of solu-
tions of a dynamical system. Consider a dynamical system which is defined on a
subset G of Rm and a solution x(t) of this system which is defined on the interval
[t0,∞). If there is a sequence {tn} in [t0,∞) with tn →∞ and x(tn)→ y ∈ Rm
für n → ∞, then y is called an ω limit point of the solution x. The set of all
ω limit points of the solution x is called the ω limit set of x. If a solution x(t)
is defined on the interval (−∞, t0] and there is a sequence {tn} with tn → −∞
and x(tn)→ y ∈ Rm then y is called an α limit point of the solution x. The set
of all α limit points of the solution x is called the α limit set of x. For every
statement about ω limit points there is a corresponding statement about α limit
points. To obtain this it suffices to consider the solution x̃(t) = x(−t). For this
reason we will only prove statements about ω limit points and leave it to the
reader to derive the corresponding statements for α limit points.

The ω limit set is closed. Let {yn} be a sequence of ω limit points of a
solution x which converges to y ∈ Rm. Then there are sequences {tn,k} with
tn,k → ∞ for k → ∞ and x(tn,k) → yn. When ε > 0 there exists an N with
the property |yn − y| < ε

2 for all n ≥ N . In addition there exists k(n) ≥ n
with the property that |x(tn,k(n)) − yn| < ε

2 . Hence |x(tn,k(n)) − y| < ε for all
n ≥ N and tn,k(n) → ∞ for n → ∞. It follows that y belongs to the ω limit
set of x and that this set is closed. If the solution is bounded then the ω limit
set is compact. For when x is bounded its ω limit set is also bounded. Since
it is closed it is compact. If the solution x is bounded then the ω limit set is
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non-empty and connected. Let {tn} be an arbitrary sequence in [t0,∞) with
tn → ∞ for n → ∞. Because this sequence is bounded it has a convergent
subsequence which converges to some y ∈ Rm. The point y is in the ω limit
set of x and hence this set is non-empty. A toplogical space is called connected
if the conditions X = U ∪ V and U ∩ V = ∅ for open subsets U and V of X
imply that either U or V is empty. Let X be the ω limit set of x and suppose
that U and V are subsets with the properties just assumed. We suppose that
neither of them is empty and obtain a contradiction. Let y1 ∈ U and y2 ∈ V .
There exist t2n with |x(t2n) − y1| < 1

n and t2n+1 with |x(t2n) − y2| < 1
n and

t2n ≤ t2n+1 ≤ t2n+2 for all n. For n large enough t2n ∈ U and t2n+1 ∈ V . Let
t′n ≤ t2n+1 be the first time after t2n for which x(t′n) is not in U . A time of
this kind exists. x(t′n) cannot lie in V because if it did x(t) would lie in V for
all t in an open neighbourhood of t′n. In this way we obtain a sequence t′n with
the property that x(t′n) is in the complement of U ∪ V . This sequence has a
subsequence which converges to some y ∈ Rm. The point y is an ω limit point
of x and is in X, a contradiction.

If a dynamical system is defined on G a set A is called a forward-invariant
subset if x(t0) ∈ A implies that x(t) ∈ A for all t ≥ t0. If x0 ∈ G the forward
integral curve through x0 is the image of a solution on [t0, t+) with x(t0) = x0.
A subset A is forward-invariant exactly when the forward integral curve through
any point of A is contained in A. Often the word ‘forwards’ is left out of these
names, when it is implied by the context. If x is a solution and the ω limit set
of x is contained in G then this ω limit set is invariant. To prove this statement
let y0 be a point in the ω limit set of a solution x. Let {tn} be a sequence with
x(tn) → y. Let x̃(t) = x(t − tn). Then x̃n(0) converges to y0. Let y be the
solution with y(0) = y0. By the continuous dependence of solutions on initial
data it follows that x̃n(t) converges to y(t). Since x(t + tn) = x̃n(t) it can be
concluded that y(t) is in the ω limit set of x for all t for which this quantity is
defined.

Next it will be shown that solutions also depend diffentiably on initial data
and parameters.
Theorem 3 Suppose that the function f of Theorem 2 is continuously differen-
tiable. Then the mapping φ(t0, t, x0, z) is also continuously differentiable. The
derivatives satisfy the linear differential equations

d

dt

(
∂xi
∂x0,j

)
=
∂fi
∂xk

∂xk
∂x0,j

, (21)

d

dt

(
∂xi
∂zj

)
=
∂fi
∂xk

∂xk
∂zj

+
∂fi
∂zj

. (22)

with initial conditions δij and 0, respectively. In addition

∂xi
∂t0

= − ∂xi
∂x0,j

fj . (23)

To prove this theorem we use the following strategy. Suppose for a moment
that the differentiability holds and that derivatives with respect to time com-
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mute with those with respect to the initial data and parameters. Then using the
chain rule we can derive equations satisfied by the derivatives. We call these the
variational equations. The solutions of the variational equations can be used
to prove differentiability. We say that the equations are first differentiated for-
mally. The results are then used to show that differentiation is really allowed.
The last formula in the Theorem can be derived from the identity

φ(t0, t, φ(t, t0, x0, z), z) = x0 (24)

by differentiating it formally with respect to t0. In proving the theorem we
use the following form of the mean value theorem. A subset G of Rm is called
convex if x ∈ G, y ∈ G and 0 ≤ s ≤ 1 imply that sx+ (1− s)y ∈ G.
Lemma 2 Let f be a continuous function on (a, b)×G with G a convex subset
of Rm which has continuous partial derivatives with respect to the components
of the second argument. Then there exist continuous functions fk(t, x1, x2) on
(a, b)×G×G with the properties that

fk(t, x, x) =
∂f(t, x)

∂xk
(25)

und
f(t, x2)− f(t, x1) = fk(t, x1, x2)(x2,k − x1,k). (26)

The functions fk can be defined by the following formula

fk(t, x1, x2) =

∫ 1

0

∂f(t, sx2 + (1− s)x1)

∂xk
ds. (27)

Proof Let F (s) = f(t, sx2 + (1 − s)x1) für 0 ≤ s ≤ 1. Since G is convex the
function F is well-defined. Is satisfies

dF

ds
=

∂f

∂xk
(t, sx2 + (1− s)x1)(x2,k − x1,k). (28)

If fk is defined as in the statement of the lemma then F (1) − F (0) is equal
to the right hand side of (26). Since F (1) = f(t, x2) and F (0) = f(t, x1) this
completes the proof.
Proof of Theorem 3 The derivatives with respect to x0 are considered first.
For this purpose we can eliminate the parameter dependence by a change of
variables. In this case we have a solution φ(t0, t, x0) which is given by Theorem
1. The statement is a completely local one and so we only need to prove it
for a smal neighbourhood of a point. Let h be a real number and ek the kth
coordinate basis vector in Rm. Let xh(t) = φ(t0, t, x0 + hek). It follows from
Theorem 1 that xh converges uniformly to x0 for h→ 0. We have

d

dt
[xh(t)− x0(t)] = f(t, xh(t))− f(t, x0(t)). (29)

The lemma gives

d

dt
[xh(t)− x0(t)] = fk(t, x0(t), xh(t))(xh,k(t)− x0,k(t)). (30)
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Let yh = h−1[xh(t) − x0(t)] for h 6= 0. The existence of the derivative is
equivalent to the existence of the limit of yh as h → 0. The initial condition
implies that xh(t0) = x0 + hek and yh(t0) = ek. The function yh satisfies the
equation

ẏh = fk(t, x0(t), xh(t))yh,k. (31)

The quantity fk(t, x0(t), xh(t)) converges to ∂f
∂yk

(t, x0(t)) for h → 0. We have
a family of equations for the functions yh which depends continuously on the
parameter h. These equations have solutions with yh(t0) = ek which depend
continuously on h, even for h = 0. The limit exists and is a solution of the equa-
tion (21). The partial derivative is the solution of an equation which depends
continuously on parameters and is therefore itself continuous.

Consider now the derivative with respect to t0. This time let

yh(t) =
φ(t0 + h, t, x0)− φ(t0, t, x0)

h
, h 6= 0. (32)

We use the identity

φ(t0 + h, t, x0) = φ(t0, t, φ(t0 + h, t0, x0)), (33)

It follows that

hyh(t) = φ(t0, t, φ(t0 + h, t0, x0))− φ(t0, t, x0). (34)

Für h→ 0 we have φ(t0 + h, t0, x0)→ x0 and the lemma gives

hyh(t) =

[
∂x

∂x0,k
+ o(1)

]
(φk(t0 + h, t0, x0)− x0,k). (35)

By using the relation φ(t0 + h, t0 + h, x0) = x0 and the mean value theorem we
get

φk(t0 + h, t0, x0)− x0,k = −∂φk
∂t

(t0 + θh, t0 + h, y0) (36)

for some θ in (0, 1). The time derivative can be replaced using the differential
equation. It follows that

yh(t) = −
[
∂x

∂x0,k
+ o(1)

]
[fk(t0, x0) + o(1)]. (37)

We see that ∂φ
∂t0

exists and satisfies the relation given in the theorem.
By using the results about the existence and continuity of the derivatives

with respect to the initial data and the transformation which replaces param-
eters by initial data it is possible to get the statement about the differentiable
dependence of the solutions on parameters. This also gives the evolution equa-
tion for the derivatives with respect to the variables zi.

Consider now an equations of the form ẋ = f(t, x, z, z∗) where the partial
derivatives of first order with respect to x und z of the continuous function f ex-
ist and are continuous. This equation has a unique solution x = φ(t0, t, x0, z, z

∗)
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with x(t0) = x0. This solution has first order partial derivatives with respect to
t, t0, x0 and z and these derivatives are continuous as functions of (t0, t, x0, z, z

∗).
These statements can be proved just as in the proof of Theorem 3 since the vari-
ables z∗ play no essential role.

With these results it is easy to prove the existence and continuity of higher
derivatives of x when the existence and continuity of the corresponding deriva-
tives of f is known. This can be proved by induction. To be concrete, consider
a partial derivative of φ(t0, t, x0, z, z

∗) with respect to the variables x0 and z of
order n. The derivative of φ with respect to x0 satisfies the equation (21) and
the coefficients of this equation have continuous derivatives with respect to x0

and z of order up to n− 1. Thus the solution also has derivatives of this kind.
We can proceed similarly with the derivative of φ with respect to z. It can be
concluded that that all derivatives of φ with respect to x and z up to order n
exist and are continuous. Statements about derivatives with respect to t0 can
be obtained by using the results already obtained in the equation (23).

The statements about continuity and differentiability which have been proved
can be used to prove something about the qualitative behaviour of solutions in
the easiest case. This concerns the nature of a flow near a point where the
vector field which generates it does not vanish.
Theorem 4 (Flow-box theorem) Let ẋ = f(x) be an autonomous dynamical
system where f is a continuously differentiable function on a subset G of Rm.
Let x0 ∈ G be a point with f(x0) 6= 0. Then there exists an open neighbourhood
of V of 0 in Rm−1, a positive number ε and a diffeomorphism F from [−ε, ε]×V
onto an open neighbourhood U of x0 with F (0) = x0 with the property that
the flow φ of the system satisfies the relation

φ(t, F (y))) = F (Tt(y)). (38)

Here Tt is the translation by t in the direction of x1, i.e. (x1, x2, . . . , xm) 7→
(x1 + t, x2, . . . , xm).
Proof It can be assumed w.l.o.g. that x0 = 0 and f(x0) = e1. We introduce
x̄ as an abbreviation for (x2, . . . , xn). Let V be an open neighbourhood of 0
in Rm−1 with the property that (0, ȳ) ∈ G for all ȳ ∈ V . Let ε be so small
that φ(t, (0, x̄)) ∈ G for all x̄ ∈ V and |t| ≤ ε. Let F (y) = φ(y1, (0, ȳ)). The
derivative of F at the origin is the identity. It follows from the inverse function
theorem that there exists a neighbourhood W of the origin with the property
that the restriction of F to W is a diffeomorphism onto its image. The size of
V and ε can be reduced if necessary so that [−ε, ε] × V ⊂ W . Die mapping F
satisfies (38) because both sides of this equation are equal to φ(t+ y1, (0, ȳ)).

This result says that an arbitrary vector field can be transformed by a diffeo-
morphism near any point where it does not vanish to the simple vector field with
components (1, 0, . . . , 0). Intuitivrly, near any point where it does not vanish a
vector field has no structure. If two vector fields with flows φ und ψ satisfy a
relation of the form F (φ(t, x) = ψ(t, F (x)) for a C1 diffeomorphism F then they
are called C1 conjugate. It follows from the Flow-box Theorem that when f(x0)
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and g(y0) are non-vanishing the restrictions of f and g to appropriate neigh-
bourhoods of x0 and y0 are C1 conjugate. If the mapping F is only continuous
f and g are called topologically conjugate. In this case the integral curves of
f are mapped onto those of g and the direction of time is preserved. If these
conditions are satisfied but the time coordinates on the integral curves which
are related by F are not necessarily equal then f and g are called topologically
equivalent.

5 Stationary solutions and their stability

We have seen that near points where a vector field does not vanish its flow has
a very simple qualitative behaviour. Where the vector field has a zero things
can become much more complicated. If f(x0) = 0 then x(t) = x0 is a time-
independent solution, a stationary solution. The equation f(x) = 0 is difficult
to solve in general. It is already difficult to say how many solutions it has. Next
a result will be presented which guarantees the existence of a stationary solution
under weak hypotheses. First we need a result from topology.
Theorem (Brouwer fixed point theorem) Let A be a topological space which
is homeomorphic to a closed ball in Rm and let ψ : A → A be a continuous
mapping. Then there exists a point x ∈ A with ψ(x) = x.

In the next proof periodic solutions play a role. A solution x(t) is called
periodic if there is a number T > 0 with x(T ) = x(0). It then follows by
uniqueness that x(t+ T ) = x(t) for all t. The number T is called the period.

Theorem 5 Let a dynamical system be given on an open subset of Rm and let
A be an invariant subset which is homeomorphic to a closed ball in Rm. Then
there is at least one stationary solution in A.

Proof Suppose that there were no stationary solutions in A. For a positiv
number T and x ∈ A let ψT (x) = φ(T, x). Since A is compact, ψT is well
defined. This mapping is continuous and maps A into itself. As a consequence of
the Brouwer fixed point theorem there exists a point zT with ψT (zT ) = zT . The
solution with initial value zT is periodic with period T . By choosing different
values of T we can get periodic solutions with periods 1/n passing through
points z1/n for all natural numbers n. Because A is compact this sequence has
a convergent subsequence. Call it yn and its limit y. Thus there are periodic
solutions which start arbitrarily close to y and take an arbitrarily short time
to return to their starting points. By assumption they are not stationary. Let
K be a flow box for y. The function f is bounded on A by a constant M . A
periodic solution with period T can never reach a point further from its starting
point than MT . For ε small enough the open ball of radius 2ε about y lies in
K. If a solution starts in the open ball of radius ε about y and its peiod is not
greater than ε/M then it can never leave the flow box. But there are no periodic
solutions in the flow box, a contradiction.
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It is possible to apply this theorem to the fundamental system of virus dy-
namics with A being the invariant region which gor this system which we already
found. It follows that the system has at least one non-negative stationary solu-
tion for any choice of the parameters. For this system it is the positive solutions
which are most interesting. Other non-negative solutions are nevertheless of
some interest. They can be used in some cases to get some information about
the asymptotic behaviour of positive solutions. They can also be interesting
limiting cases of the original system. For instance, a solution of the fundamen-
tal system of virus dynamics with y = 0 and v = 0 corresponds to the state of
a healthy person (no free virus particles, no infected cells).

The fundamental system of virus dynamics is simple enough that it is pos-
sible to compute the stationary solutions explicitly. The third equation gives
y = u

k v. When we substitute this relation into the second equation both sides
contain a factor v. For a positive solution we can cancel this factor with
the result that x = au

βk . Putting this relation into the first equation gives

v = d
β

(
βkλ
adu − 1

)
. Let R0 = βkλ

adu . This object is known to the biologists as

the fundamental reproductive ratio. We see that a positive stationary solution
can only exist when R0 > 1. Substituting the equation for x into the second
equation for stationary solutions gives y = u

k v and y = du
βk (R0 − 1). Now two

things have been proved. If R0 > 1 there is exactly one positive solution which
we have calculated explicitly. When R0 ≤ 1 no positive stationary solution ex-
ists. If solutions are allowed which are merely non-negative then v = 0 is also
a possibility. Then y = 0 also holds. In the case the remaining equation says
that x = λ

d .
The significance of stationary solutions depends on their stability. A sta-

tionary solution x∗ is called stable if for any open neighbourhood U of x∗ there
exists a neighbourhood V of x∗ such that any solution satisfying x(t0) ∈ V the
condition x(t) ∈ U for all t ≥ t0 follows. In words, each solution which starts
in V stays in U as long as it exists. The stationary solution x∗ is called asymp-
totically stable if it is stable and there exists a neighbourhood U of x∗ with
the property that x(t0) ∈ U implies x(t) → x∗ for t → ∞. The first condition
in this definition does not follow from the second as is shown by the following
example.

ẋ = x− rx− ry + xy, (39)

ẏ = y − ry + rx− x2. (40)

This system is C1. The qualitative behaviour is easier to see in polar coordinates
where the system takes the form

ṙ = r(1− r), (41)

θ̇ = r(1− cos θ). (42)

There are stationary points at (0, 0) and (1, 0). All solutions except the sta-
tionary solution at the origin converge to (0, 1) for t→∞ but this point is not
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stable. These claims are not proved here since the techniques which would be
needed to do so have not yet been introduced.

One way of investigating the stability of a stationary solution x∗ is to lin-
earize the system about x∗. Consider the Taylor expansion of f about x∗,
fi(x) = ∂fi

∂xj
(x∗)(xj − x∗j ) + o(|x − x∗|). The matrix ∂fi

∂xj
(x∗) will be denoted

by A. The linearized equation about x∗ is obtained by omitting the remainder
term in the Taylor expansion which is supposed to be small. This leads to the
equation dx̂

dt = Ax̂. The hope is that under suitable conditions the solutions
of the linearized equation approximate solutions of the original equation near
x∗. When we consider the qualitative behaviour of solutions close to some point
x∗ we do not distinguish between systems which are topologically conjugate
by a mapping which leaves x∗ fixed. For this reason we are only interested in
properties of A which are invariant under similarity transformations. Since any
matrix is similar to its Jordan normal form these can only be properties of the
normal form. For a detailed discussion of linear differential equations the reader
is referred to the first chapter of the book of Perko [9]. The reduction to normal
form is in general only possible with the help of complex numbers, because the
eigenvalues can be complex. For this reason we are sometimes forced here to
consider complex linear ordinary differential equations although in the end we
are only interested in real solutions of equations with real coefficients.

