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Here I analyse the long-time behaviour of the Higgins-Selkov oscillator. The
system is

ẋ = k0 − k1xy2, (1)

ẏ = k1xy
2 − k2y. (2)

The unknowns x and y, being concentrations, are non-negative. The reaction
constants ki are positive. This system corresponds to the special case γ = 2
of the system given by Selkov. Its behaviour at infinity can be investigated
using a change of variables related to the Poincaré sphere. Define Ỹ = y

x and

Z̃ = 1
x . Inverting these relations gives x = 1

Z̃
and y = Ỹ

Z̃
. The x-axis, i.e.

the set y = 0 gets mapped to the Z̃ axis, i.e. the set Ỹ = 0. The orientation
of x is reversed. The Ỹ -axis, i.e. Z̃ = 0 corresponds to infinity in the old
coordinates. Ỹ increases in the same direction as y. Call the right hand sides
of the evolution equations P (x, y) and Q(x, y). Transforming the system to the
coordinates (Ỹ , Z̃) gives

dỸ

dt
= −Z̃

[
Ỹ P

(
1

Z̃
,
Ỹ

Z̃

)
−Q

(
1

Z̃
,
Ỹ

Z̃

)]
, (3)

dZ̃

dt
= −Z̃2P

(
1

Z̃
,
Ỹ

Z̃

)
. (4)

In the case of the Higgins-Selkov oscillator this becomes

dỸ

dt
= −Z̃

[
Ỹ

(
k0 − k1

Ỹ 2

Z̃3

)
− k1

Ỹ 2

Z̃3
+ k2

Ỹ

Z̃

]
, (5)

dZ̃

dt
= −Z̃2

(
k0 − k1

Ỹ 2

Z̃3

)
. (6)

This can be simplified by using the notation (y, z) instead of (Ỹ , Z̃) and multi-
plying the right hand side by z2 through the use of a new time coordinate. The
result is

y′ = +k1y
2 + k1y

3 − k2yz2 − k0yz3, (7)

z′ = +k1y
2z − k0z4. (8)
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For this system y = 0 is an invariant manifold and there z′ is negative. It is
also the case that z = 0 is an invariant manifold and there y′ is positive.

The system just introduced is appropriate for analysing the behaviour of the
solutions for x large. To analyse the behaviour for y large a different change of
coordinates can be used. In this case let X̃ = x

y and Z̃ = 1
y with inverse y = 1

Z̃

and x = X̃
Z̃

. The y-axis, i.e. the set x = 0 gets mapped to the Z̃ axis, i.e. the

set X̃ = 0. The orientation of y is reversed. The X̃-axis, i.e. Z̃ = 0 corresponds
to infinity in the old coordinates. X̃ increases in the same direction as x. The
transformed system is

dX̃

dt
= −Z̃

[
X̃Q

(
X̃

Z̃
,

1

Z̃

)
− P

(
X̃

Z̃
,

1

Z̃

)]
, (9)

dZ̃

dt
= −Z̃2Q

(
X̃

Z̃
,

1

Z̃

)
. (10)

In the case of the Higgins-Selkov oscillator this becomes

dX̃

dt
= −Z̃

[
X̃

(
k1
X̃

Z̃3
− k2

Z̃

)
−

(
k0 − k1

X̃

Z̃3

)]
, (11)

dZ̃

dt
= −Z̃2Q

(
k1
X̃

Z̃3
− k2

Z̃

)
. (12)

Consolidating the notation as in the previous case leads to the system

x′ = −k1x− k1x2 + k2xz
2 + k0z

3, (13)

z′ = −k1xz + k2z
3. (14)

In this case z = 0 is invariant and there x′ < 0. On x = 0 we have inflow.
Call the origin in this coordinate system P1. The linearization at P1 has rank
one and there is a one-dimensional centre manifold. The centre manifold is
of the form x = φ(z) = O(z2). Differentiating this relation with respect to
t gives x′ = φ′(x)z′ and substituting in the evolution equations shows that
x = (k0/k1)z3+. . .. This implies that z′ is positive for small z and the stationary
point is a saddle.

Next the behaviour of solutions of the system for y and z near the origin will
be examined. The linearization at the origin is identically zero and to obtain
more information the system will be transformed to polar coordinates as in
section 2.10 of Perko. In polar coordinates all terms in these equations contain
a factor r because the linearization of the original system at the origin vanishes.
Thus we can change the time coordinate so as to reduce the powers of r by one.
The notation for the time coordinate will not be changed. This results in the
system

r′ = r[k1 cos3 θ] + r2[k1 cos4 θ − k2 sin2 θ cos2 θ + k1 sin2 θ cos2 θ]

+r3[−k0 sin3 θ cos2 θ − k0 sin5 θ], (15)

θ′ = [−k1 sin θ cos2 θ] + rk2 sin3 θ cos θ. (16)
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Note that θ = 0 corresponds to z = 0. We are only interested in the case that
the variables y and z are non-negative, in other words that 0 ≤ θ ≤ π/2. The
set r = 0 is an invariant manifold as are the sets θ = 0 and θ = π/2. For
θ = 0 and θ = π/2 we have r′ > 0 and r′ < 0, respectively. The stationary
points at r = 0 occur when sin θ = 0 or cos θ = 0 and between them θ′ < 0.
The stationary point at θ = 0, call it P2, is a hyperbolic saddle. In the case of
the stationary point with θ = 0 the lowest order terms are two quadratic terms
arising from the terms in the equation for θ′. Let w = (w1, w2) = (r, π/2− θ)).
Then the leading terms in the last set of equations can be expressed as follows.

w′1 = −k0w3
1 +O(|w|4) (17)

w′2 = k1w
2
2 − k2w1w2 +O(|w|4) (18)