For a complex matrix A with an eigenvalue λ the vectors which satisfy
(A−λI)kx = 0 for a natural number k are called the corresponding generalized
eigenvectors. They form a vector space Vλ. When a matrix is in canonical form
the non-vanishing elements belong to a sequence of blocks along the diagonal,
the Jordan blocks. The diagonal elements in each block are equal to a number
λ which is an eigenvalue of the matrix. The elements immediately above the
diagonal are equal to one and all remaining elements are zero. Suppose that
the sizes of the blocks are ni. The vectors where only the first n1 components
are different from zero are generalized eigenvectors which belong to the first
eigenvalue λ1. The vectors where only the components from n1 + 1 to n1 + n2

are different from zero belong to the second eigenvalue λ2 and so on. If A is a
general real matrix and λ is a real eigenvalue then the space Vλ is defined just
as in the complex case. When λ is a complex eigenvalue then the definition is a
little more complicated. In that case Vλ is the set of real parts of the complex
solutions of (A − λI)kx = 0. Because A is real λ̄ is also an eigenvalue and
Vλ̄ = Vλ. The whole space is a direct sum of generalized eigenvectors.

When we want to solve the equation ẋ = Ax we can put A into Jordan
form, solve the equation and transform the solution back. The subspaces of
generalized eigenvectors which belong to the eigevectors are invariant under the
flow of the linearized system. Thus it is enough to consider the case where there
is only one Jordan block. If this block is of size one, with eigenvalue λ, then
the solution is of the form ceλt for a constant c. In general the solution is the
product of the function eλt with a Matrix whose elements are each a constant
times a power of t. In general these are complex exponential functions. Taking
real and imaginary parts in order to get solutions of the real equation then
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each element is a linear combination of expressions of the form tk, tkeat cos bt
or tkeat sin bt where λ = a+ bi. When λ is real and positive then the solution, if
it not identically zero, grows at least as fast as eλt when t increases. When λ is
compolex and a > 0 then the solution grows at least as fast as eat along suitable
sequences which tend to +∞. When λ is real and negative then the solution
decays at least as fast as e(λ+ε)t when t increases where ε > 0 is arbitrary.
When λ is complex and a < 0 then it decays at least as fast as e(a+ε)t. Of
course similar statements can be made for the other time direction.

For the study of the properties of linear ordinary differential equations the
concept of the exponential of a matrix is very useful. It is defined by

eA =

∞∑
n=0

An

n!
. (43)

For an arbitrary complex matrix A this series converges uniformly on each
compact subset in the sense that all the entries of the corresponding matrix
do so. The relevance of this definition to ordinary differential equations is that
etAx0 solves the equation ẋ = Ax with x(0) = x0. When the matrix A is in
Jordan form the matrix etA is the direct sum of expressions for the individual
Jordan blocks. In this way it is possible to obtain estimates for etA which
correspond to the estimates for linear equations which were discussed above.

We see that for linear systems eigenvalues with positive real parts have to
do with instability and eigenvalues with negative real parts have to do with
stability. This observation motivates the following definitions. The space V+

which is spanned by all generalized eigenvectors which belong to eigenvalues
with positive real part is called the unstable subspace. The space V− which
is spanned by all generalized eigenvectors which belong to eigenvalues with
negative real part is called the stable subspace. The space which is spanned by
all generalized eigenvectors which belong to eigenvalues zero positive real part
is called the centre subspace. The whole space is the direct sum V− ⊕ Vc ⊕ V+.
These spaces are invariant under the flow. For a linear system the following
statements hold. If all eigenvalues have negative real part then the origin is
asymptotically stable. If at least one eigenvalue has positive real part then the
origin is unstable. In what follows we will prove analogou statements for a
stationary solution of a general nonlinear system. For that we need introduce
some more ideas.

Before doing that we look at the linearization of the fundamental model of
virus dynamics about the two stationary solutions. The linearization about an
arbitrary point is

dx̂

dt
= (−d− βv)x̂− βxv̂, (44)

dŷ

dt
= βvx̂− aŷ + βxv̂, (45)

dv̂

dt
= kŷ − uv̂. (46)
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In the case of the stationary point with v = 0 this expression simplifies consid-
erably and it can be seen immediatey that −d is an eigenvalue. The other two
can then be determined by solving a quadratic equation. The result is

µ =
1

2
[−(a+ u)±

√
(a+ u)2 − 4au(1−R0)]. (47)

We see that there are always at least two negative eigenvalues and that the third
is positive, zero or negative according to whether R0 > 1, R0 = 1 or R0 < 1.
According to the stability criteria which we have not yet proved this point is
asymptotically stable for R0 < 1 and unstable for R0 > 1. Intuitively these
statements have the following meaning. This solution represents the state of a
healthy person. When an infection takes place this state is disturbed a little.
For R0 < 1 the infection is automatically eliminated. For R0 > 1 the virus is
able to establish itself in the body. The linearization about the other stationary
point is

dx̂

dt
= −dR0x̂−

au

k
v̂, (48)

dŷ

dt
= d(R0 − 1)x̂− aŷ +

au

k
v̂, (49)

dv̂

dt
= kŷ − uv̂. (50)

This leads to the eigenvalue equation

µ3 + (a+ u+ dR0)µ2 + dR0(a+ u)µ+ adu(R0 − 1) = 0. (51)

Only the case R0 > 1 is of interest since only then is the stationary solution
positive. In that case all coefficients in the polynomial are positive. To get
information about the eigenvalues we use the Routh-Hurwitz criterion. For a
third degree equation of the form

µ3 + a1µ
2 + a2µ+ a3 = 0. (52)

this criterion says that all eigenvalues have negative real part precisely when
a1 > 0, a3 > 0 and a1a2 − a3 > 0. Thus in our case all eigenvalues have
negative real parts if

(a+ u+ dR0)dR0(a+ u) > adu(R0 − 1). (53)

If we multiply out this equation and sort the terms according to powers of t
then we get

d2(a+ u)R2
0 +R0[d(a2 + ad+ u2)] + adu > 0, (54)

a condition which obviously holds. When R0 = 1 the eigenvalues are 0,−(a+u)
and −d.

To prove statements about stability we use ideas which go back to Lyapunov.
Let ẋ = f(x) be an autonomic dynamical system. Let V be a continuously
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differentiable function let V̇ = ∂V
∂xi

fi(x). By the chain rule V̇ = d
dt (V (x(t)). A

function which satisfies V̇ ≤ 0 is called a Lyapunov function.

Theorem 6 LetG be an open neighbourhood of a point x0. Let f be a C1 vector
field with f(x0) = 0. Let V be a C1 function with V (x0) = 0 and V (x) > 0
for x 6= x0. If V̇ (x) ≤ 0 for all x ∈ G then x0 is stable. When V̇ (x) < 0 for all
x ∈ G except x0 then x0 is asymptotically stable. When V̇ (x) > 0 for all x ∈ G
except x0 then x0 is unstable.

Beweis We can assume w.l.o.g. that x0 = 0. Let ε > 0 be small enough that
B̄ε(0) ⊂ G and let mε be the minimum of the continuous function V on the
sphere Sε of radius ε about the origin. Then mε > 0. Since V is continuous
and V (0) = 0 there exists δ > 0 with the property that V (x) < mε for |x| < δ.
Because V̇ ≤ 0 the function V cannot increase along the integral curves of the
vector field. Hence the flow φ of f satisfies the condition

V (φ(t, x0)) ≤ V (x0) < mε (55)

for all x0 ∈ Bδ(0). Suppose that for |x0| < δ there exists t1 with φ(t1, x0) ∈ Sε.
In this case we would have V (φ(t1, x0)) ≥ mε, a contradiction. For this reason
|x0| < δ implies that |φ(t, x0)| < ε for t ≥ 0.

We next consider the case that V̇ (x) < 0 for all x ∈ G except x0. Then
V is strictly decreasing along the integral curves of f . Let x0 ∈ Bδ(0) where
δ is as before. Then φ(t, x0) ∈ Bε(0) for all t ≥ 0. Let {tk} be a sequence
with tk → ∞. Since B̄ε(0) is compact there exists a subsequence with the
property that φ(tk, x0) converges to a point y0 of B̄ε(0). We will show that
for each sequence of this type the limit must be zero. It then follows that
φ(tk, x0) converges to the origin along each subsequence. It follows that φ(t, x)
converges to the origin. It remains to show that when φ(t, x0)→ y0 it must be
the case that y0 = 0. V decreases strictly along an integral curve and satisfies
V (φ(t, x0) → V (y0). Hence V (φ(t, x0) > V (y0) for all t > 0. If y0 6= 0 then
V (φ(s, y0)) < V (y0) for s > 0. It can then be conluded by continuity that
V (φ(s, y)) < V (y0) for y near enough to y0. But then V (φ(s+ tn, x0)) < V (y0)
for n large enough, a contradiction.

Consider finally the case that V̇ (x) > 0 for all x ∈ G except x0. Let M
be the maximum of V on the set B̄ε(0). In this case V is strictly increasing
along the integral curves. For abitrary δ > 0 and x0 6= 0 in Bδ(0) the inequality
V (φ(t, x0)) > V (x0) > 0 holds for all t > 0. The set where V (x) ≥ V (x0) is
open and the subset of B̄ε(0) on which V (x) ≥ V (x0) is compact. There V̇ is
positive and it has a positive minimum m. We have inft≥0 V̇ (φ(t, x0)) ≥ m > 0.
Hence V (φ(t, x0) ≥ V (x0)+mt > M for t sufficiently large. Thus the instability
has been proved.

The statements about stability or instability of stationary solutions will be
proved with the help of Lyapunov functions which are constructed for this pur-
pose. Here we follow the treatment of this subject in [3].
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Lemma 3 Let A be a real n×n matrix. The matrix equation ATB+BA = −C
has a solution for each positive definite matrix C if and only if all eigenvalues
of A have negaeive real part.
Proof Consider the linear equation ẋ = Ax and the real-valued function V (x) =
xTBx where B is a symmetric matrix. Then

V̇ (x) = xT (ATB +BA)x. (56)

If the equation considered in this lemma holds then V̇ (x) < 0 for x 6= 0 and
the solution of the differential equation converges to the origin for t → ∞. It
follows that the eigenvalues of A have negative real parts. If conversely these
eigenvalues have negative real parts and C is a positive definite matrix then let

B =

∫ ∞
0

eA
T tCeAtdt. (57)

This integral is well-defined since there exist positive constants K and α with
‖eAt‖ ≤ Ke−αt for t ≥ 0. In addition B is positive definite and

ATB +BA =

∫ ∞
0

d

dt
(eA

T tCeAt)dt = −C. (58)

It follows that when the solution is asymptotically stable for the linear system
there exists a quadratic form which is strictly decreasing along the solutions of
this equation. Next we consider the ninlinear equation ẋ = Ax+g(x) where g is
continuously differentiable and satisfies the conditions g(0) = 0 and ∂gi

∂xj
(0) = 0.

If the real parts of the eigenvalues of A are negative we can consider the matrix
B of the Lemma in the case C = I. Then

V̇ = −|x|2 + gTBx+ xTBg = −|x|2(1 + o(1)). (59)

It follows that the origin is asymptotically stable. Now a theorem about the
instability for the nonlinear system will be proved. For this it is useful to
remark that the third part of Theorem 6 can be generalized. It is assumed that
the stationary point which is to be examined is the origin. We introduce an
open subset U with the property that the origin is in the closure of U . Let
H = U ∩Bε(0). We suppose that the continuously differentiable function V has
the following properties. V (x) = 0 on the part of the boundary of H which lies
in Bε(0) and V (x) > 0 at all other points of H. V̇ (x) > 0 on H except at the
origin. The claim is now that under these circumstances the origin is unstable.
As in the proof of Theorem 6 let δ > 0 be arbitrary. Let x0 6= 0 be an arbitrary
point of Bδ(0) ∩ H. Then V (φ(t, x0)) > V (x0) > 0 for all t > 0. Hence the
solution can only leave the set H through the boundary of Bδ(0). The subset
of H̄ where V (x) ≥ V (x0) is compact and V̇ has a minimum there. Thus it
is possible to argue as in the proof of Theorem 6 that the solution reaches the
boundary of Bδ(0) after a finite time and the instability is proved.

How this result will be applied to the case where a stationary solution has
an eigenvalue with positive real part. We assume that the stationary solution is
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at the origin and that the subspaces V+, Vc and V− are coordinate subspaces.
A general point can be represented as (x, y, z) where x, y and z belong to the
subspaces V+, Vc and V−, respectively. In the given situation the dimension of
V+ is positive. The equations are

dx

dt
= A+x+ f(x, y, z), (60)

dy

dt
= Acy + g(x, y, z), (61)

dz

dt
= A−z + h(x, y, z) (62)

where the eigenvalues of A+ and −A− have positive real part and the functions
f , g and h are all o(

√
|x|2 + |y|2 + |z|2) in a neighbourhood of the origin. As

a consequence of the lemma there exist positive definite matrices B+ und B−
with the property that AT+B+ +B+A+ = −I and AT−B− +B−A− = I. As the
function V we take xTB+x− yT y − zTB−z. Then

V̇ = −xTx− zT z + o(|x|2 + |y|2 + |z|2). (63)

The set U is defined by the condition V > 0. On this region V̇ = −xTx−zT z+
o(|x|2 + |z|2). Hence for ε small enough all conditions are satisfied and the origin
is unstable.

It follows from the results which have just been proved that for R0 > 1
the stationary solution of the fundamental model of virus dynamics with v > 0
is asymptotically stable und the solution with v = 0 unstable. On the other
hand for R0 < 1 the solution with v = 0, which in this case is the only non-
negative stationary solution, is stable. These statements concern the behaviour
of solutions in a neighbourhood of the stationary solutions. A Lyapunov function
can also help to prove global results. If a dynamical system is defined on a open
set U und V satisfies the inequality V̇ ≤ 0 then the ω-limit points of a solution
in U which lie in U are points where V̇ = 0. The function V (x(t)) is monotone
decreasing and non-negative. Thus it converges to a constant V∞. It follows
that V (y) = V∞ for any ω-limit point y of x(t). Hence V is constant on the
ω-limit set. If y is an ω-limit point then the solution with initial value y is
contained in the ω-limit set. The function V is constant along this solution and
thus V̇ (y) = 0. It follows from these considerations that when V̇ < 0 on U there
are no ω-limit points in U .

Korobeinikov [5] used Lyapunov functions to determine the global qualitative
behaviour of solutions of the fundamental system of virus dynamics. He denotes
the stationary solution with v > 0 by (x∗, y∗, v∗) and the stationary solution
with v = 0 by (x0, 0, 0). Consider first the function

V (x, y, v) = x∗
( x
x∗
− log

x

x∗

)
+ y∗

(
y

y∗
− log

y

y∗

)
+
a

k
v∗
( v
v∗
− log

v

v∗

)
(64)

This funciton has a minimum at the point (x∗, y∗, v∗). The derivative is

V̇ =

(
1− x∗

x

)
ẋ+

(
1− y∗

y

)
ẏ +

a

k

(
1− v∗

v

)
v̇ (65)
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= λ− dx− au

k
v − λx

∗

x
+ βx∗v + dx∗

−βxv y
∗

y
+ ay∗ − ay v

∗

v
+
au

k
v∗

= λ+ dx∗ + ay∗ +
au

k
v∗ − dx+

(
βx∗ − au

k

)
v

−λx
∗

x
− βxv y

∗

y
− ay v

∗

v

= dx∗
(

2− x

x∗
− x∗

x

)
+ ay∗

(
3− x∗

x
− xvy∗

x∗v∗y
− yv∗

y∗v

)
. (66)

It can be shown that V̇ ≤ 0 by using the inequality between arithmetic and
geometric means. This says that, for positive numbers a1, . . . , an, (

∏n
i=1 ai)

1
n ≤

1
n

∑n
i=1 ai and that equality holds only when all ai are equal. It follows that

V̇ can only be zero when x = x∗. If there is a positive ω-limit point then
V̇ = 0 there. Hence x = x∗ on the whole solution which starts at that point
and ẋ = 0. If then information is substituted into the equation for x it is seen
that v is constant. The equation for v then implies that y is constant. We see
that every positive ω-limit point is a stationary solution. It can only be the
point (x∗, y∗, v∗). On the other hand ω-limit points where one of the variables
vanishes are impossible since because V tends to infinity in the approach to a
point of that kind. Hence there can be no ω-limit point other than (x∗, y∗, v∗).
Thus it has been shown that for R0 > 1 every positive solution converges to
this stationary solution for t→∞.

In order to understand the case R0 ≤ 1 we consider the function

U(x, y, v) = x0

(
x

x0
− log

x

x0

)
+ y +

a

k
v. (67)

In the region where all variables are non-negative and x positive this function
has a minimum at the point (x0, 0, 0). The derivative is

U̇ =
(

1− x0

x

)
ẋ+ ẏ +

a

k
v̇

= λ

(
2− x

x0
− x0

x

)
+
au

k
(R0 − 1)v. (68)

This quantity is non-negative and vanishes only when R0 = 1 and x = x0. An
ω-limit point of a positive solution cannot satisfy x = 0 since U tends to infinity
for x → 0. It can be argued as in the case R0 > 1 that an ω-limit point with
x > 0 must be a stationary solution. Hence every solution converges to the
unique stationary solution as t→∞.

This example shows how a Lyapunov function can help to investigate the
asymptotic behaviour of a dynamical system. Unfortunately there is no general
method for finding Lyapunov functions. It is rather an art than a science. How
did Korobeinikov find his Lyapunov function? In his paper he does not say much
about this but he mentions a relation to models from epidemiology. We will
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follow this track a bit. This is also an opportunity to make the acquaintance of
some important epidemiological models. The models concerned were introduced
by Kermack and McKendrick in 1927. Consider a population of humans (or
animals) which are exposed to an infectious disease. Let S be the proportion of
the population which is are susceptible to the disease, I the proportion which
is infected (or infectious) and R the proportion which has recovered or been
removed. Then S + I + R = 1. Suppose that the total population is constant
so that S, I and R are proportional to the numbers in the different groups. In
the simplest model the equations are

Ṡ = −βSI (69)

İ = βSI − αI (70)

Ṙ = αI. (71)

This is known as the SIR model. It is immediate from these equations that
S+ I +R = is constant. Since R can be computed from the other variables the
equation for R can be omitted. In this model it is assumed that a person who
is infected can immediately infect others, which is unrealistic for many diseases.
Later we will get to know another alternative. The transition from I to S can
take place by recovery forom the disease with resulting immunity, by spatial
separation (quarantine during an epidemic) or by death. In this model births
are not included and deaths which are not due to the disease also not. The idea
is that the model should only be valid for time periods where these effects play
no role. Immunity after an illness occurs for the infection with many viruses,
not however in the case of HIV.

In order to understand solutions of the SIR model, which is now two-
dimensional, we can procede as follows. On an interval where S is monotone we
can consider I as a function of S and derive the equation

dI

dS
= −1 +

α

βS
(72)

In fact S is always strictly decreasing, since Ṡ < 0. An integration shows that
I + S − α

β logS is constant along the integral curves. Thus it can be seen that
each solution converges to a point with I = 0 as t → ∞. This conserved
quantity is useful for the investigation of the SIR model. Here we want to draw
attention to the formal similarity with the Lyapunov functions of Korobeinikov.
In the case of the SIR model the time derivative of the function is zero instead
of negative.

Diseases without immunity, which include many of those caused by bacteria
or helminths can be described by the SIS model where an individual who recovers
instead of coming into the group R returns to the group S. The equations are

Ṡ = −βSI + γI (73)

İ = βSI − γI. (74)
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The quantity S + I is constant and can, if we work with proportions of the
population, be set to one. The variable S can be eliminated with the result

İ = βI(1− I)− γI = (β − γ)I

(
1− I

1− γ
β

)
. (75)

If γ > β then İ < 0 and the solutions converge to zero as t → ∞. If γ > β
then the solutions converge to 1 − γ

β . In this model R0 = β
γ plays the role of

the fundamental reproductive ratio.
The SIR model can be modified by introducing a new group of people who

are infected but not yet infectious, the exposed group E. The people in the
group I are infectious. In addition demographic effects (birth and death) are
modelled. The new model (SEIR model with birth and death) is

Ṡ = µ− βSI − µS (76)

Ė = βSI − (θ + µ)E (77)

İ = θE − (δ + µ)I. (78)

The quantity R has once again been omitted since the equation for it decouples.
This time we have a three-dimensional system. It was studied in [6]. The system
in the paper was a little more complicated because it also included vertical
transmission, i.e. transmission from the mother to the unborn child. Here we
only include normal horizontal transmission. The observation of Korobeinikov is
that this system is up to notation identical with the fundamental system of virus
dynamics. We only need to identify the group S with the non-infected cells, the
group E with the infected cells and the group I with the virus particles. There
exists a SEIS model whose dynamics was studied by Korobeinikov with the
help of a Lyapunov function. In general the question of whether a disease can
maintain itself in a population is determined by a parameter R0. Vaccination
of children can be used to lower the effective value of R0 and thus to combat
the progress of the disease. If this leads to R0 < 1 we talk of herd immunity.
This is not easy to achieve. For measles it has been estimated that in developed
countries it requires between 85 and 90 per cent vaccination in rural populations
and well over 90 per cent in urban populations. In developing countries things
are quite different since measles is often fatal.

The equations which have been considered here also have a similarity to the
famous Lotka-Volterra equations for predator-prey systems. In that case the
equations are

ẋ = x(λ− by) (79)

ẏ = y(−µ+ cx) (80)

and there exists the conserved quantity

cx− µ log x+ by − λ log y. (81)

Here is the interpretation that x is the population of prey (e.g. hares) and y
the population of predators (e.g. lynx).
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6 The Arzela-Ascoli theorem

In the next section the existence of invariant manifolds is proved. For this we
need the Arzela-Ascoli theorem. Since we do not wish to assume familiarity
with this theorem it will be proved here. This theorem is also valuable in many
other contexts in the theory of dynamical systems. It will first be proved in a
relatively general setting.
Definition Let X be a metric space with metric ρ and F a set of real-valued
functions on X. F is called equicontinuous if for each ε > 0 there is a δ > 0
such that |f(x) − f(y)| < ε for all f ∈ F and all x and y with ρ(x, y) < δ. (In
particular each function in F is uniformly continuous.)
F is called pointwise bounded if for each x ∈ X there is an M(x) such that

|f(x)| ≤M(x) for all f ∈ F .
Theorem (Arzela-Ascoli) Let F be a pointwise bounded equicontinuous set
of real-valued functions on a metric space X and suppose that there exists a
countable dense subset E ⊂ X. Then each sequence {fn} of functions in F has
a subsequence which converges uniformly on each compact subset of X.
Proof Let x1, x2, x3, . . . be an enumeration of the points of E. Let S0 be the
set of natural numbers. Let k ≥ 1 and suppose that an infinite subset Sk−1 of
S0 has been chosen. Since {fn(xk) : n ∈ Sk−1} is a bounded set of real numbers
it has a convergent subsequence. In other words there exists an infinite set
Sk ⊂ Sk−1 with the property that limn→∞ fn(xk) exists for n ∈ Sk. In this way
we obtain infinite sets S0 ⊃ S1 ⊃ S2 ⊃ . . . with the property that the limit of
fn(xk), for 1 ≤ j ≤ k, when n→∞ within Sk exists. Let rk be the kth element
of Sk and let S be the sequence r1, r2, r3, . . .. For each value of k there are at
most k−1 elements of S which do not lie in Sk. Hence the limit lim fn(x) exists
for all x ∈ E when n→∞ within S.

Let K ⊂ X be compact and ε > 0. Because F is equicontinuous there exists
a δ > 0 so dass ρ(p, q) < δ implies that |fn(p) − fn(q)| < ε for all n. There is
a covering of K by finitely many open balls B1, B2, . . . , BM of radius δ

2 . Since
E is a dense subset of X there is a point pi of E in each Bi, 1 ≤ i ≤ M . The
limit of fn(pi) within S exists. Thus there exists an N with the property that
|fm(pi) − fn(pi)| < ε for 1 ≤ i ≤ M when m > N , n > N and m and n are in
S. Now let x ∈ K. Then there is an i with x ∈ Bi and ρ(x, pi) < δ. Because of
the choice of N and δ we have

|fm(x)− fn(x)| ≤ |fm(x)− fm(pi)|+ |fm(pi)− fn(pi)|+ |fn(pi)− fn(x)|
< ε+ ε+ ε = 3ε (82)

when m > N , n > N , m ∈ S and n ∈ S.

The analogous statement for functions with values in Rk can be proved by the
same method. The case which will interest us most in what follows is that where
X is Rm with the Euclidean metric. In this case the subset E can be defined to
be that of points with rational coordinates.
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7 Invariant Manifolds

In the last section we proved results about the behaviour of the solutions of a
dynamical system near a stationary solution under certain conditions. When
all eigenvalues of the linearized system have negative real parts then soluitons
which start near the stationary solution converge to it for t→∞. By replacing t
by −t we get analogous statements in the case that all eigenvalues have positive
real parts. If the real parts of the eigenvalues have both signs then we still have
little information. In this section we want to learn more about that case by
studying invariant manifolds. An invariant manifold is a submanifold which is
invariant under the flow. In this context it is useful to consider the restriction
of the flow φ(t, x) to a fixed time t. This gives a local diffeomorphism between
subsets of Rm. An invariant manifold of a mapping of this type is a submanifold
which is mapped into itself by the diffeomorphism.

For a real number t let T t be a continuous mapping of a neighbourhood Gt
of the origin in Rm onto a neighbourhood of the origin in the same space with
T t(0) = 0. A set S is called invariant with respect to {T t} if T t(Gt ∩ S) ⊂ S
for all t. It is called locally invariant if there exists ε > 0 with the property
that if x ∈ S and |T t(0)| < ε for 0 ≤ t0 then |T t(x)| ∈ S. We consider now
a linear system ẋ = Ax and the perturbed system ẋ = Ax + F (x) where F
is a continuously differentiable mapping which is o(|x|) as x → 0. The second
property is equivalent to the conditions that F (0) = 0 and ∂Fi

∂xj
(0) = 0. The

first system is the linearization of the second system at the origin. We define
T t(x) = φ(t, x) on the region where this expression exists. Here φ is the flow of
the nonlinear system.

If S is invariant then the intersection of S with a ball is locally invariant. If
conversely S is locally invariant then the union of the sets T t(S∩Gt) is invariant.
Thus there is a close connection between invariant and locally invariant sets.
This is useful for the following reason. If F is changed outside of a small ball
and an invariant manifold for the new equation can be found then a locally
invariant set for the original equation can be obtained. Another advantage of
locally invariant sets is that it is to be expected that they are simpler that
globally invariant sets. For instance there can exist solutions which tend to the
origin for t→∞ and t→ −∞ and form loops in between.

Suppose that the Matrix of first derivatives can be written in the form A =
[P,Q] where the eigenvalues pj of P satisfy the inequality Re pj ≤ α < 0 and
the eigenvalues qk of Q the inequality Re qk ≥ β > α. The subspace where
the coordinates zj vanish is the union of all solutions whose distance to the
origin is bounded by e(β−ε)t for an ε > 0. The question arises whether a similar
statement holds for a nonlinear system. Consider the system

ẏ = Py + F1(y, z), ż = Qy + F2(y, z) (83)

where F = (F1, F2) has the same properties as before. Is there a locally invariant
manifold S of the form z = g(y) which consists of all solutions which are bounded
by e(β−ε)t for t large and some ε > 0? We will show that this is the case.
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The solution with initial value zero is identically zero and exists globally in
time. It folloes that for arbitrarily small initial data the solution exists for an
arbitrarily long time. The identity T t1+t2 = T t1T t2 holds wherever both sides
are defined. This property follows from the unique determination of solutions
by initial data. The flow φ is C1 and its first derivative H(t, x) with respect to
x satisfies the linear equation

Ḣ(t, x) =

[
A+

∂F

∂x

]
H(t, x), H(0, x) = I. (84)

In particular the equations Ḣ(t, 0) = AH(t, 0) and H(0, x) = I hold. Hence
H(t, 0) = eAt. It follows that

φ(t, x) = eAtx+ Ξ(t, x), (85)

where

Ξ(t, 0) = 0 und
∂Ξ

∂x
(t, 0) = 0. (86)

In the construction of invariant manifolds technical difficulties can arise due to
the fact that the solutions are not globally defined. To avoid this we replace
the function F by one which is identical to F for x small, e.g. for |x| ≤ 1

2s and
vanishes for |x| ≥ s. If we still denote the new function by F then the flow of
our equation is globally defined. Then the family T t is a group.
Lemma 4 Let F (x) be a vector-valued function of class C1 which is defined for
|x| small and satisfies the conditions F (0) = 0 and ∂F

∂x (0) = 0. Let θ > 0 be
arbitrary. Then there exists a number s = s(θ) > 0 (which tends to zero with
θ) and a function G(x) of class C1 which is defined for all x with the properties
that G(x) = F (x) for |x| ≤ 1

2s, G(x) = 0 for |x| ≥ s and ‖∂G∂x ‖ ≤ θ for all x.

Proof Let s > 0 be so small that ‖∂F/∂x‖ ≤ θ/8 and hence |F (x)| ≤ θ‖x‖/8
for |x| ≤ s. Let ψ(t) be a smooth real-valued function of t for t ≥ 0 with
ψ(t) = 1 for t ≤ ( 1

2s)
2, 0 < ψ(t) < 1 for ( 1

2s)
2 < t < s2, ψ(t) = 0 for t > s2 and

0 ≤ −dψdt ≤
2
s2 for all t ≥ 0. Let G(x) = F (x)ψ(|x|2) or G(x) = 0, according to

whether |x| ≤ s or |x| ≥ s. Then ∂G/∂x = 0 for |x| ≥ s. For |x| ≤ s we have
∂Gi

∂xj
= ∂Fi

∂xj
ψ+ 2Fixj

dψ
dt and hence |∂G/∂x| ≤ θ/8 + 2(θ‖x‖2/8)(2/s2) ≤ θ. This

completes the proof of the lemma.
Because of this result it is possible, when considering solutions close to the

origin, to assume w.l.o.g. that F is globally defined and C1, ‖∂F/∂x‖ ≤ θ for
all x and F (x) = 0 for |x| ≥ s. Here s is allowed to depend on θ.

Next it will be shown that there exist s0 = s0(s, θ) > 0 and θ0 = θ0(s, θ)
with the property that s0 and θ0 tend to zero with s and θ and that φ is written
as in (85)

Ξ(t, x0) = 0, 0 ≤ t ≤ 1, |x0| ≥ s0 (87)

‖∂Ξ/∂x0(t, x0)‖ ≤ θ0, 0 ≤ t ≤ 1, x0 beliebig. (88)

To prove this we can first use the fact that the condition on the derivative of
F implies that |F (x)| ≤ θ|x| and that as a consequence the solution of the
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differential equation satifies |ẋ| ≤ c0|x| where c0 = ‖A‖+ θ. Hence

d

dt
(e2c0t|x(t)|2) ≥ 0 (89)

and |x(t)| ≥ |x0|e−c0t. Therefore if s0 = sec0 and |x0| ≥ s0 then |x(t)| ≥ s for
0 ≤ t ≤ 1. In this case the equation reduces on the interval [0, 1] to ẋ = Ax. The
solution with x(0) = x0 is thus x(t) = eAtx0. Hence Ξ(t, x0) = 0 for 0 ≤ t ≤ 1
and |x0| ≥ s0.

The relation Ξ(t, x0) = φ(t, x0)− eAtx0 implies that ∂Ξ
∂x0

= H(t, x0)− eAt or

∂Ξ

∂x0
= eAt[K(t, x0)− I], (90)

where K(t, x0) = e−AtH(t, x0). The derivative of K is

K̇ = e−At(Ḣ −AH) = e−At
∂φ

∂x0
eAtK. (91)

In addition we have K(0, x0) = I. The quantity ‖e−At(∂φ/∂x0)eAt‖ is bounded
by c1θ where c1 = (e‖A‖)2. For this reason ‖K(t, x0)‖ can be bounded by ec1θ for
0 ≤ t ≤ 1. It follows that ‖K̇(t, x0)‖ ≤ c1θec1θ and that ‖K(t, x0)−I‖ ≤ c1θec1θ
for 0 ≤ t ≤ 1. These inequalities lead to

‖∂Ξ/∂x0‖ ≤ e‖A‖c1θec1θ. (92)

Thus we have the desired condition with θ0 = e‖A‖c1θe
c1θ.

Now we consider the system (83) again. Let B = eP und C = eQ. The
eigenvalues of the matrices B and C are epj and eqk . The norms of B and C−1

can be bounded by eα+ε and e−β+ε, respectively. To see this we use the fact
that these are solutions of linear ordinary differential equations. We assume
that ε is so small that b = ‖B‖ and 1/c = ‖C−1‖ satisfy the inequalities b < c
and b < 1. It will be supposed that F1 and F2 are C1, that F1, F2 and their first
order derivatives vanish at the origin and that the norms of these derivatives
are no larger than θ for all x. In addition it is assumed that F1 and F2 vanish
for |x|2 ≥ s2 > 0. Then for each value of t the flow defines a mapping T t of
(y0, z0) onto (y, z) of the form

y(t, y0, z0) = ePty0 + Y (t, y0, z0), (93)

z(t, y0, z0) = eQtz0 + Z(t, y0, z0) (94)

where Y , Z and their first order derivatives vanish at the origin, the norms of
the first derivatives are no greater than θ0 for 0 ≤ t ≤ 1 and Y and Z vanish
for |y|2 + |z|2 ≥ s2

0 and 0 ≤ t ≤ 1.
Now a result about invariant manifolds of a mapping will be proved. It

will then be applied to auf T t with t = 1 to get a statement about invariant
manifolds of a flow.
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Lemma 5 Let B and C matrices with the properties which were listed above.
Let T be a mapping of (y0, z0) onto (y1, z1) with

y1 = By0 + Y (y0, z0), (95)

z1 = Cz0 + Z(y0, z0) (96)

where Y and Z are C1 and fulfil the conditions listed above. Then there exists
a C1 mapping z = g(y) with g(0) = 0, (∂g/∂y)(0) = 0 such that the mapping
R with

R(y, z) = (u, v) = (y, z − g(y)) (97)

has the following properties. The mapping RTR−1 which maps (u0, v0) to
(u1, v1) is of the form

u1 = Bu0 + U(u0, v0), (98)

v1 = Cv0 + V (u0, v0) (99)

where U , V and their first order derivatives vanish at the origin and V (u0, 0) =
0. The last condition means that the subspace v0 = 0 is invariant under the
mapping RTR−1 and that the manifold z = g(y) is locally invariant under
T . If we carry out the reduction we get a globally invariant manifold for the
transformed system. It can be assumed that θ0 < min

(
c−b

4 , 1−b
2

)
.

Proof of the lemma If R exists the relations

u1 = Bu0 + Y (u0, v0 + g(u0)), (100)

v1 = Cv0 + Cg(u0) + Z(u0, v0 + g(u0))

−g(Bu0 + Y (u0, v0 + g(u0))). (101)

hold. If we substitute for v1 in the second equation we get

V (u, v) = Cg(u) + Z(u, v + g(u))− g(Bu+ Y (u, v + g(u))) (102)

and V (u, 0) = 0 holds precisely when

g(u) = C−1[g(Bu+ Y (u, g(u)))− Z(u, g(u))]. (103)

To prove the lemma we must show that the functional equation (103) has a
C1 solution. For this purpose a sequence gn will be defined recursively. Let
g0(u) = 0 and if gn−1(u) has already been defined let

gn(u) = C−1[gn−1(Bu+ Y (u, gn−1(u)))− Z(u, gn−1(u))]. (104)

To abbreviate this expression let gn−1 = gn−1(u), Y 0 = Y (u, gn−1(u)), g0
n−1 =

gn−1(Bu + Y 0) and Z0 = Z(u, gn−1(u)). It is clear that gn is well-defined and
C1 for all n. If ∂gn is the derivative of gn then

∂gn = C−1[∂g0
n−1(B + ∂yY

0 + (∂zY
0)∂gn−1)

−(∂yZ
0 + (∂zZ

0)∂gn−1)]. (105)
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Let σ = θ0
c−b−3θ0

, so that 0 < σ < 1. It will be shown by induction that
‖∂gn(u)‖ ≤ σ. The statement is obvious for n = 0. Suppose now that the
statement holds when n is replaced by n− 1.