The order of the error term in the equation for w′2 relies on the fact that only
every second term in the Taylor expansion of sin and cos is non-zero. In par-
ticular the linearization of this system at the origin is identically zero. Next we
transform to polar coordinates (r1, θ1) in the (w1, w2) plane. This gives

r′1 = r21(k1 sin θ1 − k2 cos θ1) sin2 θ1 − r31k0 cos4 θ1 +O(r41) (19)

θ′1 = r1(k1 sin θ1 − k2 cos θ1) sin θ1 cos θ1 +O(r31) (20)

Note that θ1 = 0 corresponds to θ = π/2. Again we only need to look at θ1 in
the interval [0, π/2]. A factor r1 can be removed from the left hand side by yet
another change of time coordinate. The result is

dr1
ds

= r1(k1 sin θ1 − k2 cos θ1) sin2 θ1 − r21k0 cos4 θ1 +O(r31) (21)

dθ1
ds

= (k1 sin θ1 − k2 cos θ1) sin θ1 cos θ1 +O(r21) (22)

The set r1 = 0 is an invariant manifold. It follows from the origin of the system
that the sets θ1 = 0 and θ1 = π/2 are invariant but this is not obvious from the
formulae. In addition to the new stationary points at θ1 = 0 and θ1 = π/2 there
is one more in the interior of the interval, where tan θ1 = k2/k1. The stationary
point at θ1 = π/2, call it P3, is a hyperbolic saddle. There are one-dimensional
centre manifolds at both the other points. At the point with θ1 = 0, call it P4,
the r1-axis is a centre manifold. Thus this point is a sink. At the point with
tan θ1 = k2/k1, call it P5, the r1 coordinate line is the centre subspace. Thus the
centre manifold at the latter point is of the form θ1 = θ∗ + φ(r1) = θ∗ +O(r21).
The leading order term in the equation for dr1/ds is −k0r21. Thus the stationary
point is a saddle point.

It has been shown elsewhere that there is exactly one positive stationary solu-
tion of this system and that the linearisation is such that either both eigenvalues
are positive, both are negative or both are non-real. The stability is determined
by the quantity k32 − k20k1. When this quantity is negative the solution is a hy-
perbolic sink. When it is positive the solution is a hyperbolic source. When it is
zero there are purely imaginary eigenvalues. Consider now what the ω-limit set
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of a positive solution may be, assuming that the interior stationary point is a
source and that there are no periodic solutions. The part of the boundary lying
on the x-axis and ending at P4 cannot contain any ω-limit points. This implies
that the same is true for the part of the boundary connecting P4 with P5. The
part of the boundary joining P3 to P5 is also not possible since P5 is a sink.
Of course P5 is the ω-limit set of all solutions starting in a certain open set.
The point P3 is the ω-limit set of a solution which starts on its centre manifold
and of no other solution. If P3 belongs to the ω-limit set of another solution
then P1 and P2 must also belong to it, together with the connecting orbits and
the centre manifolds of P1 and P3. By the Poincaré-Bendixson theory the rest
of this set consists of orbits connecting these stationary solutions. The only
possibility is that the centre manifolds of P1 and P3 coincide. Then the ω-limit
set is a heteroclinic cycle and the positive stationary solution is contained in
its interior. Any stationary solution which starts in its interior must converge
to the heteroclinic cycle for t → ∞. Any solution which starts in its exterior
must remain in its exterior and converge to P4. To sum up, when the stationary
solution is unstable there are three possible cases. In the first case there are no
periodic solutions and there are solutions which approach the heteroclinic cycle
at infinity. In the second case there are no periodic solutions and all positive
solutions except the stationary solution approach P5. In the third case there
exists at least one periodic solution. It remains to investigate which of these
three cases can actually occur for some values of the parameters.

Selkov writes the equations in dimensionless variables. Suppose we define

rescaled variables by t̃ =
k1k

2
0

k2
2
t, x̃ = k0k1

k2
2
x and ỹ = k2

k0
y. Then, dropping the

tildes, the system becomes

ẋ = 1− xy2, (23)

ẏ = α(xy2 − y). (24)

where α =
k3
2

k2
0k1

. Then the stability of the positive stationary solution with

coordinates (1, 1) is lost when α increases through one. Let u = x − 1 and
v = y − 1. Then x = u+ 1, y = v + 1 and the system can be rewritten as

u̇ = −u− 2v − 2uv − v2 − uv2, (25)

v̇ = α(u+ v + 2uv + v2 + uv2). (26)

The determinant of the linearization at the origin is α and the trace is−1+α. We
see that there is a transition from stability to instability as α increases through
one. There are also quadratic and cubic terms. Next the Lyapunov coefficient
will be calculated. In the notation used by Perko the non-vanishing coefficients
are a = −1, b = −2, c = 1, d = 1, a11 = −2, a02 = −1, b11 = 2, b02 = 1,
a12 = −1 and b12 = 1. I am only interested in the sign of the coefficient and
so I ignore the numerical factors. I ignore the factor involving the determinant,
which is positive. The factor involving b is negative and so the sign of σ the
equation on p. 353 of Perko is equal to the sign of the expression in curly
brackets. Let us look first at the contribution from the third order terms. The
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factor in front of the square brackets is equal to one. The total contribution
is −3. Consider next the quadratic terms. The first, third, fifth and sixth
terms make no contribution. It remains to compute the second, fourth and
seventh terms, which make contributions 4, 2 and −8. Thus the value of the
total expression is −5. The Lyapunov coefficient is negative and for α slightly
greater than one there is a unique stable periodic orbit close to the point (1, 1).
Thus case 3 does occur for some parameter values.
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