‖∂gn‖ ≤ c−1[σ(b+ θ0 + θ0σ) + (θ0 + θ0σ)] (106)

≤ c−1[σ(b+ 3θ0) + θ0]. (107)

The last expression is equal to σ and thus the inductive step is complete.
Next it will be shown that the ∂gn are equicontinuous. For each function

f(u) or f(y, z) let ∆f = f(u + ∆u) − f(u) or ∆f = f(y + ∆y, z + ∆z). Let
h1(δ) = sup ‖∆∂y,zY, Z‖ for ‖∆y‖, ‖∆z‖ ≤ δ where ∂y,zY, Z denotes any of the
derivatives ∂yY, ∂zY, ∂yZ, ∂zZ. It will be shown by induction that ‖∆∂gn‖ ≤
h(δ) for ‖∆u‖ ≤ δ < 1, where

h(δ) =
4h1(δ)

c− b− 4θ0
. (108)

For n = 0 the statement is obvious. Suppose now that the statement holds
when n is replaced by n − 1. Now ‖∆gn−1(u)‖ ≤ σ‖∆u‖ ≤ ‖∆u‖. It follows
that

‖∆∂y,zY 0, Z0‖ ≤ h1(‖∆u‖) (109)

u and
‖∆(Bu+ Y (u, gn−1(u)))‖ ≤ (b+ 2θ0)‖∆u‖ ≤ ‖∆u‖. (110)

Now we apply the general relation

∆(f1(u)f2(u)) = f1(u+ ∆u)∆f2 + ∆f1f2(u) (111)

to the expression for ∂gn.

‖∆∂gn‖ ≤ c−1[h(δ)(b+ 2θ0) + (h1(δ) + h1(δ) + θ0h(δ))

+(h1(δ) + h1(δ) + θ0h(δ))] = c−1[h(δ)(b+ 4θ0) + 4h1(δ)]. (112)

The right hand side is h(δ). Now it will be shown that the sequence gn converges
uniformly on each bounded subset. This will hold if there exist M and r with
0 < r < 1, so that for n ≥ 1

‖gn(u)− gn−1(u)‖ ≤M‖u‖rn. (113)

For n = 1 the inequlity holds provided Mr = σ. Suppose now that it holds
when n is replaced by n− 1. The quantity c‖gn(u)− gn−1(u)‖ can be bounded
by

‖gn−1(Bu+ Y (u, gn−1(u)))− gn−2(Bu+ Y (u, gn−2(u)))‖+

‖Z(u, gn−1(u))− Z(u, gn−2(u))‖. (114)

The first term is no greater than

‖gn−1(Bu+ Y (u, gn−1(u)))− gn−2(Bu+ Y (u, gn−1(u)))‖+

‖gn−2(Bu+ Y (u, gn−1(u)))− gn−2(Bu+ Y (u, gn−2(u)))‖. (115)
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It follows that c‖gn(u)− gn−1(u)‖ is no greater than

M‖Bu+ Y (u, gn)‖rn−1 + σθ0M‖u‖rn−1 + θ0M‖u‖rn−1, (116)

which in turn is no greater than Mrn−1‖u‖(b + 4θ0). With the choice r =
(b+ 4θ0) this completes the inductive step.

It follows that gn(u) converges to a limit g(u), uniformly on each compact
subset. It is possible to pass to the limit and see that g(u) satusfies the functional
equation. Since the sequence ∂gn is pointwise bounded and equicontinuous the
Arzela-Ascoli theorem implies the existence of a subsequence which converges
on each compact subset. It follows that g is continuously differentiable. There
exist corresponding statements when C1 is replaced by Cr, with r finite or
infinite. The condition b < 1 is not necessary. These sharper statements will
not be proved here.
Corollary 1 Let T , g(y) and θ0 be as in the lemma. For given (x0, y0) we
define a sequence recursively by (yn+1, zn+1) = T (yn, zn). If z0 = g(y0) then
‖(yn, zn)‖ = O((b + θ0)n) for n → ∞. It is also the case that if y0 6= 0 then
yn 6= 0 for all n, ‖zn‖/‖yn‖ → 0 and lim supn−1 log ‖(yn, zn)‖ ≤ α. If z0 6= g(y0)
then (c− 2θ0)n = O(‖(yn, zn)‖) for n→∞.

If c > 1, so that b < 1 < c, then it is possible to characterize the points (y0, z0)
of the manifold z = g(y) by three alternative conditions. The first condition is
that, with (yn, zn) = Tn((y0, z0)), ‖(yn, zn)‖ converges exponentially to zero for
n→∞. The second is that it converges to zero for n→∞. The third is that it
stays in a neighbourhood of (0, 0). In this case the manifold z = g(y) is called
the stable manifold of T . The corresponding manifold when n is replaced by
−n is called the unstable manifold of T .
Proof of the corollary z0 = g(y0) is equivalent to the condition v0 = 0. In
this case vn = 0 for all n. Correspondingly un = Bun−1 + U(un−1, 0) so that
‖un‖ ≤ (b + θ0)‖un−1‖ and ‖un‖ ≤ (b + θ0)n‖u0‖. In particular un converges
to the origin. It follows that for an arbitrary ε > 0 there exists an N with the
property that ‖un‖ ≤ (b+ ε)‖un−1‖ for n ≥ N and ‖un+N‖ ≤ (b+ ε)n‖uN‖ for
n ≥ 0. Since yn = un und zn = g(un) it can be concluded that ‖(yn, zn)‖ ≤
(1+σ)‖un‖. In addition lim supn−1 log ‖(yn, zn)‖ ≤ log b. By a suitable change
of variables log b can be brought arbitarily close to α and hence log b can be
replaced by α in this relation. Differentiating the equation for V (u, v) with
respect to v gives

∂vV (u, v) = ∂zZ(u, v+ g(u))−∂g(Bu+Y (u, v+ g(u)))∂zY (u, v+ g(u)). (117)

Hence ‖∂vV ‖ ≤ θ0 + σθ0 ≤ 2θ0 and ‖V (u, v)‖ ≤ 2θ0‖v‖. It then follows from
the equation vn = Cvn−1 + V (un, vn) that ‖vn‖ ≥ (c− 2θ0)‖vn−1‖ and ‖vn‖ ≥
(c− 2θ0)n‖v0‖. It is also true that

‖(yn, zn)‖ ≥ ‖(un, vn)‖ − ‖g(un)‖ ≥ (1− σ)‖(un, vn)‖. (118)

This completes the proof of the corollary.
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Theorem 7 Let T be a mapping of a neighbourhood of the origin in Rm to Rm
of the form

x1 = T (x0) = Γx0 + Ξ(x0), (119)

where Ξ is C1 with Ξ(0) = 0, ∂Ξ/∂x0(0) = 0 and Γ a matrix with d, e0

and e eigenvalues whose modulus is less than, equal to and greater than one,
respectively. Then there exists a continuously differentiable mapping R with
invertible derivative and the property that RTR−1 is of the following form

u1 = Au0 + U(u0.v0, w0),

w1 = Bw0 +W (u0.v0, w0), (120)

v1 = vu0 + V (u0.v0, w0).

Here A, B and C are matrices which are d × d, e0 × e0 and e × e respectively
and whose eigenvalues have modulus < 1, = 1 and > 1 respectively. U , V and
W and their first order derivatives vanish at the origin and

V = 0,W = 0 wenn v0 = 0, w0 = 0 (121)

U = 0,W = 0 wenn u0 = 0, w0 = 0. (122)

These equations mean that the planes v0 = 0, w0 = 0 and u0 = 0, w0 = 0 are
invariant planes of dimension d and e. If e0 = 0 then the variables w0 and w1

are absent.
Proof The Lemma 5 provides a mapping R such that after the transformation
with R0 the first condition is satisfied. If we consider the mapping T−1 then
Lemma 5 provides a mapping R1 such that after the transformation with R1

both conditions are satisfied.
Corollary 2 Let T t be a group of mappings which are defined by the equations
(93)-(94). Let g be the function from the Lemma 5 with T = T 1. Then RT tR−1

has the form

u(t, u0, v0) = ePtu0 + U(t, u0, v0), (123)

v(t, u0, v0) = eQtu0 + V (t, u0, v0), (124)

where V (t, u0, 0) = 0 for all t and u0. In addition, when y0 6= 0 and z0 =
g(y0) then z(t) = g(y(t)) for all t, y(t) 6= 0 for all t, ‖z(t)‖/‖y(t)‖ → 0 and
lim sup t−1 log ‖y(t)‖ ≤ α for t→∞.
Proof First it will be shown that when n ≤ t ≤ n+1 there are positive constants
c1 and c2 with

c1‖(y(n), z(n))‖ ≤ ‖(y(t), z(t))‖ ≤ c2‖(y(n), z(n)). (125)

It should be notived that T t = T t−nTn. Hence

‖y(t)− eP (t−n)y(n)‖ ≤ θ0(‖y(n)‖+ ‖z(n)‖) (126)

and a similar inequality holds for z(t). The inequalities (125) follow. Let z0 =
g(y0). Then the behaviour of (y(n), z(n)) für n large is described by Corollary
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1. There results the inequality lim sup t−1 log ‖(y(t), z(t))‖ ≤ α. If z(t) is not
equal to g(y(t)) for some t, say t0, then (c− 2θ0)n = O(‖(y(n+ t0), y(n+ t0))‖)
for t → ∞. This would be a contradiction. Hence z(t) = g(y(t)) for all t. If
y(t) = 0 for some t then z(t) = g(y(t)) implies that ‖z(t)‖ ≤ σ‖y(t)‖ = 0. But
then (y(t), z(t)) = 0 for all t as a consequence of the group property of T t.

Having proved the existence of invariant manifolds for mappings we can now
return to differential equations.

Theorem 8 In the dynamical system

ẋ = Ax+ F (x) (127)

let F be continuously differentiable, F (0) = 0 and ∂F/∂x(0) = 0. Suppose
that A has r eigenvalues with negative real parts α1 < α2 < . . . < αr < 0
and that the other eigenvalues, if there are any, have positive real parts. Let
d be the sum of the dimensions di of the spaces of generalized eigenvectors
corresponding to the eigenvalues αi. If 0 < ε < −αr then there exist solutions
which satisfy the condition ‖x(t)‖eεt → 0 for t → ∞ und each such solution
satisfies lim t−1 log ‖x(t)‖ = αi for a certain i. For ε > 0 small enough the
point x = 0 and the set of points on solutions x(t) with lim t−1 log ‖x(t)‖ ≤
αi for fixed i form a continuously differentiable locally invariant manifold of
dimension d1 + . . .+di. The corresponding set which is defined by the condition
lim sup t−1 log ‖x(t)‖ < 0 is a continuously differentiable manifold of dimension
d.
Proof If lim is replaced by lim sup the last part of the theorem follows from
Corollary 2. In addition, for t → ∞ the condition lim inf t−1 log ‖x(t)‖ < αi+1

implies the condition lim sup t−1 log ‖x(t)‖ ≤ αi, where αr+1 is interpreted as
zero. Hence the condition lim sup t−1 log ‖x(t)‖ = αi implies that lim inf =
lim sup.

Similar results are obtained when t is replaced by −t. The arguments used in
the proofs of Theorem 8 and Corollary 2 give

Theorem 9 Let A and F be as in the last Theorem. Suppose that there are
also e eigenvalues with positive real part. Let x(t) be the solution of the system
with x(0) = x0 and T t the corresponding mapping. Let ε > 0. There is a
mapping R with invertible derivative such that RT tR−1 has the following form

u(t) = ePtu0 + U(u0, v0, w0),

w(t) = eP0tw0 +W (u0, v0, w0), (128)

v(t) = eQtu0 + V (u0, v0, w0). (129)

U , V and W their first order derivatives vanish at the origin. If v0 = w0 = 0
then V = W = 0 and if u0 = w0 = 0 then U = W = 0. Moreover ‖eP ‖ < 1,
‖e−Q‖ < 1 and the eigenvalues of P0 have modulus one. The mapping R
transforms the equation for x into

u̇ = Pu+ F1(u, v, w), (130)
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ẇ = P0w + F2(u, v, w), (131)

v̇ = Qv + F3(u, v, w), (132)

where the Fi do not have to be C1. The planes v0 = w0 = 0 and u0 = w0 = 0 are
locally invariant manifolds and are called stable and unstable manifolds. In the
case that A has no eigenvalues with vanishing real part they are characterized
by the condition that they consist of those solutions which converge to the origin
as t→ +∞ or t→ −∞.

To illustrate these general ideas we can consider the fundamental model of
virus dynamics with R0 6= 1. The only case in this example where a stationary
solution has eigenvalues with real parts of both signs is the solution with v = 0
in the case R0 > 1. In that case the stable manifold is two-dimensional and
the unstable manifold is one-dimensional. The line v = y = 0 is invariant and
lies in the stable manifold. The stable manifold cannot intersect the positive
region due to the theorem of Korobeinikov. To understand something about
the unstable manifold in this case we consider the positive eigenvalue of the
linearization, call it µ+. Let (x̂, ŷ, 1) be the components of a corresponding
eigenvector. Then the relations ŷ = βx

µ++a and x̂ = − βx
µ++d hold. Because the

second and third component of this vector are positive it is geometrically clear
that one half of the unstable manifold lies in the positive region.

8 Centre manifolds

In the last section the existence of stable and unstable manifolds was proved.
They both have equivalent properties and therefore we concentrate here on the
stable manifold. It is an invariant manifold containing a stationary solution
x0 whose tangent space at x0 agrees with the stable subspace in that point.
In a sufficiently small neighbourhood of x0 it is uniquely determined by this
property. If the system is Ck for a natural number k ≥ 1 the the manifold is
Ck. If the system is C∞ or analytic then the manifold has the corresponding
property.

In view of these facts it is natural to ask whether there is an analogue of
these invariant manifolds for the centre subspace Vc. In other words, is there
an invariant manifold Mc through x0 whose tangent space there agrees with
Vc? In fact there does exist such a manifold, the centre manifold. It would
be too much to prove this result in this course. Instead we limit ourselves to
formulating statements about such manifolds and showing how this existence
statement can be useful in concrete applications. Further information about
centre manifolds can be found in [1].

If x0 is a stationary solution of a dynamical system and Vc is non-trivial
then a centre manifold exists. It does not, however, have to be unique, as can
be seen in the following simple example.

ẋ = −x, (133)

ẏ = y2. (134)
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The origin is a stationary solution. The centre subspace is the set x = 0 and
it is also a centre manifold in this case. It is not the only one. All solutions of
this equation except the stationary one can be written in the form x = ae−t,
y = −1/(t+ b). If we solve for y as a function of x we get x = Ce1/y. For y > 0
there exist invariant manifold which are tangent to the centre subspace to all
orders. It is in fact the case that although the centre manifold is not uniquely
determined its derivatives at the point x0 are always uniquely determined. If
the system is Ck, with k finite then there exists a centre manifold which is Ck.
If the system is C∞ then there does not always exist a centre manifold which is
C∞, although in this case there is a centre manifold of class Ck for each finite
value of k. For an analytic system there does not necessarily exist an analytic
centre manifold.

How can it be that a centre manifold is useful in applications when it is
not known explicitly and when it is not even unique? As we will see later the
dynamics of the restriction of the system to a centre manifold determines the
whole dynamics close to a stationary solution. At the same time it is often
possible to determine the dynamics on the centre manifold without knowing
that manifold.

As a first example consider the system

ẋ = xy + ax3, (135)

ẏ = −y + cx2. (136)

The centre manifold is of the form y = φ(x) where φ(x) = O(x2). It follows from
the equation ẏ = φ′(x)ẋ = O(x3) that y = cx2 +O(x3) on the centre manifold.
It can be concluded that ẋ = (a + c)x3 + O(x4). The origin is unstable for
a+ c > 0. For a+ c < 0 the coordinate x decreases along the centre manifold.
We will see later that in this case the asymptotic stability of the origin follows.

In the case of the fundamental model of virus dynamics with R0 = 1 the
stationary solution at the point (λ/d, 0, 0) has a one-dimensional centre mani-
fold. The tangent space to this manifold at this point is spanned by the vector
(−au, du, dk). Along the centre manifold we have

x =
λ

d
− au

dk
v + ψ1(v), (137)

y =
u

k
v + ψ2(v). (138)

The functions ψ1 and ψ2 are O(v2). If we differentiate the equation for y we get
ẏ =

(
u
k + ψ′2

)
v̇ = uψ2 +O(v3). On the other hand the evolution equation for y

gives

ẏ = −βau
dk

v2 − aψ2 +O(v3). (139)

Hence ψ2(v) = − βau
(a+u)dkv

2 +O(v3) and v decreases along the centre manifold.

As in the last example it is possible to conclude the asymptotic stability of the
stationary solution.
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9 The Grobman-Hartman theorem

A stationary solution of a dynamical system where the linearization has no
purely imaginary eigenvalues is called hyperbolic. Theorem 9 shows that a sys-
tem can be simplified by a transformation in a neighbourhood of a hyperbolic
stationary solution so that it looks more like the linearized system. But can a
system be made completely linear ba a transformation in this situation? Con-
sider the system

ẋ = Ax+ F (x) (140)

in the case that no eigenvlaue of A has vanishing real part. Does there exist
a diffeomorphism R of class C1 such that y = R(x) satisfies the equation y =
Ay? In general the answer to this question is in the negative, even in the two-
dimensional case. This statement will not be proved here. If instead of a C1

mapping we only ask for a continuous mapping then things look better. The
following theorem holds.

Theorem (Grobman-Hartman) Suppose that in the system (140) none of
the eigenvalues of the matrix A has vanishing real part and that F is C1, with
F (0) = 0 and ∂F/∂x(0) = 0. Let φ and ψ be the flows of (140) and the
system y = Ay, respectively. Then there exists a continuous injective mapping
R from a neighbourhood of x = 0 to Rm such that R(φ(t, x0)) = ψ(t, R(x0))
for x0 in a neighbourhood of the origin and t small. In particular, R maps
solutions into solutions while preserving the parametrization. Thus the systems
are topologically conjugate.

The corresponding statement does not always hold when there are purely
imaginary eigenvalues. A generalization to that case will be presented later. As
with the invariant manifolds the proof of the theorem about flows is preceded
by a corresponding theorem about mappings.

Lemma 6 Let B and C be invertible matrices which are d × d and e × e and
satisfy the inequalities b = ‖B‖ < 1 and c−1 = ‖C−1‖ < 1. Let T be a mapping
of the form

T (y0, z0) = (By0 + Y (y0, z0), Cz0 + Z(y0, z0)) (141)

where Y and Z are functions of class C1 which vanish at the origin together
with their first order partial derivatives. Then there exists a continuous injective
mapping R(u, v) = (Φ(u, v),Ψ(u, v)) of a neighbourhood of the origin in Rm
onto another which transforms T into the linear mapping A = RTR−1 where
A(u0, v0) = (u1, v1) = (Bu0, Cv0).

As in previous proof we can cut off the function F and the mapping R for
the cut-off system exists on the whole of Rm. Before proving Lemma 6 we need
two other statements.

Lemma 7 Let L be an invertible m×m matrix and let l1 = ‖L−1‖. Let S be
a mapping of the form x1 = S(x0) = Lx0 + X(x0), where X is defined on the
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whoile of Rm and satisfies a Lipschitz condition

‖X(x0 + ∆x0)−X(x0)‖ ≤ θ1‖∆x0‖ (142)

where θ1l1 < 1. Then S is injective and surjective onRm. If, in addition,
‖X(x0)‖ ≤ c0 for all x0 and the inverse of S is of the form L−1 + X1 then
‖X1(x1)‖ ≤ l1c0‖ for all x1.
Proof L satisfies the equation

‖L−1[X(x0 + ∆x0)−X(x0)]‖ ≤ l1θ1‖∆x0‖ (143)

To see that S is injective it is enough to prove that L−1S is injective. If x0 and
x0 + ∆x0 have the same image under L−1S then

0 = ‖x0 +∆x0 +L−1X(x0 +∆x0)−x0−L−1X(x0)‖ ≥ (1− l1θ1)‖∆x0‖, (144)

which implies that ∆x0 = 0. To see that S is surjective it is enough to prove that
L−1S is surjective, i.e. that for given x1 there is an x0 with x1 = x0+L−1X(x0).
To prove the existence of x0 we use an iteration. Let Sei x0 = 0 and xn =
x1 − L−1X(xn−1) für n ≥ 1. For n ≥ 2

‖xn − xn−1‖ ≤ ‖L−1[X(xn−1)−X(xn−2)]‖ ≤ l1θ1‖xn−1 − xn−2‖. (145)

It follows that ‖xn − xn−1‖ ≤ (l1θ1)n−1‖x1 − x0‖ for n ≥ 1. Since 0 < b1θ1 < 1
the sequence {xn} has a limit for n→∞, say x0. This shows that S is surjective.
Hence S defines a bijection between x0 and x1 = S(x0). We have

X1(x1) = x0 − L−1x1 = L−1(Lx0 − x1) = −L−1X(x0) (146)

and this completes the proof of Lemma 7.
Now we need some terminology. The matrix B of Lemma 6 has an inverse.

Let b1 = ‖B−1‖. Let a1, θ1 and θ be constants which satisfy the inequalities
a1 = max{b, 1/c} > 0, 0 < b1θ1 < 1 and

θ = θ1(1 + c) + max{b, c} < 1. (147)

If c0 is a positive constant let Ω(θ1, c0) be the set of all pairs of functions
(Y (y0, z0), Z(y0, z0)) which satisfy the following conditions for all (y0, z0). Y (0, 0) =
0, Z(0, 0) = 0, ‖Y (y0, z0)‖+ ‖Z(y0, z0)‖ ≤ c0,

‖∆Y ‖, ‖∆Z‖ ≤ 1

2
θ1(‖∆y0‖+ ‖∆z0‖), (148)

where ∆ again denotes a difference. Lemma 6 is contained in the case Y1 = 0,
Z1 = 0 of the following result.

Lemma 8 Let B and C be as in Lemma 6, (Y,Z) and (Y1, Z1) a pair of elements
of Ω(θ1, c0) and

(y1, z1) = T (y0, z0), y1 = By0 + Y (y0, z0), z1 = By0 + Z(y0, z0), (149)

(y1, z1) = U(y0, z0), y1 = By0 + Y1(y0, z0), z1 = By0 + Z1(y0, z0).(150)
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Then there exists a unique continuous mapping

(u, v) = R0(y, z), u = y + Λ(y, z), v = z + Θ(y, z), (151)

defined for all (y, z) with Λ(0, 0) = 0, Θ(0, 0) = 0, Λ and Θ bounded and
R0T = UR0. Moreover, R0 is a bijection.

Proof According to Lemma 7 the mapping T has an inverse which is defined
for all (y1, z1), say

T−1(y1, z1) = (B−1y1 + Y 1(y1, z1), C−1z1 + Z1(y1, z1)). (152)

‖Y 1(y1, z1)‖ and ‖Z1(y1, z1)‖ can be bounded by b1c0. The equation R0T =
UR0 is equivalent to the equations

By + Y + Λ(By + Y,Cz + Z) = B(y + Λ) + Y1(y + Λ, z + Θ), (153)

Cz + Z + Θ(By + Y,Cz + Z) = C(z + Θ) + Z1(y + Λ, z + Θ) (154)

where (y, z) is the argument of Y , Z, Λ and Θ. The first of these equations can
be rewritten as

y+Λ = B[B−1y+Y 1+Λ(T−1)]+Y1(B−1y+Y 1+Λ(T−1), C−1z+Z1+Θ(T−1)).
(155)

This is in fact the first component of the equation R0 = UR0T
−1. Hence the

equation R0T = UR0 is equivalent to the following equations.

Θ = C−1[Z − Z1(y + Λ, z + Θ) + Θ(By + Y,Cz + Z)], (156)

Λ = B[Y 1 + Λ(T−1)]

+Y1(B−1y + Y 1 + Λ(T−1), C−1z + Z1 + Θ(T−1)). (157)

The existence of R0 is proved by showing that the last two equations have a
solution using an iteration. Let Λ0 = 0, Θ0 = 0 and

Θn = C−1[Z − Z1(y + Λn−1, z + Θn−1) + Θn−1(By + Y,Cz + Z)],(158)

Λn = B[Y 1 + Λn−1(T−1)]

+Y1(B−1y + Y 1 + Λn−1(T−1), C−1z + Z1 + Θn−1(T−1)) (159)

for n ≥ 1. Λn und Θn are well defined and continuous for all n. They are also
bounded. It is clear that Λ0, Θ0, Λ1 und Θ1 are bounded and with the definition

rn = ‖|Λn − Λn−1|‖+ ‖|Θn −Θn−1|‖ (160)

where ‖| |‖ denotes the supremum of ‖ ‖ it follows that

‖|Θn −Θn−1|‖ ≤ c[θ1rn−1 + ‖|Θn−1 −Θn−2|‖] (161)

‖|Λn − Λn−1|‖ ≤ [b‖|Λn−1 − Λn−2|‖+ θ1rn−1]. (162)

The sum of these two inequalities gives

rn ≤ [θ1(c+ 1) + max{b, c}]rn−1 = θrn−1. (163)
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It follows from this that rn ≤ r1θ
n−1 for all n ≥ 1. Hence the sequences Λn and

Θn converge uniformly to limits Λ and Θ which are continuous and bounded.
These quantities satisfy the functional equations. Uniqueness can be proved by
the usual method. To complete the proof it only remains to show that R0 is
a bijection. We denote the unique solution R0 of the equation R0T = UR0 by
RTU , so that RTUT = URTU . If we interchange the roles of T and U we see
that there exists a unique solution RUT of the equation RUTU = TRUT . It
follows that

RTURUTU = RTUTRUT = URTURUT , (164)

TRUTRTU = RUTURTU = RUTRTUT. (165)

Because of uniqueness it follows that RTURUT = RUU = I and RUTRTU =
RTT = I. Hence RTU and RUT are bijections.

Proof of the Grobman-Hartman theorem It is assumed that A has d > 0
eigenvalues with positive real part and e > 0 eigenvalues with negative real part.
The general casde can easily be obtained by adding artificial extra components.
First all quanities are normalized as in Lemma 6. Let R0 be the mapping which
the lemma provides for T 1 so that R0T

1R−1
0 = L. Here L is the mapping which

is given by the flow of the linearized equation for time t = 1, i.e. L = eA. Let

R =

∫ 1

0

L−sR0T
sds. (166)

Then

LtR =

(∫ 1

0

Lt−sR0T
s−tds

)
T t. (167)

By introducing s− t as a new integration variable the integral becomes∫ 0

−t
L−sR0T

sds+

∫ 1−t

0

L−sR0T
sds. (168)

In the first of these integrals it is possible to use the relation L−sR0T
s =

L−1−sR0T
s+1. Hence

LtR =

(∫ 1

0

L−sR0T
sds

)
T t = RT t. (169)

To complete the proof it is enough to show that R = R0. This follows from
Lemma 8 with U = L.

The difficulties which arise when trying to replace the continuous mapping
in the Grobman-Hartman theorem by a mapping of higher differentiability have
to do the phenomenon of resonances. To illustrate this point we consider the
simple system

ẋ = −x, (170)

ẏ = −2y + x2. (171)
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The general solution of this system is

x(t) = ae−t, (172)

y(t) = a2te−2t + be−2t. (173)

If there existed a C2 diffeomorphism which tranformed the solution of the lin-
earized system into the solution of the nonlinear system then the solution of the
nonlinear system would be of the form

x(t) = ae−t + be−2t + o(e−2t), (174)

y(t) = ce−2t + o(e−2t). (175)

However this is not the case. The problem here is that exponent on the right
hand side of the second equation which arises when the expression for x is sub-
stituted in is equal to the coefficient −2 on the left hand side. In general there
can be problems when one eigenvalue can be written as a linear combination of
the others with integer coefficients. There is a theorem of Sternberg which says
that when the coefficients of the system are C∞ and there are no resonances the
mapping in the Grobman-Hartman theorem can be chosen to be C∞. A corre-
sponding statement in the analytic case (under certain additional assumptions)
was already proved by Poincaré in 1879.

Let x0 be a hyperbolic stationary solution where m+ eigenvalues of the lin-
earization have positive real parts and m− negative real parts. The system
ẋ = Ax is then the model for the nonlinear system if we consider toplogically
equivalent systems. It is possible to ask further when linear systems are topo-
logically equivalent to each other. It turns out that this is the case when they
have the same values of m+ and m−. Thus we can take as model the standard
saddle, which is defined by ẋ = x, ẏ = −y for x ∈ Rm+ and y ∈ Rm− . This
statement will not be proved here but it is possible to understand the central
idea in the case of the 2 × 2 matrix −I and a matrix with eigenvalues −1 ± i.
In the one case the solution curves are radial while in the other case they are
spiral. It not difficult to see that the spirals can be straightened out by a home-
omorphism which rotates the circles centred at the origin by different amounts.
More information on this topic can be found in [7], chapter 2.

With the Grobman-Hartman theorem and the result about linear systems
just mentioned it can be concluded that in a neighbourhood of a hyperbolic
stationary point a dynamical system is always topologically equivalent to a
standard saddle. The case where all eigenvalues have positive real parts is
called a hyperbolic source and the case where they all have negative real parts
is called a hyperbolic sink. A source x0 can never be an ω-limit point of another
solution. Each solution which is near enough to x0 at some time converges to
x0 as t→ −∞. There are corresponding statments for a sink. Now let x0 be a
hyperbolic stationary solution which is neither a source nor a sink. If x0 is in
the ω-limit set of a solution x(t) then x(t) also has ω-limit points in the stable
and unstable manifolds of x0. For a general stationary solution we have

Theorem (Shoshitaishvili) Let x0 be a stationary solution of a dynamical
system. Then in a neighbourhood of x0 the system is topologically equivalent
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to the product of the restriction of the system to a centre manifold of x0 with
a standard saddle.

It follows in particular that the restrictions of the system to two different centre
manifolds of x0 are topologically equivalent. Hence the non-uniqueness of the
centre manifold is not a problem. With this theorem it is possible to prove the
statments about asymptotic stability which were mentioned in the discussion
of the examples of centre manifolds. There is a theorem of Takens which is a
common generalization of the theorems of Sternberg and Shoshitaishvili. When
there no resonances in a suitable sense the homeomorphism in the theorem of
Shoshitaishvili can be shosen to be a diffeomorphism.

10 Poincaré-Bendixson theory

Having spent a long time discussing the local behaviour of solutions close to
a stationary solution we now turn to global properties. One-dimensional dy-
namical systems are easy to analyse. Systems of dimension at least three can
present great difficulties. Typical themes are chaos and strange attractors. Be-
tween there two there is dimension two which can be relatively well controlled
with the help of Poincaré-Bendixson theory. This theory is the main subject of
this section but defore we come to that we make some remarks about the one-
dimensional case. This is the case ẋ = f(x) where x is a scalar quantity. The
stationary solutions are the zeroes of f . The set on which f is non-zero is a union
of open intervals Ui. On Ui for fixed i each solution is stricly monotone. Let Ui
be the interval (x−, x+) where the endpoints are allowed to be infinite. In each
time direction the solution must tend to a limit (finite of infinite) and this limit
can only be an endpoint of the interval. Suppose that the solution is monotone
increasing. Then there are only three possibilities for the asymptotics in the
future. The solutions tends to infinity in finite time, it exists globally and tends
to infinity as t→∞ or it exists globally and tends to x+ <∞ or t→∞. There
are corresponding possibilities for monotone decreasing solutions. The ω-limit
set of a bounded solution is always a stationary solution. Suppose that a system
is defined on an interval I and that there exist two stationary solutions x1 und
x2 with x1 < x2 and that f does not vanish indentically on the interval [x1, x2].
Then there exists an unstable stationary solution x3 with x1 < x3 < x2, a fact
that can be seen as follows. There exists a point x4 ∈ (x1, x2) with f(x4) 6= 0.
We can assume that f(x4) > 0 since otherwise we could replace x by −x. Let
(x5, x6) be the maximal open interval containing x4 on which f is positive. Then
we can choose x3 = x5.

Now we come to two-dimensional systems. A central tool here is the Jordan
curve theorem. A Jordan curve is the set of points x in the plane of the form
x = x(t), a ≤ x ≤ b, where x(t) is continuous, x(a) = x(b) and x(s) 6= x(t) for
a ≤ s < t ≤ b.

Theorem (Jordan curve theorem) If J is a Jordan curve then its comple-
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ment in the plane is the union of two disjoint open subsets E1 and E2 with
∂E1 = ∂E2 = J . One of these regions is bounded, is called the interior of J and
is simply connected.

A topological space X is called simply connected if for every continuous mapping
γ : S1 → X there exists a continuous mapping H : [0, 1] × S1 → X with
H(0, x) = γ(x) and H(1, x) = γ(0) for all x ∈ S1. Intuitively this means that
each closed curve can be continuously deformed to a point.

Consider a continuous mapping x : [a, b] 7→ R2 with image J . Let η(t) be
a consinuous mapping from [a, b] to R2 \ {0}. Intuitively this is a continuous
nowhere vanishing vector field on J . For x ∈ R2 \ {0} let π(x) = x/‖x‖. This
defined a mapping π : R2 \ {0} → S1. Let φ(t) be the angle from the positive
x1 direction to η(t). Then cosφ = η1/‖η‖ and sinφ = η2/‖η‖. These formulas
determine φ up to an integer multiple of 2π. If it is required that φ is continuous
and its value is fixed at one point, say a, then φ is uniquely determined. In other
words π ◦ η is a mapping from [a, b] to S1. The assignment φ 7→ (cosφ, sinφ)
defines a continuous mapping from R to S1. We are thus looking for a mapping
η̃ with the property that p◦η̃ = π◦η. A mapping of this type exists and is unique
up to an additive constant. Let jη(J) be defined by 2πjη(J) = φ(b) − φ(a). If
J is made by joining two curves J1 and J2 then jη(J) = jη(J1) + jη(J2). We
are interested in this definition in the case that J is a Jordan curve. Here only
those Jordan curves are considered which are piecewise C1 and it will always be
assumed that they are positively oriented in the sense that (−dx2/dt, dx1/dt)
always points into the interior of J . It is clear that jη(J) is an integer. It is
called the index of J .

Theorem (Umlaufsatz) Let J be a positively oriented Jordan curve of class
C1 which is defined on [0, 1] and η(t) the corresponding tangent vector field.
Then jη(J) = 1.
Proof On the triangle ∆ defined by 0 ≤ s ≤ t ≤ 1 a function η with values
in S1 will be defined. When s 6= t and (s, t) 6= (0, 1) let η(s, t) = [x(t) −
x(s)]/‖x(t) − x(s)‖. This function has a unique continuous extension to ∆.
η(t, t) = x′(t)/‖x′(t)‖ and η(0, 1) = −η(0, 0). Suppose that x(0) is chosen in
such a way that the tangent in this point is parallel to the x1-axis and no point
of the curve lies below the tangent. There is a unique continuous function
η̃ : ∆ → R with p ◦ η̃ = η and η̃(0, 0) = 0. We also write φ instead of η̃. Then
2πjη(J) = φ(1, 1) − φ(0, 0), as can be seen by consideration of φ(t, t). Now
0 ≤ φ(0, t) ≤ π and φ(0, 1) = kπ where k is an odd integer. Hence φ(0, 1) = π.
The number φ(s, 1) is always between π and 2π and φ(1, 1) = kπ where k is an
even integer. Hence φ(1, 1) = 2π. Since jη(J) = φ(1, 1) − φ(0, 0) the proof of
the theorem is complete.

The essential idea of this theorem is contained in the following lemma.

Lemma 9 Let J be a Jordan curve and ξ(t) and η(t) two vector fields on J which
can be deformed into each other without ever vanishing. Then jξ(J) = jη(J).
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To say that the vector field can be deformed means that there exists a continuous
vector field η(s, t) for all a ≤ t ≤ b and 0 ≤ s ≤ 1 with η(t, 0) = ξ(t), η(t, 1) =
η(t), η(a, s) = η(b, s) and η(t, s) 6= 0.

Proof Let j(s) be the index of η(t, s) for fixed s. Then j(s) is a continuous
function of s. Since, however, j(s) is also an integer it must be constant. In
particular j(0) = j(1).

Next we define the index of a stationary solution. Let J be a positively
oriented Jordan curve on which a vector field f never vanishes. Then jf (J) is
called the index of f with respect to J where jf (J) = jη(J) and η(t) = f(x(t)).
As in Lemma 9 it is possible to show that if J0 and J1 are two Jordan curves
which can be deformed into each other without meeting a stationary solution
of f then jf (J0) = jf (J1) holds. We now consider a dynamical system which is
defined on a region G. Let J be a Jordan curve in G with the property that the
interior of J is also contained in G and that the vector field is non-vanishing on
J and its interior. Then jf (J) = 0. Since the interior of J is simply connected
the curve J can be continuously deformed to a curve J1 which is a small circle
around a point x0. Since f(x0) 6= 0 the angle between f(x) and the positive x1

direction is almost constant. Since jf (J) is an integer it can only be zero. For
a point x0 the index is equal for all Jordan curves J with the properties that
x0 lies in the interior of J and there are no stationary points in the interior of
J except possibly x0 itself. This number is called the index of x0 with respect
to f . If x0 is not a stionary solution then this index is zero. If there are only
finitely many stationary solutions in the interior of J , which in turn lies in G
then jf (J) = jf (x1) + . . . jf (xn). We will not give a complete proof of this
statement but the basic intuitive idea of the proof is easy to understand. The
curve is deformed into a curve with the following properties. It first almost
goes almost all the way around a stationary point on a small circle and then
moves to a circle about another stationary point. In this way each stationary
point is visited once. After that they are visited in the reverse order, where the
return path between the two points is very close to the original one. In the end
the curve is again close to its starting point. The summands in the formula are
provided by the circles. The contributions of the path from one stationary point
to another and the corresponding return path are almost opposite.

Theorem 10 Let f be a continuous function on an open set G and let x(t) be
a periodic solution of the equation ẋ = f(x) with period p. If x(t), 0 ≤ t ≤ p is
a Jordan curve whose interior I is contained in G then I contains a stationary
solution.
Proof If the Jordan curve is positively oriented then according to the Umlauf-
satz we have jf (J) = 1 6= 0. Thus it cannot be the case that there are no
stationary solutions in I.

Now we come to the Poincaré-Bendixson theorem.

Theorem 11 (Poincaré-Bendixson) Let f be a C1 function on an open
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subset G of R2 and let x(t) be a solution of ẋ = f(x) for t ≥ 0 which is
contained in a compact subset of G and which is not periodic. If there are no
stationary solutions in the ω-limit set of x(t) then the ω-limit set is the image
of a periodic solution y(t).

It will follow from the proof of Theorem 11 that when the assumptions of the
theorem hold there is a monotonically increasing sequence {tn} with the prop-
erties that x(t + tn) → y(t) for n → ∞, uniformly on [0, p] and tn+1 − tn → p
for n→∞. Here p is the minimal period of y(t).

Proof of Theorem 11 A closed and bounded line segment L is called a
transversal to the equation ẋ = f(x) if f(x) 6= 0 for all x ∈ L and der di-
rection of f(x) is not parallel to L at any point of L. Then the solution always
crosses L in the same direction. The proof is divided into five steps (a)-(e).

(a) Let x0 ∈ G, f(x0) 6= 0 and let L be a line segment through x0 which is
transversal to f . It follows from the local existence theorem that that there is
a neighbourhood G0 of x0 and ε > 0 such that for x1 ∈ G0 the solution with
x(0) = x1 exists for |t| ≤ ε and meets L only once. For given an arbitrary δ > 0
the neighbourhood G0 and the number ε can be chosen such that the difference
between x(t) and x1 + tf(x1) is not greater than δ|t| for |t| ≤ ε. In particular it
follows that x(t) can only meet the the segment L a finite number of times for
t in a bounded interval.

(b) Let L be a segment which is transversal to f and which contains the
point x0. We can assume w.l.o.g. that L is a subset of the x2 axis. Suppose
that x(t) meets the segment L for values t1 < t2 . . . of t. Then x2(tn) is a
monotone function of n. To see this let us assume that x1 increases at crossings
of L. Consider w.l.o.g. the case that x2(t1) < x2(t2). The set consisting of the
curve y(t), t1 ≤ t ≤ t2, and the segment of the x2 axis with x2(t1) ≤ x2 ≤ x2(t2)
is a Jordan curve J . For t > t2 the point x(t) is always in the interior of J or
never in the interior. This follows from the fact that the solution always crosses
L in one direction. It is then clear that x2(t3) > x2(t2) and the argument can
be repeated. The sequence {x2(tn)} is monotonically increasing.

(c) Now it will be shown that the ω-limit set of x(t) contains at most one
point of L. If y is a point of this type then as a consequence of (a) x(t) meets
the segment infinitely often. As a consequence of (b) the intersection points
with L converge monotonically to x0.

(d) The ω-limit set of x(t) is not empty. Let y0 be a point of this set. The
solution y(t) with y(0) = y0 is contained in the ω-limit set of x(t). The ω-limit
set of y(t) is also contained in the ω-limit set of x(t) and is not empty. Let z0

be a point of this set. It follows from the assumptions of the theorem that z0

is not a stationary solution. Thus there is a segment L0 through z0 which is
tranverse to f . y(t) crosses L0 infinitely often. z0 and every crossing point lie in
the ω-limit set of x(t). It follows from (c) that all these points coincide. Hence
there exist t1 < t2 with y(t1) = y(t2) = z0. Hence ẋ = f(x) has a periodic
solution with period p = t2 − t1. It may be assumed that p is the minimal
period.
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(e) Now it will be shown that the ω-limit set of x(t) coincides with its subset,
the image of y(t). If this statement were false then the complement Z of the
image of y(t) in the ω-limit set of x(t) would be non-empty. The image of y(t)
would also have to contain a cluster point x1 of Z since the ω-limit set of x(t) is
connected. Let L1 be a segment through x1 which is tranverse to f . Each small
ball about x1 contains a point x2 ∈ Z. Let w(t) be the solution of ẇ = f(w)
with w(0) = x2. The image of w is contained in the ω-limit set of x(t). When
x2 is close enough to x1 then w(t) crosses L1. This crossing can only happen
at x1 as a consequence of (c). Since x2 is not in the image of y(t) we get a
contradiction.

Now the statement following the theorem will be proved. Let y(t) be the periodic
solution with y(0) = y0 and let L0 be a segment through y0 which is transverse
to f . Let t1 < t2 < . . . the consecutive crossings of L0 by the solution x(t).
Then x(tn) converges monotonically along L0 to y0. By continuous dependence
of solutions on intitial data x(t+ tn) converges to y(t), uniformly on [0, p]. For
n→∞ the quantity x(tn+p) converges to y(p) = y0. Thus for ε > 0 and n large
x(t) crosses L0 in the interval [tn+p− ε, tn+p+ ε]. Hence tn+1 ≤ tn+p+ ε. At
the same time |x(tn + t)− y(t)| is small for n large and 0 < ε ≤ p. Hence there
exists δ > 0 with the property that ‖x(tn+ t)−y0‖ ≥ δ for 0 < ε ≤ t ≤ p− ε. In
particular, there is no crossing of L0 for ε ≤ t ≤ p− ε. Hence tn+1 ≥ tn + p− ε
for n large and the claim is proved.

Theorem 12 Let f and x(t) be as in Theorem 11 except for the fact that there
is a finite number n of stationary solutions in the ω-limit set of x(t). If n = 0
then Theorem 11 can be applied. If n = 1 and the ω-limit set of x(t) is a point
then the solution converges to this point for t→∞. If n ≥ 1 and the ω-limit set
of x(t) contains more than one point then the ω-limit set consists of stationary
solutions x1, . . . , xn and a finite or infinite, but countable, set of solutions y(t)
on R with the following properties. The solution y(t) has limits for t → +∞
and t→ −∞ and these limits are among the points xi.

Proof We consider the case that n ≥ 1 and the ω-limit set of x(t) contains more
than one point. Since the ω-limit set is connected it contains a point y0 which
is not a stationary solution. The solution y(t) with y(0) = y0 is conteined in
the ω-limit set of x(t). Consider the case that the ω-limit set of y(t) contains
a point z0 which is not a staionary solution. Then it follows from part (d) of
the proof of Theorem 11 that the solution y(t) is periodic. In addition, there is
a neighbourhood of y(t) which contains no other ω-limit points of x(t). Since
the ω-limit set of x(t) is connected the set would have to consist of the periodic
solution, a contradiction. Hence the ω-limit set of y(t) is one of the points xi.
The same argument applies to α-limit points. It remains to show that the set
of solutions y(t) is countable. Suppose this set were uncountable. Then there
would exist points xi and xj , not necessarily distinct, which are connected by an
uncoutable set of solutions. Each of these curves, or each pair of these curves,
defines a Jordan curve. If a set of these Jirdan curves is such that for each
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pair the interior of one does not intersect the interior of the other then the set
must be countable. Hence there must be two Jordan curves in the family whose
interiors intersect. One of these, call it J1 must be in the closure of the interior
of the other, call it J2. The interior of J1 must also intersect the interior of
another curve J3 which is distinct from J2. The image of the solution x(t) lies
between J1 and J2. Hence it cannot be that J3 is in the closure of the interior
of J1. It can also not be the case that J3 lies in the complement of the closure
of the closure of the interior of J2. Hence J3 must lie between J1 and J2 and
the image of x(t) must lie between one of these curves and J3. But then the
other cannot be in the ω-limit set of x(t), a contradiction.

The Poincaré-Bendixson theorem can often be used to prove the existence of
periodic solutions. There is a simple criterion which can often be used to rule
out the existence of periodic solutions of two-dimensional systems. Let ẋ = f(x)
be a two-dimensional dynamical system and let g be a real-valued function. If
div(gf) ≥ 0 and div(gf) does not vanish identically then g is called a Dulac
function. If a Dulac function exists then the system has no periodic solution
whose interior lies in the domain of definition of f . In this case the integral of
the component of gf in the normal direction along the closed curve is equal to
the integral over the interior of div(gf) due to Stokes’ theorem. Since the first
integral vanishes and the second is strictly positive this gives a contradiction.

11 Oscillators

When a dynamical system has a periodic solution a phenomenon which is de-
scribed by this solution will exhibit persistent oscillations. A situation of this
kind is often called an oscillator. In order that this behaviour can actually be
observed in reality it should have a certain stability. The definitions of stability
are similar to those in the case of a stationary solution. Let x(t) be a periodic
solution with image γ. The solution is called orbitally stable if for each neigh-
bourhood U of γ there exists a neighbourhood V of γ so that each solution
which starts in V remains forever in U . The solution is called orbitally asymp-
totically stable if it is orbitally stable and there exists a neighbourhood U of γ
with the property that for every solution that starts in U the distance of x(t)
from γ tends to zero for t→∞.

First some well-known examples will be discussed briefly. In the 1920’s
Balthasar van der Pol studied an electric circuit with nonlinear damping which
leads to oscillations. A dynamical system which describes this circuit is known
as the van der Pol oscillator. The original equation is a scalar second order
equation. By introducing new variables it can be reduced to a first order system
for two variables which belongs to the class of Liénard systems. This system has
a stable periodic solution. Its discoverer called this phenomenon a relaxation
oscillation. We will come back to this concept later. The conduction of electrical
signals by nerve cells can be described by a four-dimensional dynamical system.
This system played a central role in understanding this biological phenomenon.
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Hodgkin and Huxley received the Nobel prize for medicine for their work on
this subject. A simplified version of this model which is two-dimensional and
still retains essential features of the full system is the Fitzhugh-Nagumo model.
The Fitzhugh-Nagumo model is closely related to the van der Pol oscillator and
also has a stable periodic solution. It was believed for a long time that chemical
reactions always tend to equilibrium so that persistent ocillations in chemical
systems were not possible. Later this idea was proved wrong by experiments.
This had to do with the Belousov-Zhabotinski reaktion. The real reaction is very
complicated but it is possible to construct simplified mathematical models for it.
A well-known example is the Field-Noyes model, also known as the Oregonator.
This system is three-dimensional so that Poincaré-Bendixson theory cannot be
applied to it. A further simplification leads to the two-dimensional Brusselator.

Now a concrete example from biology will be investigated. In our bodies
energy is released by the chemical processing of sugar molecules. This process is
called glycolysis. The mechanism can be best investigated in simple organisms,
for instance baker’s yeast, Saccharomyces cerevisiae. This single-celled organism
obtains energy from sugar and in the process produces alcohol which is used for
the production of alcoholic drinks. A simple experiment is as follows. We have
yeast cells in a solution and add glucose at a constant rate k0. If k0 is small
enough alcohol is produced at a constant rate. If, however, k0 is increased the
rate of alcohol production begins to oscillate. This phenomenon was studied
by Higgins and Selkov. These authors introduced a two-dimensional dynamical
system to describe this experiment and today it is known as the Higgins-Selkov
oscillator. If the cells are broken up and the contents extracted the oscillations
are still seen. This suggests that that this is a purely chemical phenomenon
which is independent of complicated structures in the cell.

Suppose we have a chemical reaction with a substrate S and a product P .
The concentration of the substrate satisfies the equation Ṡ = k0 − k1SP

2. The
substrate is supplied at the constant rate k0 and consumed at a rate which
increases with the concentration of the product. In the case of glycolysis the
enzyme is phosphofructokinase (PFK) which converts fructose 6-phosphate into
fructose 1,6-bisphosphate while ATP is converted to ADP. ATP is considered
to be freely available and is therefore not included in the model. ADP increases
the activity of PFK and therefore gives rise to a positive feedback. In the model
S plays the role of the concentration of glucose and P that of the concentration
of ADP. The equation for P is Ṗ = k1SP

2 − k2P . The constants ki are all
positive. Due to their interpretation the quantities S and P should be positive.
If they start positive they remain positive. The proof like in the case of Lemma
1. The sum of the equations gives (S + P )̇ = k0 − k2P . Thus a solution is
bounded on each interval of the form [0, t1) and the solutions exist globally in
the future.

The Higgins-Selkov oscillator has a unique stationary solution, which is given

by P = k0
k2

and S =
k22
k0k1

. The linearization at this point is

dŜ

dt
= −k

2
0k1

k2
2

Ŝ − 2k2P̂ , (176)
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dP̂

dt
=
k2

0k1

k2
2

Ŝ + k2P̂ . (177)

The determinant of the linearization is
k20k1
k2

> 0 and the trace is −k
2
0k1
k22

+k2, an

expression which changes sign when k2
0 =

k32
k1

. If both eigenvalues are real they
have the same sign and this sign is determined by the trace. If the eigenvalues are
complex they have the same real part and the sign of the real part is determined

by the trace. We see that the stationary solution is stable when k2
0 >

k32
k1

and

unstable when k2
0 <

k32
k1

.
If we could show that in the case of the Higgins-Selkov oscillator with pa-

rameters for which the stationary solution is unstable there exists at least one
non-stationary solution which is bounded in the future then we could conclude
from the theorem of Poincaré-Bendixson that a periodic solution exists. The
boundedness is, however, apparently hard to show. In fact the solution has
a periodic solution for parameters of this kind but there are also unbounded
solutions [12]. For this reason we now consider a different related model, the
Schnakenberg model [11], which is easier to analyse. In this other model the
equation for P is replaced by Ṗ = k1SP

2 − k2P + k3 where it is assumed that
k3 < k0. The solutions exist globally in the future by the same argument as
used in the case of the Higgins-Selkov oscillator. In the case of the Schnakenberg

modell there is a unique stationary solution with P = k0−k3
k2

und S =
k0k

2
2

(k0−k3)2k1
.

The linearization at this point is

dŜ

dt
= − (k0 − k3)2k1

k2
2

Ŝ − 2
k0k2

k0 − k3
P̂ , (178)

dP̂

dt
=

(k0 − k3)2k1

k2
2

Ŝ +
(k0 + k3)k2

k0 − k3
P̂ . (179)

The determinant of the linearization is (k0−k3)2k1
k2

> 0 and the trace is of the

form − (k0−k3)2k1
k22

+ (k0+k3)k2
k0−k3 . We obtain statements about the stability of the

stationary solution similar to those in the case of the Higgins-Selkov oscillator,
where the boundary between the stable and unstable cases is given for the
Schnakenberg model by

(k0 − k3)3

k0 + k3
=
k3

2

k1
. (180)

Now it will be shown that the solutions of the Schnakenberg model are
bounded. It follows that when the stationary solution is unstable the ω-limit
set of each non-stationary solution is a periodic solution. The first step is to
show that in each solution P is bounded below by a positive constant for t
sufficiently large. The inequality Ṗ ≥ k3 − k2P holds. Integrating this gives

P (t) ≥ k3

k2
+

(
P (0)− k3

k2

)
e−k2t. (181)
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This implies the desired statement for an arbitrary value of P− <
k3
k2

. We can

then use the inequality Ṡ ≤ k0− k1P
2
−S to see that S is bounded by a constant

S+. It follows that

d

dt
(P + S) = −k2P + k0 + k3 ≤ −k2(P + S) + k2S+ + k0 + k3. (182)

Hence P + S is bounded. Thus from Poincaré-Bendixson there exist periodic
solutions of the Schnakenberg model.

We have now seen how the existence of a periodic solution of a given model
can be proved. This does not, however give much information about where
the solution lies. There is a possiblity, under certain circumstance, to localize
the solution better for certain parameter values. This involves the relaxation
oscillations mentioned previously. These ideas will now be explained in the
case of the van der Pol oscillator. This oscillator is defined by the equation
ü − k(1 − u2)u̇ + u = 0 where k > 0 is a parameter. We replace this equation
by the system

εu̇ = v − u3/3 + u = v −G(u), (183)

v̇ = −εu (184)

where ε = k−1. If (u, v) satisfies the system (183)-(183) then u satisfies the
original second order equation. For this system it is possible to develop the
following intuitive picture. If ε is small and a solution is far from the curve v =
G(u) then the derivative of u is large and that of v is small. Thus under certain
circumstances the solution has the tendency to make jumps in a horizontal
direction. Otherwise it moves almost on the curve v = G(u). In particular
we get a picture of what a periodic solution could look like for ε small. This
picture can be turned into a proof. The function G has the symmetry property
G(−u) = −G(u). It has a unique maximum at u = −1 and a unique minimum
at u = 1. The maximum is 2

3 > 0 and the minimum is − 2
3 < 0. The zeroes of G

are at 0 and ±
√

3. The only stationary solution of the system is at the origin.

Theorem 13 Let J be the Jordan curve which consists of the following pieces:
the horizontal piece which starts on v = G(u) and ends at the local maximum
of that curve, the horizontal piece which starts on v = G(u) and ends at the
local minimum of that curve and the parts of the curve v = G(u) which join the
ends of these lines. For ε small enough the van der Pol oscillator has a periodic
solution with the property that for ε→ 0 its image converges to J .

Proof For this a region H will be constructed whose points are not further from
J than a given constant und which has the property that for ε small enough H
is invariant under the flow. Moreover, this region contains no stationary solu-
tions. As a consequence of the Poincaré-Bendixson theory this region contains
a periodic solution und the definition of the region implies the desired conver-
gence. Let h be a positive constant. Let x1 be the point

(
0, 2

3 + 2h
)
. Let x2

be the unique point on v = G(u) with v = 2
3 + 2h. Let x3 be the unique point
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on v = G(u) − h with the same u coordinate as x2. Let x4 be the point of
v = G(u) such that the tangent to the curve at that point passes through the

point
(
0,− 2

3 − 2h
)
. The u coordinate of x4 is

(
2+3h

2

) 1
3 . We can use the sym-

metry of the curve v = G(u) to produce further points x5 to x8 from the points
x1 to x4. Now these points will be used to construct a Jordan curve J1. x1 is
joined to x2 by a horizontal line, x2 is joined to x3 by a vertical line, x3 is joined
to x4 by part of the curve v = G(u) − h and x4 is joined to x5 by a straight
line. Curves joining the remaining point are then determined by the symmetry.
Let x9 and x10 be the points (−1, 2/3) und (0, 2/3), let x11 be a point to be
determined in the interior of J with u > 1 and G(u) < v < 2/3, let x12 be
the point on the graph of v = G(u) with the same u coordinate as x11. Points
x13 to x16 are determined by the symmetry. A Jordan curve J2 is constructed
using these points. The point x9 to x12 are joined by straight lines and x12 is
joined with x13 by part of the graph of G. The other points are joined using
the symmetry. The curves J1 and J2 do not meet and J2 lies in the interior of
J1. Let H be the closed region between J1 and J2. It remains to show that H
has the desired properties. The origin lies in the interior of J2 which guarantees
that there are no stationary solutions in H. For h → 0 the maximum distance
from J of a point of J1 converges to zero. If we assume that the distance from
x11 to (G−1(2/3), 2/3) is arbitrarily small then the maximum distance from J
of a point of J2 also arbitrarily small. It remains to show that the vector field
points inward everywhere on the boundary of H. On the horizontal and verti-
cal lines this condition is satisfied, except at the endpoints. At the endpoints
the vector field is tangent to the boundary but it is nevertheless the case that
no solution can escape through these points. On the part of J2 between x12

and x13 the condition is also satisfied. It remains to check three parts of the
boundary. Consider first the part of the curve J1 between x3 and x4. Let g(u)
be the slope of this curve at the point u. If for a solution v is written as a

function of u then dv
du = − ε2u

v−G(u) . On the part of the curve being considered at

the moment the relation v − G(u) = −h holds and hence dv
du = ε2u

h < ε2u(x3)
h .

For ε small enough this quantity is smaller than g(x4) < g(u). There v̇ < 0 and
thus the desired condition holds. Next consider the part of J1 between x4 und

x5. There |v −G(u)| > h and it follows that | dvdu | ≤
ε2u(x4)

h . For ε small enough
this quantity is smaller than g(x4), the slope of the line. Finally the part of J2

between x10 and x11 will be examined. Let K be the length of the straight line

from x11 to x12. Then |v − G(u)| > K on this segment. There | dvdu | ≤
ε2u(x11)

K
and this quantity tends to zero as ε → 0. For ε small enough the vector field
points into the interior of H since u̇ > 0 there.

The Poincaré-Bendixson theory only applies to two-dimensional systems. How
can the existence of oscillations in higher dimensional systems be proved? One
possibility is the theory of monotone systems, which will now be discussed
briefly. The system ẋ = f(x) is called monotone (or cooperative) if ∂fi

∂xj
> 0 for

all i 6= j. The name ’cooperative’ comes from the case that the xi are popula-
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tion densities of different organisms. Then the condition means that a higher
population density of one species increases the growth rate of the populations
of all other species. In practise it is more common in population dynamics that
∂fi
∂xj

< 0 for all i 6= j. Then the system is called competitive. The transformation

t→ −t can be used to convert a cooperative system into a competitive one and
conversely. In a certain sense monotone systems have a simpler asymptotic be-
haviour than general dynamical systems. Roughly speaking the solutions have
a stronger tendency to converge to stationary solutions. It is also the case that
monotone systems of n equations are not more complicated than general systems
of n− 1 equations. A detailed treatment of these ideas with precise statements
cannot be given in this course. However a theorem will be proved which plays a
central role in the theory and explains the name ’monotone’. Certain properties
of the solutions of monotone systems can be transferred to those of competitive
systems by the transformation t→ −t.

Theorem 14 (Müller-Kamke) Let ẋ = f(x) be a cooperative dynamical
system on a convex subset G of Rm and let x0 and x̃0 be points of G with
x0,i ≤ x̃0,i for all i. Let x(t) and x̃(t) be solutions with x(0) = x0 and x̃(0) = x̃0

which are defined on a common time interval [0, t1). Then xi(t) ≤ x̃i(t) for all
t ∈ [0, t1) and all i.

Proof Let yε(t) be the solution of ẏε = f(yε) + ε with yε(0) = x̃0. Let t∗
be the supremum of all t < t1 with the property that xi(t) ≤ yε,i(t) for these
values of t and all i. Either t∗ is the upper limit of the maximal interval of
existence of the solution yε(t) or there exists at least one j with the property
that xj(t∗) = yε,j(t∗). In the second case

d

dt
(yε,j − xj) = fj(yε)− fj(x) + ε > 0 (185)

for t = t∗. For

fj(yε)− fj(x) = fj(yε)− fj(x1, yε,2, ..., yε,n) + . . .

+fj(x1, x2, . . . , xn−1, yε,n)− fj(x1, x2, . . . , xn−1, xn). (186)

Each summand on the right hand side is non-negative by the fundamental the-
orem of calculus. That the intermediate points over which it is necessary to
integrate are contained in G is guaranteed by the convexity. Hence the inequal-
ity xj(t) < yε,j(t) holds for t slightly larger than t∗ and indices j of this type.
The corresponding inequality holds for all other indices by continuity. Thus
we get a contradiction unless t∗ = t1. It follows that xi(t) ≤ yε,i(t) as long as
the solution yε(t) exists. It can be concluded by continuous dependence of the
solution on parameters that yε(t) exists for t < t1 and ε sufficiently small and
that yε(t) converges to x̃(t). This proves the theorem.

It has already been mentioned that mathematical modelling played a ma-
jor role in the advances which took place in the understanding of HIV in the
1990’s. In that period two influential papers appeared at the same time which
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used different mathematical models for the same biological system. One is the
fundamental system of virus dynamics whose asymptotics we have already stud-
ied. The we call the alternative system in order to have a name for it. It differs
from the fundamental model by the fact that there is an additional term in the
equation for ẋ of the form px

(
1− x

x̄

)
. Here p and x̄ are positive constants. The

interpretation is that in the alternative system the fact is taken into account
that the population of non-infected T cells can increase by cell division. This
system can be made into a competitive system by means of a coordinate trans-
formation. Let x1 = x, x2 = −y and x3 = v. Then the system for (x1, x2, x3)
is competitive and it is possible to use statements which are similar to those
of Poincaré-Bendixson theory. It was shown in [2] that the asymptotics of so-
lutions for t → ∞ is determined by a number R0. When R0 ≤ 1 all solutions
converge to a stationary solution on the boundary, with v = 0. When R0 > 1 all
non-staionary solutions converge to a positive stationary solution for t→∞ for
certain values of the parameters and to a nontrivial periodic solution for other
values of the parameters. These two classes are distinguished by the stability
of the unique positive stationary solution. It is natural to ask how two models
for the same biological system can give different results. In fact the parameter
values which lead to periodic solutions do not lie in the biologically reasonable
range.

12 Bifurcation theory

Since it is difficult or impossible to determine the asymptotic behaviour of the
most general solutions of dynamical systems of dimension three or more it makes
sense to look for methods which at least allow the global dynamics to be analysed
in certain limited cases. One method of this kind uses the concept of bifurcation.
Suppose that a system ẋ = f(x, λ) is given which depends on a parameter λ
and that the equation is easy to analyse for λ = 0. Under what circumstances
is the system for λ small but non-zero topologically equivalent to the system for
λ = 0 and when this is not the case what is the relation between the equivalence
classes of the two systems? If the systems are not equivalent we say that there
is a bifurcation at λ = 0.

Consider the case that the system ẋ = f(x, λ) has a stationary solution at
x = 0 for λ = 0, i.e. f(0, 0) = 0. A particularly simple case is that where this
stationary solution is hyperbolic. Then, in particular, the the derivative Df(0)
is invertible and we can apply the implcit function theorem. It follows that for x
and λ sufficiently small there exists a unique solution of x = g(λ) of f(x, λ) = 0
for fixed λ. The function g is as smooth as f . The matrix Df(g(λ), λ) depends
smoothly on λ. Its eigenvalues depend continuously on λ. Hence this stationary
solution is hyperbolic for λ sufficiently small and the number of eigenvalues with
positive real part is constant. A sink stays a sink, a source stays a source and a
true saddle remains a true saddle. Thus it is seen that in this case λ = 0 is not
a bifurcation point.

We now consider bifurcations in one-dimensionalen dynamical systems. The
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results are also useful for systems of higher dimensions due the possibility of
reduction to a centre manifold. The starting system can have an arbitrary
dimension provided the centre manifold of a stationary solution is of dimension
one. Let ẋ = f(x, λ) be an equation for a real-valued function f . We write f ′

for the derivative ∂f
∂x and an analogous notation for derivatives of higher order.

The case of a stationary solution without a bifurcation is that where f(0, 0) = 0
und f ′(0, 0) 6= 0. This case is in the following sense generic. If a function of
this kind is defined on a set [−a, a]× [−a, a] we can suppose that, possibly after
reducing the size of a, that f ′ is non-vanishing on the whole set. If ε > 0 is
given we consider all functions g with the property that

sup(|g(x, λ)− f(x, λ)|+ |g′(x, λ)− f ′(x, λ)|) (187)

is not greater than ε on this set. For ε small enough there is a unique point x in
(−a, a) with g(x, 0) = 0 and g′(x, 0) 6= 0. Thus the absence of a bifurcation is
stable. On the other hand for any function f on the given set with f(0, 0) = 0
is possible to find a function g satisfying the inequality with g(0, 0) = 0 and
g′(0, 0) 6= 0. These statements can also be formulated by saying that the set
of functions without a bifurcation form an open and dense subset in a suitable
topology. This type of formulation will, however, not be pursued further here
and the concept ’generic’ will be applied in an intuitive way from this point on.

The possibilities for bifurcations are explored by assuming a certain number
of conditions and then considering cases which are generic within this class. In
the simplest case we assume that f ′(0, 0) = 0, so that a bifurcation is present,
and that the conditions f ′′(0, 0) 6= 0 and ∂f/∂λ(0, 0) 6= 0 hold. This bifurcation
is called a fold (or saddle node). A model for it is f(x, λ) = x2 − λ. We
could also take the equivalent form f(x, λ) = −x2 + λ. The other similar
expression f(x, λ) = x2 +λ is not topologically equivalent to the other two since
the definition of topological equivalence requires the direction of time to be
preserved. In this example there are no stationary solutions for λ < 0, exactly
one stationary solution for λ = 0 and two stationary solutions for λ > 0, one
of which is asymptotically stable and the other unstable. These features are
always present for a fold. Intuitively the situation can be described as follows.
When λ increases there exists a critical parameter value for which two stationary
solutions (one stable and one unstable) appear out of nothing. Alternatively it
can be said that when λ decreases two stationary solutions (one stable and one
unstable) collide and annihilate each other.

Suppose now that a system of the form ẋ = x2 − λ + O(x3) is given. Then
it is locally topologically equivalent to the model system ẋ = x2 − λ. The
proof makes use of the fact that in one dimension a homeomorphism which
maps stationary solutions to stationary solutions the images of solutions which
connect them onto each other. Consider the system ẏ = y2 − λ+ ψ(y, λ) where
ψ is smooth and satisfies the condition ψ(y, λ) = O(y3). The implicit function
theorem implies that the set of stationary solutions is a manifold of the form
λ = g(y) where g(y) = y2 + O(y3). Thus for λ sufficiently small and positive
there exist exactly two stationary solutions close to x = 0. Next a parameter-
dependent homeomorphism will be constructed for small λ which defines the
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equivalence. For λ < 0 the mapping hλ is the identity. Für λ > 0 it is a linear
function hλ(x) = a(λ) + b(λ)x where the coefficients a and b are chosen so that
−
√
λ und

√
λ are mapped onto the two stationary solutions.

The generic fold, i.e. a system for which at the origin f = 0, f ′ = 0, f ′′ 6= 0
and ∂f/∂λ 6= 0 hold is locally topologically equivalent to the model system.
To prove this statement it is enough to show that the system is topologically
equivalent to a system of the special form which has just been treated. A Taylor
expansion of the right hand side in x gives

f(x, λ) = f0(λ) + f1(λ)x+ f2(λ)x2 +O(x3). (188)

This equation can be simplified by a translation in x, ξ = x + δ, where the
translation δ depends on λ. Substituting into the dynamical system gives

ξ̇ = f0(λ) + f1(λ)(ξ − δ) + f2(λ)(ξ − δ)2 +O((ξ − δ)3). (189)

Sorting the terms according to powers of ξ gives

ξ̇ = [f0(λ)− f1(λ)δ + f2(λ)δ2 +O(δ3)]

+[f1(λ)− 2f2(λ)δ +O(δ2)]ξ

+[f2(λ) +O(δ)]ξ2 +O(ξ3). (190)

The condition that the coefficient of ξ vanishes is that

F (λ, δ) = f1(λ)− 2f2(λ)δ + ψ(λ, δ)δ2 = 0 (191)

for a smooth function ψ. We have F (0, 0) = 0, ∂F
∂δ (0, 0) = −2f2(0) 6= 0 and

∂F
∂λ (0, 0) = f ′1(0). The implicit function theorem implies that there exists a
smooth function δ = δ(λ) with δ(0) = 0 and F (λ, δ(λ))(0) = 0. It also follows

that δ(λ) =
f ′1(0)
2f2(0)λ+O(λ2). After the transformation the equation for ξ̇ contains

no terms that are linear in ξ. Consider a new parameter µ = µ(λ) where the
right hand side is the coefficient of ξ0 of the expansion in powers of ξ. Then
µ(λ) = f ′0(0)λ+λ2φ(λ) with a smooth function φ. µ(0) = 0 and µ′(0) = f ′0(0) =
∂f
∂λ (0, 0). By the inverse function theorem there is a smooth inverse λ = λ(µ)

with λ(0) = 0. Hence the equation for ξ̇ becomes ξ̇ = µ+ b(µ)ξ2 +O(ξ3). Here
b is a smooth function with b(0) = f2(0) 6= 0. Let η = |b(µ)|ξ und β = |b(µ)|µ.
Then η̇ = β + sη2 +O(η3) where s = ±1 corresponds to the sign of b(0).

Next the case is considered that at the origin f , f ′ und f ′′ vanish but f ′′′

does not vanish. It turns out that to ensure that a model for all parameter values
close to zero is obtained it is necessary to consider the case with two parameters.
Thus in this case we need a function f(x, λ1, λ2). To get the generic case it is

assumed that at the origin ∂2f
∂x∂λ1

∂f
∂λ2
− ∂2f

∂x∂λ2

∂f
∂λ1
6= 0. This bifurcation is called

a generic cusp. A model for this bifurcation is λ1 +λ2x−x3. It contains points
where there is a fold. They are points away from the origin where the two
equations λ1 + λ2x− x3 = 0 and λ2 − 3x2 = 0 hold. It is possible to eliminate
x from these equations, with the result 4λ3

2 = 27λ2
1. When the parameters lie
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outside the region bounded by the cusp the system has exactly one stationary
solution and it is stable. Inside the cusp there are three stationary solutions,
two stable and one unstable.

A system which contains a generic cusp will now be simplified by a procedure
which is similar to that used in the case of the fold. To make the notation more
concise let λ = (λ1, λ2). A Taylor expansion in x gives

f(x, λ) = f0(λ) + f1(λ)x+ f2(λ)x2 + f3(λ)x3 +O(x4). (192)

The conditions f1(0) = 0 and f2(0) = 0 hold. As in the case of the fold we
try to achieve a simplification by a translation ξ = x+ δ. Substituting into the
dynamical system gives

ξ̇ = [f0(λ)− f1(λ)δ + ω(λ, δ)δ2] + [f1(λ)− 2f2(λ)δ + φ(λ, δ)δ2]ξ

+[f2(λ)− 3f3(λ)δ + ψ(λ, δ)δ2]ξ2 + [f3(λ)δ + θ(λ, δ)]ξ3 +O(ξ4) (193)

for smooth functions ω, φ, ψ and θ. Because f2(0) = 0 it is not possible in
this case as for the fold to use the implicit function theorem to eliminate the
linear term in ξ. We can, however, eliminate the quadratic term in ξ. To do
this let F (λ, δ) = f2(λ) − 3f3(λ)δ + ψ(λ, δ)δ2 and notice that F (0, 0) = 0 and
∂F
∂δ (0, 0) = −3f3(0) 6= 0. Consider new parameters µ1 and µ2 with

µ1(λ) = f0(λ)− f1(λ)δ(λ) + δ2(λ)ω(λ, δ(λ)), (194)

µ2(λ) = f1(λ)− 2f2(λ)δ(λ) + δ2(λ)φ(λ, δ(λ)). (195)

The quanitity µ = (µ1, µ2) satisfies µ(0) = 0. The new parameters can be
introduced if the Jacobian determinant det(∂µ/∂λ) is not zero. This condition
is equivalent to the second condition for the generic cusp. Then the inverse
function theorem can be used. We get a smooth inverse λ = λ(µ) with α(0) = 0.
After the transformation to the new parameters the equation is of the form

ξ̇ = µ1 + µ2ξ + c(µ)ξ3 +O(ξ4) (196)

where c(µ) = f3(λ(µ)) + δ(λ(µ))ω(λ(µ), δ(λ(µ)) is a smooth function of µ and
c(0) = f3(0) = 1

6f
′′′(0, 0) 6= 0. Finally the linear scaling η =

√
|c(µ)|ξ is carried

out and new parameters β1 =
√
|c(µ)|µ1 und β2 = µ2 are defined. The result is

η̇ = β1 + β2η + sη3 +O(η4). (197)

It has now been shown that in the case of the cusp an approximate normal form
can be obtained. It is also possible, as in the case of the fold, to go further and
get an exact normal form. However the proof will not be given here. There is a
special case of the cusp, the pitchfork, in which the system has the symmetry
x 7→ −x. This bifurcation is generic in the class of systems with this symmetry.

It was already mentioned that statements about bifurcation theory in one
dimension can be applied to problems in higher dimensions. Now this remark
will be developed further. For this we consider a two-dimensional dynamical
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system ẋ = f(x, λ) with f(0, 0) = 0 as an example. Suppose that the rank
of the mapping Df(0, 0) is one and that the non-vanishing eigenvalue of this
metrix is negative. The dimension of the centre manifold is one. Now consider
the extended system

ẋ = f(x, λ), (198)

λ̇ = 0. (199)

In this system the parameter has become an unknown. The extended system
has a stationary point at (0, 0, 0) and the centre manifold at that point is two-
dimensional. Call it M . The intersections Mλ of the λ coordinate planes with
M are invariant manifolds for the systems in the parameter-dependent setting.
The manifold M0 is a centre manifold of the origin in the system for λ = 0.
If the systems for λ 6= 0 have stationary solutions which are close enough to
the origin in the (x, λ) space then they must lie on Mλ. The manifold Mλ is
invariant but is in general not a centre manifold for the stationary solutions
which it contains. Let us now get back to the two-dimensional system and let
us suppose that that the restriction of the system to M has a fold bifurcation.
We now how this situation can be characterized for the restriction. Using the
theorem of Shoshitaishvili we then also know what the qualitative behaviour of
the original system looks like in a neighbourhood of the origin. For λ < 0 there
are no stationary solutions. For λ > 0 there are two. One is asymptotically
stable while the other is a saddle. For λ = 0 there is exactly one stationary
solution and it is a saddle node. This means that it has a neighbourhood which
is divided by the stable manifold into two regions, one which looks like a node
(hyperbolic sink) and the other like a saddle. This is the origin of the alternative
name for this bifurcation. Whether the system on the centre manifold has the
desired properties can be checked by direct calculations with the full system.
Here these conditions will be stated without proof. In order that there is a fold
at (0, 0) the following conditions must hold. f(0, 0) = 0, the rank of Df(0, 0)
is one. The condition l(D2f(r, r)) 6= 0 holds, where l and r are left and right
eigenvectors of the matrix Df(0, 0) with eigenvalue zero. Finally the condition
l(∂f/∂λ) 6= 0 holds. There is a similar characterization of the cusp in higher
dimensions which, however, looks a bit more complicated than one might guess.
The conditions are f(0, 0) = 0, the rank of Df(0, 0) is one, l(D2f(r, r)) = 0,
l(D3f(r, r, r)) − 3D2f(r, z) 6= 0 for a certain vector z whose definition will not
be given here. The correction in the condition for the third derivative is related
to the fact that it is necessary to work on the centre manifold and not on
the centre subspace. The condition containing derivatives with respect to the
parameters must be generalized appropriately. Further details on these matters
can be found in the book of Kuznetsov [7].

We have now considered some aspects of the case where the linearization of
the system at the bifurcation point has zero eigenvalue. We next consider the
case that there is a purely imaginary eigenvalues which are not zero. For this
it is of course necessary to have a system of dimension at least two. The model
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system in this case is

ẋ1 = λx1 − x2 − x1(x2
1 + x2

2), (200)

ẋ2 = x1 − λx2 − x2(x2
1 + x2

2). (201)

The system has a stationary point at the point (0, 0) for all λ and the Jacobian
matrix there is [

λ −1
1 λ

]
(202)

with eigenvalues λ ± i. In this form the structure of the system is not very
transparent. It can be seen better in polar coordinates. It is helpful for the
calculations to introduce the complex quantity z = x1+ix2. Then |z|2 = x2

1+x2
2

and
ż = (λ+ i)z − z|z|2. (203)

With z = ρeiφ we get

ρ̇ = ρ(λ− ρ2), (204)

φ̇ = 1. (205)

These equations are decoupled. The first equation is of course only relevant
for ρ ≥ 0. For λ < 0 the stationary solution at ρ = 0 is asymptotically stable
and hyperbolic. For λ = 0 it is still stable but no longer hyperbolic. For
λ > 0 the stationary solution at ρ = 0 is unstable and a new stable stationary
solution appears at ρ =

√
λ. The second equation describes a rotation with

constant speed. If we combine these facts we obtain the following picture of
the dynamics of the two-dimensional system. For λ < 0 there is a hyperbolic
sink at the origin. Solutions away from the origin approach it while spiralling
as t → ∞. The system for λ = 0 is topologically equivalent to the system for
λ < 0. For λ > 0 there is a stable periodic solution which encircles the origin.
The bifurcation which has just been described is the Hopf bifurcation. There
is a similar bifurcation in which the sign in the nonlinear term in the model
system is reversed. In that case the periodic solution is unstable. These two
cases are called supercritical and subcritical, respectively.

As in the case of the bifurcations considered up to now we would like to
relate more general systems with the model system. If a term is added to the
right hand side of the model system which is O(|x|4) then the resulting system
is topologically equivalent to the model system. We now consider generic Hopf
bifurcations. If a two-dimensional system has a stationary solution at the origin
and the eigenvalues there are purely imaginary but non-zero then it follows
from the implicit function theorem that for λ small but non-zero there exists
exactly one stationary solution close to the origin. After doing a λ-dependent
coordinate transformation we can assume that f(0, λ) = 0 for all λ. In order
that the bifurcation is generic and the system topologically equivalent with the
model it suffices that two conditions are satisfied. The first says that the real
part of the eigenvalue of the Jacobian matrix at the origin moves through zero
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with positive velocity for λ = 0. The second condition is that the first Lyapunov
coefficient does not vanish. This quantity is a combination of the derivatives of
f of second and third order of f at the origin. The supercritical and subcritical
cases are distinguished by the sign of the Lyapunov coefficient. By means of
centre manifold reduction it is also possible to define Hopf bifurcations in higher
dimensions.

Having investigated the van der Pol oscillator in the limit k →∞ we will now
consider the case k → 0 with the aim of finding a Hopf bifurcation. It turns out
that in order to do this it is best to rescale the equations [13]. Starting from the

first order system for u and v we define x = k
1
2u and y = k

3
2 v. The transformed

system is

ẋ = y − x3/3 + kx = 0, (206)

ẏ = −x. (207)

The eigenvalues at (0, 0) are 1
2 (k ±

√
k2 − 4). The first condition for a generic

Hopf bifurcation is fulfilled. To check the second condition first notice that
the linear part of the system for k = 0 is already in standard form. Under
these circumstances it is easy to apply a formula for the Lyapunov coefficient
which is given in [9]. The coefficient is − 3π

2 and this is a supercritical Hopf
bifurcation. It follows that there is a stable stationary solution close to the
origin for k > 0. The amplitude of the oscillation, measured in the transformed
variables is proportional to

√
k in leading order. In the original variable u the

amplitude is independent of k in leading order, so that there could not be a
generic Hopf bifurcation in the original variables.

13 The Lorenz system

In this course we have stayed in relatively calm waters. At the same time it is
important to know that in the sea of dynamical systems there are many storms.
The Lorenz system is a system of three ordinary differential equations which
depends on three parameters. At first sight it looks harmless:

ẋ = σ(y − x), (208)

ẏ = rx− y − xz, (209)

ż = xy − bz. (210)

The meteorologist Edward Lorenz obtained this system as a model system for
convective rolls in the atmosphere. The parameters σ and r have direct physical
interpretations as the Prandtl number and the Rayleigh number, respectively.
The parameter b does not have a special name. All parameters are assumed pos-
itive. The system is symmetric under the transformation (x, y, z) 7→ (−x,−y, z).
The origin is a staionary solution for all values of the parameters. All stationary
solutions satisfy x = y, x2 = bz and (r − 1)x = b−1x3. It follows that there are
no stationary solutions away from the origin for r < 1. For r > 1 there are two
stationary solutions with x = y = ±

√
b(r − 1) and z = r − 1.
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Now the stability of the stationary solutions will be investigated. In lin-
earization at the origin the equation for z decouples. The solution of the lin-
earized equation for z decays exponentially. The linearization in x and y gives
a matrix with determinant σ(1 − r). When r > 1 there is one positive and
one negative eigenvalue and the origin is a saddle point. The satble manifold
is two-dimensional and the unstable manifold one-dimensional. The trace is
−σ − 1 and hence the origin is a hyperbolic sink for r < 1 and thus asymp-
totically stable. We can say more with the help of a Lyapunov function. Let
V (x, y, z) = 1

σx
2 + y2 + z2. This function vanishes only at the origin where it

has a global minimum.

1

2
V̇ = (r + 1)xy − x2 − y2 − bz2

= −
[
x− r + 1

2
y

]2

−

[
1−

(
r + 1

2

)2
]
y2 − bz2. (211)

V̇ ≤ 0 and so V is a Lyapunov function when r < 1. In addition V̇ vanishes
only at the origin. Thus in this case the origin is globally asymptotically stable.
For the Jacobian matrix of the other two stationary solutions the characteristic
equation is

λ3 + (σ + b+ 1)λ2 + (r + σ)bλ+ 2bσ(r − 1) = 0. (212)

For r a little greater than one the Routh-Hurwitz criterion implies that all
eigenvalues have negative real part. Hence the real parts of the eigenvalues stay
negative as long as they do not meet the imaginary axis away from the origin.
When λ = iω with ω real this equation becomes the conditions ω2 = (r + σ)b
and (σ + b+ 1)ω2 = 2bσ(r − 1). We can eliminate ω from these equations with

the result that r = rH = σ
(
σ+b+3
σ−b−1

)
. This formula only gives a relevant solution

when the result is positive. At r = rH there is a Hopf bifurcation where the
two stable solutions become unstable. If this bifurcation were supercritical it
could provide a candidate for the ω-limit set of other solutions. In fact it is
subcritical.

What is the long-time beahviour of solutions of the Lorentz system? We
have now excluded some simple candidates for ω-limit sets. Could it be that
the solutions tend to infinity for t → ∞? It will now be shown that this
alternative can also be excluded. Suppose that at some time a solution satisifies
the inequality 2σx2 + 2y2 + b2z2 ≥ C1 for a constant C1.

d

dt
[x2 + y2 + (z − r − σ)2] = 2[−σx2 − y2 − bz2 + b(r + σ)z]

≤ −2σx2 − 2y2 − bz2 + b(r + σ)2

≤ b(r + σ)2 − C1. (213)

It follows that when C1 > b(r + σ)2 the quantity x2 + y2 + (z − r − σ)2 is
decreasing at a positive rate. If for a constant C2 > 0 the ball K defined by
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the inequality x2 + y2 + (z − r − σ)2 ≤ C2 contains the region E defined by
the inequality 2σx2 + 2y2 + b2z2 ≤ C1 then a solution which starts outside K
must reach K in finite time and stay there at all later times. This proves in
particular that the solutions of the Lorenz system are bounded. The divergence
of the vector field defining the Lorenz system is −σ− 1− b < 0. The divergence
is a constant. If we consider the volume v of a region like K then we see, using
Stokes theorem, that v̇ = −(σ + 1 + b)v. The volume tends exponentially to
zero as t→∞.

In his original paper Lorenz chose the parameter values σ = 10, b = 8
3 and

r = 28. Later many authors explored the parameter space, usually varying r
and fixing the other two parameters. For the given values of the other parame-
ters the Hopf bifurcation we already mentioned takes place at a value of r which
is approximately 24.74. The unstable manifold of the origin is one-dimensional
and it can be asked where it goes. For a certain value of r, approximately 13,926
it comes back to the origin and there is a homoclinic solution. If when start-
ing from this value r is increased the unstable periodic solutions which end at
the Hopf bifurcation originate from the homoclinic solution. The bifurcations
which we discussed up to now are local bifurcations. In that case everything
happens close to a stationary solution. In contrast the homoclinic bifurcation
in the Lorenz system is a global bifurcation. The picture which has just been
described is based on numerical simulations but it is apparently at least proved
that a homoclinic solution exists. There is a theory which classifies homoclinic
bifurcations. In some cases of the classification there is very complicated be-
haviour near the homoclinic solution.

For the parameter values of Lorenz computer simulations show that the
solutions converge to a set which is known as the Lorenz attractor. On the
attractor itself the solution cannot be localized. They jump back and forth
between two pieces of the attractor which look like disks. The disks are not
manifolds but rather like many layers lying on top of each other, a bit like puff
pastry. Some of these statements were proved by Warwick Tucker. It was a
computer-assisted proof. This means that the proof used a computer but is
nevertheless a rigorous proof. The technique used is interval arithmetic.

The Lorentz attractor is often called a ‘strange attractor’. In this context
there are several problems. The first is the definition of attractor. There is more
than one definition in the literature and it is not clear if one of them is the best.
The sam is true of the definition of ‘strange’ in this context. The third problem
is, when a definition has been fixed, to show that the Lorenz system (or another
system) contain a set which has these properties. Here we will only try to sketch
the intuitive ideas which play a role in the consideration of these questions. One
possible definition of an attractor is as follows. It is a set A which is invariant
under the flow, which has an open neighbourhood U with property that every
solution which starts in U converges to A as t→∞ and which is minimal in the
sense that it is not the union of two other sets which have the first two properties.
The attractor is called strange if it shows sensitive dependence of the solutions
on initial data. The last condition means that that for sufficiently many initial
data on the attractor the maximal Lyapunov exponent of the solution is positive.
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This last quantity measures how fast neighbouring solutions move awy from the
given solution. When the attractor is a point this exponent is the largest real
part of an eigenvalue of the linearization.

14 Virus dynamics in practise

How are the models of virus dynamics used in practise? A stationary solution of
the model corresponds to a person who is infected with HIV. Suppose that this
person is treated with a drug which prevents new cells being infected. To model
the state during treatment we set the parameter β to zero. Then the equations
for y and v decouple from the equation for x. We then have the system

ẏ = −ay, (214)

v̇ = ky − uv. (215)

These equations are linear and can be solved explicitly, with the result

y(t) = y∗e−at (216)

v(t) =
v∗(ue−at − ae−ut)

u− a
. (217)

The population of infected cells decays exponentially and after a certain time
the number of virions does the same. Let us make the plausible assumption
that the free virions are eliminated faster than the infected cels die, i.e. u > a.
Then the number of virions is approximately proportional to e−at.

A somewhat more complicated case is obtained if a drug is considered which
has the effect that neuly produced virions are defective and are not able to infect
new cells. Let the population of defective virions be denoted by w while v is
the population of functional virions. Then the following equations hold

ẏ = βxv − ay, (218)

v̇ = −uv, (219)

ẇ = ky − uw. (220)

These equations are no longer decoupled from the equation for x. If, however,
we consider a time interval on which x changes very little then we can replace x
by a constant. Then the equations obtained in this way can be solved explicitly,
with the result

y(t) =
y∗(ue−at − ae−ut)

u− a
, (221)

v(t) = v∗e−ut, (222)

w(t) = v∗
[
(e−at − e−ut) u

u− a
− ate−ut

]
u

u− a
. (223)

With the assumption that u > a the total number of virus particles v + w is
approximately proportional to e−at after a certain time. The half-life of the
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infected cells is the same for both types of drug. The reverse transcriptase
inhibitors are of the first type and the protease inhibitors of the second. Both
possibilities were tried in the fundamental experiments on this subject.

In one case the experiment was as follows. Twenty HIV-infected patients
were treated with a protease inhibitor and the concentration of virus was mea-
sured approximately every four days. (Before treament the concentration was
approximately constant.) If this concentration decayed exponentially then log v
would be a linear function of t and it would be possible to read off the exponent
from the slope of this line. In the data a linear dependence is found and it
turns out that the half-life of the infected cells is about two days. Under these
assumptions the half-life of the virus must be even less. Later experiments were
done where shortly after the beginning of treatment measurements were made
much more frequently (every two hours). In this way it was possible to measure
the parameter u. This gives an estimate of how fast virions were being elim-
inated from the system before treatment and, correspondingly, how fast new
virions were being produced. This gives a rate of 109 per day.

15 Sources

Most themes which occur in these notes are treated in many places in the
literature. Here we list some of the sources which we relied on most when
preparing these lectures. The main source for sections 2, 4, 7, 9 and 10 is [4].
The biggest difference here is that we concentrate on the case where uniqueness
holds. This makes many proofs simpler and, it seems to the author, more
transparent. The main source for parts of sections 5 and 11 is [3]. The main
source for section 6 is [10]. The main source for sections 12, 13 and 14 are [7],
[13] and [8], respectively.

I would like to thank Gerrit Pfluger for pointing out a mistake in an earlier
version of this manuscript.
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